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Stochastic evolution of inviscid Burgers fluid
ANA BELA CRUZEIRO AND PAUL MALLIAVIN

Dedicated to Henry McKean with admiration

ABSTRACT. We study a stochastic Burgers equation using the geometric point
of view initiated by Arnold for the incompressible Euler flow evolution. The
geometry is developed as a Cartan-type geometry, using a frame bundle ap-
proach (stochastic, in this case) with respect to the infinite-dimensional Lie
group where the evolution takes place. The existence of the stochastic Burgers
flow is a consequence of the control in the mean of the energy transfer from low
modes to high modes during the evolution, together with the use of a Girsanov
transformation.

Introduction

Many distinguished authors have made notable contributions to the stochastic
Burgers equation, of which a small sample appears in our very short bibliogra-
phy. It is not our purpose to review those contributions; it is perhaps appropriate
that we underline here that which seems to us the novelty of our approach.

We start from the viewpoint of geometrization of inertial evolution initiated
in [Arnold 1966] and systematically developed in [Ebin and Marsden 1970;
Brenier 2003; Constantin and Kolev 2002], based on infinite-dimensional Rie-
mannian geometry; the classical approach of [Ebin and Marsden 1970] is to use
Banach-modeled manifold theory; inherent difficulties appear in the construc-
tion of exponential charts and in the introduction of appropriate function spaces.
We circumvent these difficulties by using the viewpoint [Malliavin 2007] of Itô
charts, Itô atlas; in short Itô calculus makes it possible to compute any derivative
of a smooth function f on the path p of a diffusion from the unique knowledge
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of its restriction fjp. Then no more function spaces are a priori introduced: the
path of the diffusion constructs dynamically its canonical tangent space, built
from the evolution of the system.

How do we make explicit computations without local coordinates? We take
the viewpoint of [Arnold 1966; Cruzeiro and Malliavin 1996; Airault and Malli-
avin 2006; Cruzeiro et al. 2007], using the parallelism defined by the infinite-
dimensional Lie group structure.

In fluid dynamics the escape of the energy from low modes to higher modes
induces a lack of compactness which ruins the advantage of energy conservation
for inertial evolution. The key point of our approach is the control of this ultra-
violet divergence. We control the ultraviolet divergence in the case of the sto-
chastic Burgers equation with vanishing initial value. Then symmetries appear
which, as in [Airault and Malliavin 2006; Cruzeiro et al. 2007], make it possible
to compute exactly the expectation of the energy transfer by the exponentiation
of a numerical symmetric matrix.

Then we have solved our stochastic Burgers equation for vanishing initial
data: We reduce, as in [Cruzeiro et al. 2007], the nonvanishing initial data case
to this trivial case by a symmetry breaking expressed at the level of probability
space by a Girsanov functional.

We emphasize that the noise that we use is neither an external force nor a
damping. This important point is made explicit in the next section.

1. Random regularization of nonlinear evolution

In order to clarify our objectives, we shall proceed in this section at a con-
ceptual level, which has the disadvantage that we cannot produce at this level of
generality a single mathematical statement: the considered objects will not be
exactly defined; the reader will have to wait until Section 2 before getting into
mathematics.

Numerical integration of an evolution equation through a time discretization
scheme introduces at each step a numerical error; if the scheme is “well chosen”,
it will be unbiased: therefore the cumulative effect of numerical errors will
converge locally to a Brownian motion.

Let us axiomatize the previous empirical situation. Denote by S the infinites-
imal generator of an evolution equation, which is not assumed to be linear; the
operator S is operating on Cauchy data; then consider the Stratonovitch SDE

dtu
"
t D S

�
u"

t dt C "dx.t/
�
; u"

0 deterministic and independent of ", .1:1/a

where x is a suitable Brownian motion modeling the instantaneous discretiza-
tion error and where " > 0. We call the solution of .1:1/a the random regular-
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ization of the evolution equation

dtut D S.ut dt/; u0 given. .1:1/b

The disadvantage of .1:1/a versus .1:1/b is to replace an ODE by an SDE; this
disadvantage is balanced by the advantage that the introduction of a small noise
can smooth out resonances leading to the system explosion.

The terminology used, random regularization, is parallel to the classical ter-
minology elliptic regularization. This choice of terminology can be justified by
the fact that dealing with the Brownian motion x is equivalent to dealing with
some infinite-dimensional elliptic operator defined on the path space of x.�/.

