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1. Introduction

The Ornstein-Uhlenbeck semigroup on the classical Wiener space X (and actually, on
much more general Gaussian spaces) can be defined by the following formula:

(Ttf)(x) =

∫

X

f(e−ts +
√

1− e−2ty)dµ(y)

where µ denotes the Wiener measure. This corresponds to an extension to finite dimen-
sions of the Mehler’s formula. There are other ways to introduce this semigroup, notably
through its action on the finite dimensional Wiener chaos or by associating the semi-
group to the generator, the so-called Ornstein-Uhlenbeck operator, and constructing the
correspondent diffusion. For this last approach one can proceed at least in two different
ways: using Dirichlet form theory ([?][?][?]) or defining a two-parameter diffusion (i.e., a
stochastic process with values on the Wiener space) as a perturbation of a two-parameter
Brownian motion ([?]). The Wiener measure is invariant for the Ornstein-Uhlenbeck semi-
group, which is a positive self-adjoint contraction operator on the spaces Lp(X, µ) for any
p ≥ 1. Nelson’s hypercontractivity also holds true, namely

||Ttf ||Lqt ≤ ||f ||Lp

with qt = 22t(p − 1) + 1, p > 1. This semigroup plays an important rôle in Malliavin
calculus ([19]). And it corresponds to the number operator, a fundamental object in
Quantum Mechanics and in Quantum Field Theory.

How can one define such an object on the path space of a Riemannian manifold? The
Mehler’s formula or the chaos decomposition approaches are not available in the nonlinear
setting. The first construction of the Ornstein-Uhlenbeck semigroup on the curved path
space was done via Dirichlet form theory by Driver and Röckner ([11]). The corresponding
Ornstein-Uhlenbeck process was defined by Kazumi by solving the associated martingale
problem in [15], where an expression for the generator was also derived. The Norris
“twisted sheet” ([20]) correspond to the two-parameter stochastic process approach. In
fact this last construction gives exactly the Driver-Röckner process only when the Ricci
curvature of the underlying manifold is zero.

In [7] a systematic approximation of the geometrical objects on the path space by finite
dimensional ones was defined and studied. The (Driver-Röckner) Ornstein-Uhlenbeck
semigroup, in particular, was approximated by semigroups defined on finite dimensional
manifolds and convergence in the weak sense was proved. In this work we show the strong
(L2) convergence of these objects.
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2. The Riemannian path space

Let M be a d-dimensional compact Riemannian manifold where we consider Levi-Civita
connection and O(M) be the corresponding bundle of orthogonal frames, namely

O(M) := {(m, r) : m ∈ M and r : Rd → Tm(M) is a Euclidean isometry}
The horizontal Laplacian on O(M) is defined by ∆O(M) =

∑d
k=1 A2

k, where Ak are the
canonical horizontal vector fields. It satisfies the relation ∆O(M)(f ◦π) = (∆Mf)◦π, where
∆M denotes the Laplace-Beltrami operator and π : O(M) → M denotes the canonical
projection. The stochastic (Stratonovich) differential equation

drx =
d∑

k=1

Ak(rx) ◦ dx

with initial condition rx(0) = r0 defines a flow of diffeomorphisms on O(M), the lift of
the Brownian motion associated with ∆M (cf.[19]).

We consider the path space

Pm0(M) = {continuous p : [0, 1] → M with p(0) = m0}
for a fixed m0 ∈ M . This space is endowed with the Wiener measure µ (the law of the
Brownian motion on M) and with its natural past filtration. The path space of Rd, the
classical Wiener space, will be simply denoted by X. The Itô map I : X → Pm0(M),
namely

I(x)(τ) = π(rx(τ))

was defined in [19] as a map which is a.s. bijective and provides an isomorphism between
the corresponding Wiener measures.

The path space geometry constructed in [4] is a Cartan-type moving frame geometry
based on the parallel transport along Brownian paths, which was constructed by Itô as
an extension of the parallel transport over smooth trajectories. The Itô parallel transport
along a path p ∈ Pm0(M) is defined by

tpτ←τ0
= rp(τ)rp(τ0)

−1

where rp is the horizontal lift of p.
For a cylindrical functional on the path space F (p) = f(p(τ1), ...p(τm)), with 0 <

τ1 < ... τm ≤ 1 and f a smooth function on Mm, the derivation operators in the sense of
Malliavin calculus are defined by

DτF =
m∑

k=1

1τ<τk
tpτ←τk

(∂kf)