2. The Burgers equation as a geodesic flow

Consider the group G of C 1 diffeomorphisms of the circle S1, denote by
G its Lie algebra of right invariant first order differential operators on G; we
identify G to vector fields on S1; define on G the pre-Hilbertian metric

kuk
2

D
1

�

Z 2�

0

juj
2.�/ d� I .2:1/

then G becomes an “infinite-dimensional Riemannian manifold”.

THEOREM [Arnold 1966; Constantin and Kolev 2003]. Let vt .�/ a be smooth
vector field defined on S1, depending smoothly on time t , which is assumed to
satisfy the Burgers equation

@v

@t
D v�

@v

@�
: .2:2/

Let gt be the time dependent diffeomorphism of S1 defined by the family of
ODEs

d

dt
gt .�/D vt .gt .�//I g0.�/D �: .2:3/

Then

t ‘ gt is a geodesic of the Riemannian manifold G: .2:4/

3. Structure constants of G

The vector fields

Ak D cos k�; Bk D sin k�; k > 0; A0 D
1

p
2

.3:1/
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constitute an orthonormal basis of G. In this basis, the Lie brackets are as fol-
lows:

ŒA0;Ak �D �.k=
p

2/Bk ;

ŒA0;Bk �D .k=
p

2/Ak ; k > 0;

ŒAs;Ak �D
1
2
..s � k/BkCs C .s C k/Bs�k/;

ŒBs;Bk �D
1
2
..k � s/BkCs C .s C k/Bs�k/;

ŒAs;Bk �D
1
2
..k � s/AkCs C .s C k/Ak�s/; s ¤ k;

ŒBk ;As �D
1
2
..s � k/AkCs � .s C k/As�k/; s ¤ k;

ŒAk ;Bk �D
p

2kA0:

PROOF.

ŒAs;Ak �D �kAs �Bk CsAk �Bs D
1
2
.�k.BkCs CBk�s/Cs.BkCs CBs�k//

D
1
2
..s�k/BkCs C.sCk/Bs�k/;

ŒBs;Bk �D kBs �Ak �sBk �As D
1
2
.k.BkCs CBs�k/�s.BkCs CBk�s//

D
1
2
..k�s/BkCs C.sCk/Bs�k/;

ŒAs;Bk �D kAs �Ak CsBk �Bs D
1
2
.k.AkCs CAk�s/Cs.�AkCs CAs�k//

D
1
2
..k�s/AkCs C.sCk/Ak�s/;

Analogously,

ŒBk ;As �D
1
2
..s�k/AkCs �.sCk/As�k/: �

4. The Christoffel tensor

We have on G two connections:

(i) the algebraic connection defined by the right invariant parallelism on G;
(ii) the Riemannian connection defined by the Levi-Civita parallel transport.

The difference of two connections defines a tensor field � �
�;�.

We have the key general lemma:

LEMMA [Arnold 1966; Cruzeiro and Malliavin 1996; Airault and Malliavin
2006]. Let G be a group with a right-invariant Hilbertian metric, and let fekg

be an orthonormal basis of its Lie algebra G. Then

� l
s;k D

1
2
.cl

s;k � cs
k;l C ck

l;s/; where Œes; ek �D
X

l

cl
s;kel : .4:1/
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We deduce immediately from the structural constants the identities

2�
Al

AsAk
D .ŒAs;Ak �jAl/� .ŒAk ;Al �jAs/C .ŒAl ;As �jAk/D 0;

2�
Bl

AsBk
D .ŒAs;Bk �jBl/� .ŒBk ;Bl �jAs/C .ŒBl ;As �jBk/D 0;

2�
Al

BsBk
D .ŒBs;Bk �jAl/� .ŒBk ;Al �jBs/C .ŒAl ;Bs �jBk/D 0;

2�
Bl

BsAk
D �2�

Ak

BsBl
D 0:

It remains to compute

�
Bl

AsAk
; �

Al

BsAk
; �

Bl

BsBk
; �

Al

AsBk
:

THEOREM.

� Assume 0< s < k. Then

�AsAk
D �

�
k �

1
2
s
�
Bk�s �

�
k C

1
2
s
�
BkCs;

�AsBk
D

�
k �

1
2
s
�
Ak�s C

�
k C

1
2
s
�
AkCs;

�BsAk
D �

�
k �

1
2
s
�
Ak�s C

�
k C

1
2
s
�
AkCs;

�BsBk
D �

�
k �

1
2
s
�
Bk�s C

�
k C

1
2
s
�
BkCs:

� Assume 0< k < s. Then

�AsAk
D

�
k �

1
2
s
�
Bs�k �

�
k C

1
2
s
�
BkCs;

�AsBk
D

�
k �

1
2
s
�
As�k C

�
k C

1
2
s
�
AkCs;

�BsAk
D �

�
k �

1
2
s
�
As�k C

�
k C

1
2
s
�
AkCs;

�BsBk
D

�
k �

1
2
s
�
Bs�k C

�
k C

1
2
s
�
BkCs;

In each case the two first lines define an antisymmetric operator � .As/ and the
two last lines define an operator � .Bs/.

� For k > 0,
�AkAk

D ��BkBk
D �

3
2
kB2k ;

�AkBk
D

3
2
kA2k C

p
2

2
kA0; �BkAk

D
3
2
kA2k �

p
2

2
kA0;

�A0Ak
D �

p
2kBk ; �AkA0

D �

p
2

2
kBk ;

�A0Bk
D

p
2

2
kAk C

p
2

2
kA0; �BkA0

D

p
2

2
kA0;

� Finally, �A0A0
D 0.

PROOF. Consider the case 0< s < k. We have 4�
Bl

AsAk
D I � II � III , with

I D 2.ŒAs;Ak �jBl/; II D 2.ŒAk ;Bl �jAs/; III D �2.ŒBl ;As �jAk/:
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The term I is equal to s � k when l D k C s and to �.s C k/ when l D k � s.
Other contributions to the component BkCs are s C 2k from II in the case

k < l and �.2s C k/ from III corresponding to the case s < l . Concerning
the component Bk�s we have to consider the contribution 2k �s from II when
l < k and the contribution from III in the case s < l , which is equal to 2s � k.
Summing up all the terms gives the result.

In more detail, introduce for s > 0 the new Kronecker symbol

"s
p D ıs

p; p > 0; "s
p D �ıs

�p; p < 0; "s
0 D 0:

Take s; k; l > 0; then 4�
Bl

AsAk
equals

.s�k/ıl
kCsC.sCk/"l

s�kC.k�l/ıs
kCl �.lCk/ıs

jl�kj
C.s�l/ık

lCs�.sCl/ık
js�lj

:

Consider first the case 0< s < k; then 4�
Bl

AsAk
equals

.s�k/ıl
kCs�.sCk/ıl

k�sC.k�l/ıs
kCl �.lCk/ıs

jl�kj
C.s�l/ık

lCs�.sCl/ık
jl�sj

:

(1) Take the subcase 0< s < k < l . Then 4�
Bl

AsAk
equals

.s�k/ıl
kCs �.sCk/ıl

k�s C.k�l/ıs
kCl �.l Ck/ıs

l�k C.s�l/ık
lCs �.sCl/ık

l�sI

expressing the ı functions relatively to l , this expression becomes

.s�k/ıl
kCs �.sCk/ıl

k�s C.k�l/ıl
s�k �.lCk/ıl

kCs C.s�l/ıl
k�s �.sCl/ıl

kCs;

so
4�

Bl

AsAk
D

�
.s � k/� .l C k/� .s C l/

�
ıl

kCs D �2.k C l/ıl
kCs:

(2) In the subcase 0< s < l < k, we obtain for 4�
Bl

AsAk
successively

.s�k/ıl
kCs�.sCk/ıl

k�sC.k�l/ıs
kCl �.lCk/ıs

k�l C.s�l/ık
lCs�.sCl/ık

l�s D

.s�k/ıl
kCs�.sCk/ıl

k�sC.k�l/ıl
s�k�.lCk/ıl

k�sC.s�l/ıl
k�s�.sCl/ıl

kCs D�
� .s C k/� .l C k/C .s � l/

�
ıl

k�s D �2
�
k C l

�
ıl

k�s D �2
�
2k � s

�
ıl

k�s:

(3) In the subcase 0< l < s < k, we obtain for 4�
Bl

AsAk

.s�k/ıl
kCs�.sCk/ıl

k�sC.k�l/ıs
kCl �.lCk/ıs

k�l C.s�l/ık
lCs�.sCl/ık

s�l D

.s�k/ıl
kCs�.sCk/ıl

k�sC.k�l/ıl
s�k�.lCk/ıl

k�sC.s�l/ıl
k�s�.sCl/ıl

s�k D�
� .s C k/� .l C k/C .s � l/

�
ıl

k�s D �2.k C l/ıl
k�s:

Finally, still for 0< s < k we have

�AsAk
D �

�
k �

1
2
s
�
Bk�s �

�
k C

1
2
s
�
BkCs:
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We now consider a rotation of angle '. Define

A
'

k
D Ak cos k' � Bk sin k'; B'

q D Bq cos q'C Aq sin q':

The metric on G is invariant under translation by '. Therefore the Christoffel
symbols commute with this translation:

�
�
k�

1
2
s
�
B

'

k�s
�

�
kC

1
2
s
�
B

'

kCs
D �A

'
s A

'

k

D �AsAk
cos s' cos k'C�BsBk

sin s' sin k'

��AsBk
cos s' sin k'��BsAk

sin s' cos k':

On the other hand,

�
�
k �

1
2
s
�
B

'

k�s
�

�
k C

1
2
s
�
B

'

kCs

D �
�
k �

1
2
s
��

Bk�s cos.k � s/'C Ak�s sin.k � s/'
�

�
�
k C

1
2
s
��

BkCs cos.k C s/'C AkCs sin.k C s/'
�

D �
�
k �

1
2
s
��

Bk�s.cos k' cos s'C sin k' sin s'/

C Ak�s.sin k' cos s' � cos k' sin s'/
�

�
�
k C

1
2
s
��

BkCs.cos k' cos s' � sin k' sin s'/

CAkCs.sin k' cos s'C cos k' sin s'/
�
:

Identifying the coefficients of cos k' cos s', sin k' sin s', sin k' cos s', and
cos k' sin s', we get the formulae for the Christoffel symbols in the case 0 <

k < s.
For 0< k D s, we have, for example,

�
Bl

AkAk
D �.ŒAk ;Bl �jAk/D �

1
2
.k C l/ıl

2k D �
3
2
kıl

2k
:

The other expressions are proved in a similar way. �

5. Stochastic parallel transport; symmetries of the noise

Consider for each k �0 a R2-valued Brownian motion �k.t/D .xk.t/;yk.t//;
all these Brownian motions are taken to be independent. Choose a weight �.k/�
0 and consider the G valued process

pt D

X
k>0

�.k/
�
xk.t/� Ak C yk.t/� Bk

�
: .5:1/

Consider the Stratonovitch SDE

d t D �� .dpt / ı  t ;  0 D Identity: .5:2/

As the � are antisymmetric operators this equation takes formally its values in
the unitary group of G.
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The geometric meaning of .5:2/ is to describe in terms of the algebraic par-
allelism inherited from the group structure of G the Levi-Civita parallelism in-
herited from the Riemannian structure of G; for this reason we call .5:2/ the
equation of stochastic parallel transport.

Symmetries of the noise. The translation �' W � ‘ � C' is a diffeomorphism

Œ.�'/�.z/�.�/D z.� �'/

The collection .�'/�, ' 2 S1, constitutes a unitary representation of S1 on
G which decomposes into irreducible components along the direct sum of two-
dimensional subspacesM

k>0

Ek ; Ek WD .Ak ;Bk/; E0 WD A0;

the action of .�'/� on Ek being the rotation

Dk.'/ WD

� cos k' � sin k'

sin k' cos k'

�
; D0.'/ WD Identity:

Furthermore �' preserves the Lie algebra structure. The Christoffel symbols
are derived from the Hilbertian structure and from the bracket structure of G.
Therefore they commute with �' in the sense that

.�'/�Œ� .�/.�/�D � ..�'/��/Œ.�'/��/�; �; � 2 GI

or, denoting � .z/ the antihermitian endomorphism of G defined by the Christof-
fel symbols, we have

� ..�'/�.z//D .�'/� ı � .z/ ı .��'/�:

Denote by su.G/ the vector space of antisymmetric operators on the Hilbert
space G.