These operators are closable in Lq, q > 1, with respect to the norm

‖DF‖(p) =
( d∑

α=1

∫ 1

0

(Dτ,αF )2dτ
) 1

2

where Dτ,αF = (tp0←τDτF |εα) and {εα} denotes the canonical basis in Rd.
If we consider maps Zp(τ) ∈ Tp(τ)(M) such that z(τ) = tp0←τ (Z(τ)) belongs to the

Cameron-Martin subspace H of the Wiener space, then we can also define derivation
along the “vector field” Z by

DZF =

∫ 1

0

Dτ,αF żα(τ)dτ
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Differential calculus on the path space of a Riemannian manifold can be “transported” to
differential calculus on the Wiener space through the Itô map. The price to pay is that
Cameron-Martin tangent space is not preserved. This phenomena leads to a necessary
extension of the tangent space and the definition of the so-called tangent processes (cf.
[10],[4]). The corresponding result is the following:

Theorem 2.1. (Driver [10], Fang-Malliavin [12] and Cruzeiro-Malliavin [4]) A scalar
valued functional F defined on the path space Pm0(M) is differentiable along an adapted
vector field Z if and only if F ◦I is differentiable on the Wiener space along a semimartin-
gale ξ given by {

dξ(τ) = żdτ + ρ ◦ dx(τ)
dρ(τ) = Ω(◦dx(τ), z)

where Ω denotes the curvature tensor of the manifold read on the frame bundle (Ωr(u, v) =
r−1ΩM(ru, rv)) , z(τ) = tp0←τ (Z(τ)); furthermore we have the intertwinning formula

(DZF ) ◦ I = Dξ(F ◦ I).

One consequence of the intertwinning formula is Bismut’s integration by parts formula
(cf. [4]), namely

Eν(DZF ) = Eν
(
(F ◦ I)

∫ 1

0

[
ż +

1

2
Ricc(z)

]
dx

)

which holds for adapted Cameron-Martin vector fields Z and functionals F ∈ L2 whose
derivative is also in L2. We shall write

δ(z) =

∫ 1

0

[
ż +

1

2
Ricc(z)

]
dx.

In [11] the Ornstein-Uhlenbeck Dirichlet form

E(F, G) = E
( ∑

α

∫ 1

0

Dτ,αFDτ,αGdτ
)

was defined and studied. In particular a process and a corresponding semigroup can be
associated to it. The generator, computed on cylindrical functions of the form F (p) =
f(p(τ1), ..., p(τm)), f ∈ C∞(Mm) has the form (cf.[15] and also [5]):

LF =
∑

α

m∑
i,j=1

si ∧ sjDzi,α
Dzj,α

f −
∑
α,i,j

si ∧ sjδ(zi,α)Dzj,α
f

where

żi,α :=
( 1

4i−1s
1[si−1,si) −

1

4is
1[si,si+1)

)
εα, i = 1, · · · , n− 1

żn,α :=
εα

1− sn−1

1[sn−1,1]

This operator coincides with the Norris Ornstein-Uhlenbeck operator when the Ricci
curvature of the manifold M is zero. We shall denote by Tt the semigroup associated with
L.
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3. Finite dimensional approximations

Following [7] we consider, for a finite partition of the time interval P = {0 = s0 < s1 <
... < sn = 1}, the space of piecewise geodesics paths which change directions only at the
partition points, namely:

Hn(M) = {σ ∈ Pm0(M) ∩ C2(I \ P) : ∇σ̇(s)/ds = 0 for s /∈ P}.
The development map In is a diffeomorphism between the spaces Hn(Rd)(simplified as
Hn) and Hn(M) that associates to a path x ∈ Hn the unique σ = In(x) ∈ Hn(M)
verifying

σ̇(s) = tσs←0ẋ(s), σ(0) = m0,

where tσ.←0 denotes the parallel transport along σ.
The tangent space inherited from the tangent space of the Gaussian vector space Hn

through the map In consists of maps of the form Z(s) := tσs←0(z(s)) such that

z̈(s) = Ωr(s)(ẋ(s), z(s))ẋ(s) on I \ P

with σ ∈ H(n)(M), x = I−1
n (σ), r the horizontal lift of σ and z ∈ Hn (cf. [1]).