PROPOSITION. Let pt the G-valued process defined in .5:1/ and set .�'/�p DW

p
'
� ; then p

'
� and p have the same law.

PROOF. The rotation Dk.�/ preserves in law the Brownian motion on Ek . �

COROLLARY. The processes .�'/ ı t ı .��'/ and  t have the same law.

PROOF. Denote by  p
t the solution of .3:3/ associated to the noise pt . Then

.�'/ ı  t ı .��'/D  
p'

t �
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The Stratonovich SDE .5:2/ corresponds to the Itô SDE

d 
p
t D

�
� .dp/C B dt

�
 t ;

B D

X
k�0

Œ�.k/�2

2
.� .Ak/� � .Ak/C � .Bk/� � .Bk//:

We get B D .�'/� ı B ı .��'/�, which implies that B diagonalizes in the basisL
Ek . More precisely:

THEOREM. The operator

Œ� .As/�
2

C Œ� .Bs/�
2

is diagonal and on the mode k it has eigenvalue

�s.k/D �.4k2
C s2/; k > 2s:

PROOF. We have

Œ� .As/�
2.Ak/D �

�
k �

1
2
s
�
� .As/.Bk�s/�

�
k C

1
2
s
�
� .As/.BkCs/

D �
�
k �

1
2
s
��
.k �

3
2
s/Ak�2s C .k �

1
2
s/Ak

�
�

�
k C

1
2
s
��
.k C

1
2
s/Ak C .k C

3
2
s/AkC2s

�
;

Œ� .Bs/�
2.Ak/D �

�
k �

1
2
s
�
� .Bs/.Ak�s/C

�
k C

1
2
s
�
� .Bs/.AkCs/

D �
�
k �

1
2
s
��

� .k �
3
2
s/Ak�2s C .k �

1
2
sAk/

�
�

�
k C

1
2
s
��
.k C

1
2
s/Ak � .k C

3
2
s/AkC2s

�
:

Hence

Œ� .As/�
2.Ak/C Œ� .Bs/�

2.Ak/D �2.k �
1
2
s/2 � 2.k C

1
2
s/2: �

We want to take, as in [Cruzeiro et al. 2007], a finite-mode driven Brownian
motion, which means that �.k/D 0 except for a finite number of values of k.

6. Control of ultraviolet divergence by the transfer energy matrix

THEOREM. Let e be a trigonometric polynomial, and define

�k.t/D E
�
Œ. t .e/ j Ak/�

2
C Œ. t .e/ j Bk/�

2
�
:

Then �.t/ satisfies the ordinary differential equation

d�.t/

dt
D A.�.t//; .6:1/

where the matrix A has diagonal entries

Al
l D �4

X
k

�.k/2
�
2l2

C
1
2
k2

�
�

9
8
l2�2.1

2
l/
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and nondiagonal entries

Al
s D 2

X
k

�.k/2
�
.l �

1
2
k/2ıjk�lj

s C 2.l C
1
2
k/2ıkCl

s

�
C

9
8
l2�2.1

2
l/;

with s; l > 0. The sum of the coefficients in each column vanishes.

PROOF. We have, explicitly,

d 
Al

t D �

X
m

.�
Al

AkBm
 

Bm

t odxk.t/C�
Al

BkAm
 

Am

t odyk.t//:

By Itô calculus,

d. 
Al

t /2 D 2 
Al

t d 
Al

t C d 
Al

t : d 
Al

t ;

d. 
Bl

t /2 D 2 
Bl

t d 
Al

t C d 
Bl

t : d 
Bl

t :

Since we are interested in taking expectations we compute only the bounded
variation part of this semimartingale. Considering the terms 0<m � k,

d 
Al

t D ��
Al

AkBl�k
 

Bl�k

t odxk.t/��
Al

BkAl�k
 

Al�k

t odyk.t/

��
Al

AkBlCk
 

BlCk

t odxk.t/��
Al

BkAlCk
 

AlCk

t odyk.t/

D �.l �
1
2
k/ 

Bl�k

t odxk.t/� .l �
1
2
k/ 

Al�k

t odyk.t/

�.l C
1
2
k/ 

BlCk

t odxk.t/C .l C
1
2
k/ 

AlCk

t odyk.t/

�
3
2

P
k

�.k/k 
Bk

t odxk.t/�
3
2

P
k

�.k/k 
Ak

t odyk.t/:

Computing the Itô contractions, we obtain, for example, in the case of the
first term,

�.l �
1
2
k/ 

Bl�k

t odxk.t/D �.l �
1
2
k/ 

Bl�k

t dxk.t/

�
1
2

�
.l �

3
2
k/ 

Al�2k

t � .l �
1
2
k/ 

Al

t C .3
2
k � l/ 

A2k�l

t

�
dt:

We can check by explicit computation that all the nondiagonal contributions
coming from these Itô contractions cancel in their contribution to the expectation
of  Al

t d 
Al

t C 
Bl

t d 
Bl

t . The diagonal ones, for the case 0< k <m, sum up
to give

�2
X

k

.2l2
C

1
2
k2/ 

Al

t dt:

The terms in 0< k <m give the same expression. The contribution from k D m

gives

�
3
2
�

�
1
2
l
�

1
2
l 

A1=2l
t dt:
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Concerning the Bl component of  t , namely

d 
Bl

t D �

X
m

�
�

Bl

AkAm
 

Am

t odxk.t/C�
Bl

BkBm
 

Bm

t odyk.t/
�
;

analogous computations give rise to the expressions

�2
X

k

.2l2
C

1
2
k2/ 

Bl

t dt

for l <m and m< l , and

�
3
2
�

�
1
2
l
�

1
2
l 

B1=2l
t dt

when k D m.
The nondiagonal terms of the transfer energy matrix come from computing

the contractions d 
Al

t : d 
Al

t and d 
Bl

t : d 
Bl

t . We have, when 0< k � l ,

d 
Al

t : d 
Al

t D
P
k

�.k/2
�
�

Al

AkBl�k
 

Bl�k

t

�2
dt C

P
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�
�
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t

�2
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P
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�
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BkAlCk
 

AlCk
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�
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2
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P
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�
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k
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�
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C
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4
�

�
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2
l
�2�

1
2
l
�2�
 

Al =2
t

�2
:

Computing the corresponding terms for the indices 0 < l < k as well as the
contractions d 

Bl

t : d 
Bl

t gives the desired result. �

7. Ultraviolet divergence and dissipativity of the associated jump
process

The ordinary differential equation .6:1/ can be integrated quite explicitly by
the exponential exp.tA/; nevertheless the effective computation of this expo-
nential is not easy.

It was observed in [Airault and Malliavin 2006, Theorem (3.10)] that A can
be also considered as the infinitesimal generator of a Dirichlet form; therefore
its exponentiation is equivalent to construct the jump process associated to this
Dirichlet form. Recall how this jump process was constructed in that theorem.

In order to shorten our discussion we shall sketch our proof in the special
case where

�.1/D 1; �.k/D 0; k ¤ 1:
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Then the random walk X.n/ is a nearest neighbor random walk defined on
N, the set of positive integers, as follows:

If X.n/D k; k > 2 we have

ProbfX.n C 1/D k C 1g D pk WD
1

2

�
1 C

k

4k2 C 1

�
;

ProbfX.n C 1/D k � 1g D 1 � pk :

The random walk is nonsymmetric, it has a drift '
1
k

pushing it to escape at
infinity. This drift has a negligible effect in our discussion and we shall proceed
as if the random walk was symmetric.

The jump process is defined as

�.t/ WD X.'.t//

where the change of clock '.t/ is the integer-valued function defined byX
n�'.t/

1

4ŒX.n/�2 C 1
��n � t <

X
n�'.t/C1

1

4ŒX.n/�2 C 1
��n;

where f�kg is a sequence of independent exponential times.

THEOREM. The jump process is conservative. That is, '.t/ <1 almost surely;
more precisely,

E.ŒX.'.t//�q/ <1 for all q > 0: .7:2/

PROOF. What follows is an improved methodology of proof compared to the
one used in [Cruzeiro et al. 2007]. The proof of (7.2) will occupy us till the end
of Section 7.

Let ˝1 be the probability space of the random walk; then ˝1 is a space gen-
erated by an infinite sequence of independent Bernoulli variables; let ˝2 be the
probability space generated by an infinite sequence of independent exponential
variables. Then the probability space of the jump process is˝1�˝2. We denote
by E!i the expectation relatively to ˝i , the other coordinate being fixed, and
we write Probi.A/ WD E!i .1A/.

We introduce a strictly increasing sequence of stopping times T1 < T2 <

� � � < Tk < � � � on the random walk by the following recursion: T1 is the first
time where the value starting from 1 it reaches 2; TkC1 is the first time after Tk

where X.TkC1/ leaves the interval
�

1
2
X.Tk/; 2X.Tk/

�
; we have

X.Tk/D 2�k ; �k 2 N:

Then �k is an unsymmetric random walk on the set of positive integers. We
construct on ˝1 a new random walk X �.n/ by taking

X �.TkC1/D 2X �.Tk/; then X.n/� X �.n/I inf
m>n

X �.m/�
1
2
X �.n/:
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Denote by '�.t/ the time change in the jump process associated to the random
walk X �.�/; we obtain a new jump process ��.t/, defined on the same proba-
bility space as �, and we have

�.t/� 2��.t/I

therefore it is sufficient to prove .7:2/ for ��. Introduce the functionals

˚.p/ WD

X
n�p

1

4jX �.n/j2 C 1
; 	.p/ WD

X
n�p

�n

4ŒX �.n/�2 C 1
�nI

then E!2.	.p//D ˚.p/.
We have

˚.TkC1/�˚.Tk/�
TkC1 � Tk

22.�kC2/ C 1
.7:3/

THEOREM. Probf˚.Tk/�˚.Ts/< tg�exp
�

�3.k � s/3=2

12
p

12t

�
; k�s>20.tC1/:

PROOF. Denote by S the exit time of the random walk from the interval Ik WD

.2�k�1; 2�kC1/ and for 0< � < 1 being fixed, define on Ik the function

v.p/D Ep.�
S/I

then v takes the value 1 at the boundary of Ik ; by the Bellman programming
equation it satisfies

v.p/D
1
2
�

�
v.p � 1/C v.p C 1/

�
:

Define �f .n/ WD
1
2

�
f .n C 1/Cf .n � 1/

�
�f .n/; then

�v D .��1
� 1/v:

Define fa.n/ WD an; then 1
2

�
fa.n C 1/C fa.n � 1/

�
� fa.n/ D cfa.n/, c D

1
2
.a C a�1/� 1. We satisfy these two equations by imposing the condition

a2
� 2��1a C 1 D 0 .7:4/;

which has for roots �; ��1, � < 1. We deduce that

v.n/D ˛�n
Cˇ��n;

where ˛; ˇ are chosen such that the boundary conditions for v are satisfied; we
deduce that

E.�TkC1�Tk /D v.2�k / <
1

cosh.2�k�1 log �/
Writing this equality with �D 1 � r�12�2�k we get

ProbfTkC1 � Tk � r22�k g � .1 � r�12�2�k /r22�k
�

1

cosh.2�k�1 log �/
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where � is obtained from .7:4/ and where � D 1 � r�12�2�k , a relation which
leads to the asymptotic formula

�' 1 �
p

2 � r�1=22��k :

Further,

ProbfTkC1 � Tk � r22�k g � 2e exp
�
�

1
p

2r

�
:

Finally we have, using .7:3/,

Prob.˚.TkC1/�˚.Tk//� r/� 2e exp
�

�
1

3
p

r

�
:

Denote by � the law of .˚.TkC1/�˚.Tk//. Then

E exp.�c.˚.TkC1/�˚.Tk//D

Z 1

0

exp.��y/�.dy/I

integration by parts yields for this expression the boundZ 1

0

� exp.��c/ �.Œ0; c�/ dc � 2e�

Z 1

0

exp
�

��c �
1

3
p

c

�
dc

� 2e exp
�
�

1
3
Œ��1=3

�
:

Since the ˚.TkC1/�˚.Tk/ are independent, we have

E.exp.��.˚.Tk/�˚.Ts///� exp
�
�

1
4
.k � s/Œ��1=3

�
; � > 16;

and

Probf˚.Tk/�˚.Ts/ < tg � inf� exp
�
�t � 14.k � s/Œ��1=3

�
� exp

�
�

3.k � s/3=2

12
p

12t

�
; k � s > 20.t C 1/: �

LEMMA.