We endow Hn(M) with a Gaussian measure νn such that νn ◦ In = µn, where µn =
µ ◦ (πX

n )−1 is the finite dimensional Gaussian measure on Hn.
For ε ∈ [0, 1], we consider the following spaces:

Mn
ε := {v ∈ Mn : d(vi, vi+1) < ζε, for i = 0, 1, · · · , n− 1},

Hn
ε (M) := {σ ∈ Hn(M) :

∫ si+1

si

|σ̇(s)|ds < ζε, for i = 0, 1, · · · , n− 1},

Hn
ε := {z ∈ Hn : ‖z(si+1 − z(si)‖ < ζε, for i = 0, 1, · · · , n− 1},

where ζε := ε(ρ ∧ 4/KΩ), ρ is the radius of injectivity of M , KΩ = supr∈O(M) ‖Ωr‖ < ∞.
Mn

ε is an open subset of Mn and therefore is a differentiable manifold. We associate
to v ∈ Mn

ε the piecewise geodesic curve σv defined by linking the points vi, vi+1 by the
minimizing geodesic. For v ∈ Mn

ε , we consider the map

[Θn
v ]−1 : Hn 7→ Tv(M

n
ε )

given by

Z(si) = tσv
si←0(z(si)) ∈ Tvi

(M), i = 1, · · · , n

where z ∈ Hn. Then Θn determines a parallelism on Mn
ε .

A Riemannian metric is defined on Mn
ε by the condition that Θn

v is an isometry of
Tv(M

n
ε ) onto Hn.

Under the maps πW
n , In, where πW

n denotes the projection from Pm0(M) to Hn, namely

πW
n (p) := (p(s1), · · · , p(sn))

we can identify the spaces Mn
ε , Hn

ε (M) and Hn
ε and we have

d(vi, vi+1) =

∫ si+1

si

|σ̇v(s)|ds = ‖xv(si+1)− xv(si)‖

where ẋv(s) = tσv
0←sσ̇v(s).

For a function f ∈ C∞(Mn
ε ) we define the derivatives

(Dn
s,λf)(v) :=

n∑

k=1

1s<sk
〈tσv

0←sk
∂kf, ελ〉m0 ,
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and, if Y is a smooth vector field in T (Mn
ε ),

Dn
Y f :=

∫ 1

0

Dn
s,λf · ẏλ(s)ds =

n∑

k=1

〈∂kf, Y (sk)〉vk
= Y f.

On Mn
ε we consider the measure νn,ε := ϕ̂2

ndνn and on Hn
ε the measure µn,ε := ϕ2

ndµn,
where ϕ̂n(v) = ϕn(I−1

n (σv)) and ϕn ≥ 0 is a cutoff function on Hn
ε such that




ϕn(b) = 1, b ∈ Hn
ε′ ,

ϕn(b) = 0, b /∈ Hn
ε ,

supk ‖1− ϕn ◦ πX
n ‖Dp

2(X) ≤ c exp{−cn}, p > 1,

ε′ < ε being fixed, c a positive constant.
For a function f on Mn

ε we define its lift to path space as follows:

f̃(p) = ϕn(πX
n ◦ I−1(p)) · f(In ◦ πX

n ◦ I−1(p)).

Finely, for f defined on path space, its projection to Mn
ε is given by

fn(σ) := Eµ(f ◦ I(x)|πX
n (x) = I−1

n (σ)).

Let

En(f, g) :=

∫

Mn
ε

( ∑
α

∫ 1

0

Dn
τ,αfDn

τ,αgdτ
)
dνn,ε

defined for f, g ∈ C∞
r (Mn

ε ), be a Dirichlet form on the Hilbert space L2(Mn
ε , dνn,ε). It is

a regular Dirichlet form with local property in the sense of Fukushima. Its generator is
given by:

Lnf =
∑
α,i,j

si ∧ sjD
n
zi,α

Dzj,α
f −

∑
α,i,j

si ∧ sjδ
(n)(zi,α)Dn

zj,α
f

where

żi,α :=
( 1

4i−1s
1[si−1,si) −

1

4is
1[si,si+1)

)
εα, i = 1, · · · , n− 1

żn,α :=
εα

1− sn−1

1[sn−1,1]

δ(n) denoting the divergence (i.e., the L2 dual of the derivative) with respect to the measure
dνn,ε.

In [7] we have proved the following results:

Theorem 3.1. If f is a cylindrical function on the path space, then

L̃nf → Lf in L2(Pm0(M)).

Now we denote the resolvents associated to the Dirichlet forms (E , D(E)) and (En, D(En)),
respectively, by (Gα)α>0 and (Gα)n

α>0.

Theorem 3.2. Let gn ∈ L2(Mn
ε , dνn,ε) be a sequence of functions such that g̃n converge

weakly to g ∈ L2(Pm0(M)). Then, for any α > 0, we have

G̃n
αgn → Gαg weakly in L2(Pm0(M)).