Prob2

�
	.TkC1/�	.Tk/

˚.TkC1/�˚.Tk/
�

1

2

�
�exp

�
�

TkC1 � Tk

64

�
�exp

�
�

2k

128

�
: .7:5/

PROOF. Let � > 0 and let S WD 	.TkC1/�	.Tk/. Then

Probf S � a g � exp.�a�/� E.exp.��S//

or
Probf S � a g � inf

�>0
exp.a�/� E.exp.��S//:

We have

S D

X
Tk<n�TkC1

1

4ŒX �.n/�2 C 1
��n
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By the independence of the �n we have

E!2.exp.��S//D exp
�

�

X
Tk<n�TkC1

log
�
1 C

�

4ŒX �.n/�2 C 1

��
:

Now we use the inequality

log.1 C u/�
3
4
u; u 2

�
0; 1

4

�
;

obtaining

E!2.exp.��S//� exp.�� 3
4
.˚.TkC1/�˚.Tk/// � 2 Œ0; �0�; �0 WD 22.k�1/:

Taking
a D

1
2
.˚.TkC1/�˚.Tk//; � D �0;

we get
Probf S � a g � exp

�
�14�0.˚.TkC1/�˚.Tk//

�
;

that is to say,

1
4
�0

�
˚.TkC1/�˚.Tk/

�
> 22.k�2/2�2.kC1/.TkC1 � Tk/;

which concludes the proof of the lemma. �

Now, starting from (7.5), Borel–Cantelli proves (7.2). �

8. Towards stochastic fluid motion on the configuration space

The configuration space in Arnold’s point of view is G, the diffeomorphism
group of the circle. The last section has given rise to a solution of a stochas-
tic Burgers equation on the moment space G; in this section we shall start to
integrate this solution from the moment space to the configuration space.

Covariance functionals. Baxendale and Harris [1986] have characterized clas-
sical stochastic flows in terms of their covariance. The construction we pro-
pose will depend upon the integration of a delayed SDE, in contrast to Baxen-
dale and Harris, who develop their study in the framework of classical infinite-
dimensional SDE. Nevertheless covariance estimates will be needed.

THEOREM. Assume that the noise energy � has a finite support. Let  x.t/ be
the stochastic parallel transport defined in .5:2/.

(a) The covariance is

Cx;t .�; �
0/DP

k

�
Œ �

x .t/.Ak/�.�/ Œ 
�
x .t/.Ak/�.�

0/C Œ �
x .t/.Bk/�.�/ Œ 

�
x .t/.Bk/�.�

0/
�
�.k/:
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(b) Almost surely the map t ‘ Cx;t .�;�/ is a H q.S1 � S1/ continuous map.
(c) E.Cx;t .�; �

0//D NCt .� � � 0/.

(d) E

�
sup

�;� 0; t<T

Cx;t .�; �/C Cx;t .�
0; � 0/� 2Cx;t .�; �

0/

.� � � 0/2

�
<1:

PROOF. Part (c) results from the corollary on page 138, and part (b) follows
from (7.2) and the continuity property of Brownian martingales. Let

p.�; � 0/ WD Cx;t .�; �/C Cx;t .�
0; � 0/� 2Cx;t .�; �

0/;

then p.�; �/D 0. Since
�
.@p=@�/.�; � 0/

�
�D� 0 D 0, Taylor’s formula gives

p.�; � 0/D .� � � 0/2
Z 1

0

@2p

@�2
.� 0

C t.� � � 0/; � 0/.1 � t/ dt: �

The system of Itô flow equations is not closed. Denote by Gs the space of
vector fields with values in the Sobolev space of vector fields in H s . Then
t ‘ yt is an Gs-valued semimartingale. We have to solve a Stratonovitch SDE

dtgx;t .�/D .od yt /.gx;t .�//

(see [Cruzeiro et al. 2007]); there appears then the Itô contraction

Yt .gx;t .�/� Cx;t .�; �/ dt;

where
Yt D

@gx;t

@�
:

In order to write the Itô SDE driving the flow we must know the derivative
of the flow itself, an so on: we have an unclosed system of Itô SDE.

A usual procedure of existence for SDE relies on the Itô formalism. We could
try the following alternative approach: solutions of Stratonovitch SDE are limits
of solutions of corresponding ordinary differential equations. Then it may be
possible to implement this limiting procedure in the geometric context of the
stochastic development.
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