Concerning the convergence of the semigroups, we have:

Theorem 3.3. For any g ∈ Cb(Pm0(M)) and any t > 0 the following convergence holds

T̃ n
t gn → Ttg weakly in L2(Pm0(M))

gn denoting the projection of g.
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4. Strong convergence results

A classical Trotter-Kato theorem ([22]) states that convergence of the resolvents is
equivalent to convergence of the semigroups. Moreover, for Feller semigroups, this con-
vergence is equivalent to the one of the generators (corresponding to Feller process) (cf.[14,
p.331, Theorem 17.25]). However, in these results, all the objects are defined on the same
space. Sometimes, and this is the case in our finite dimensional approximation scheme for
the path space, the operators are defined on different spaces. We shall follow the method
used by Röckner and Zhang to prove the convergence of semigroups starting from the
generators’ convergence. Our result will be stated in a general frame.

Let {Hn, ‖·‖n, n = 1, · · · , +∞} be a sequence of separable Hilbert spaces, {(Xn, µn), n =
1, · · · , +∞} a sequence of measure spaces. We now consider the separable Hilbert spaces
of L2(Xn, µn; Hn) =: L2

n. Let (L(n),D(L(n))) be positive self-adjoint operators on L2
n.

When n = +∞, we shall omit it for the simplicity of notation. We make the following
assumptions:

(i) L2
n ↪→ L2, the linear embedding map is given by in, which satisfies that for each

f ∈ L2(Xn, µn; Hn)
‖inf‖L2 = ‖f‖L2

n
;

(ii) there is a projection jn : L2 7→ L2
n such that

lim
n→∞

‖in(jnf)− f‖L2 = 0;

(iii) there is a dense subset C(called core of L) of D(L) such that jnC ⊂ D(L(n)), and
for every f ∈ C

lim
n→∞

‖inL(n)(jnf)− Lf‖L2 = 0,

Let {G(n)
λ }λ>0 be the resolvent associated with L(n), {T (n)

t }t>0 the semigroup. That is

G
(n)
λ := (λ− L(n))−1, T

(n)
t = etL(n)

; n = 1, · · · , +∞.

Proposition 4.1. Let gn ∈ L2
n be such that ingn → g in L2. Then for any λ > 0 and

m ∈ N, we have

in(G
(n)
λ )mgn → (Gλ)

mg in L2.

Proof. It suffices to prove this for m = 1. We take a family of functions fm ∈ C such that

‖(λ− L)fm − g‖L2 → 0.

Set g′m := (λ− L)fm and gn,m := (λ− L(n))(jnfm). For any ε > 0, let m be large enough
such that

‖g′m − g‖L2 ≤ λε.

Then we have

‖in(G
(n)
λ gn)−Gλg‖L2

≤ ‖in(G
(n)
λ gn)− in(G

(n)
λ gn,m)‖L2 + ‖in(G

(n)
λ gn,m)−Gλg

′
m‖L2 + ‖Gλg

′
m −Gλg‖L2

= ‖G(n)
λ (gn − gn,m)‖L2

n
+ ‖in(jnfm)− fm‖L2 + ‖Gλ(g

′
m − g)‖L2

≤ 1

λ
‖gn − gn,m‖L2

n
+ ‖in(jnfm)− fm‖L2 +

1

λ
‖g′m − g‖L2

≤ 1

λ

(
‖ingn − g‖L2 + ‖g − g′m‖L2 + ‖g′m − ingn,m‖L2

)
+ ‖in(jnfm)− fm‖L2 + ε

≤ 1

λ

(
‖ingn − g‖L2 + ‖inL(n)(jnfm)− Lfm‖L2

)
+ 2‖in(jnfm)− fm‖L2 + 2ε
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Let n tend to infinity, by the assumption (iii), we obtain

‖in(G
(n)
λ gn)−Gλg‖L2 ≤ 2ε,

which gives the convergence in the lemma. ¤

Define the bounded operators

L(n,λ) := λ(λG
(n)
λ − I)

and the associated semigroup T
(n,λ)
t := etL(n,λ)

; n = 1 · · · , +∞.

Lemma 4.2. For gn ∈ D((L(n))2), assume that

sup
n
‖(L(n))2gn‖L2

n
< ∞,

then for fixed T > 0, T
(n,λ)
t gn converges uniformly (with respect to n and t ∈ (0, T ]) to

T
(n)
t gn in L2

n as β →∞.

Proof. Note that

∂

∂s
(T

(n,λ)
t−s T (n)

s gn) = T
(n,λ)
t−s T (n)

s (L(n) − L(n,λ))gn,

Since T
(n,λ)
t and T

(n)
t are contractive, we have

‖T (n)
t gn − T

(n,λ)
t gn‖L2

n
≤ t‖(L(n) − L(n,λ))gn‖L2

n
.

On the other hand,

L(n,λ)gn = λ(λG
(n)
λ gn − gn)

= λ2

∫ ∞

0

e−λt(T
(n)
t gn − gn)dt

= λ2

∫ ∞

0

e−λtdt
( ∫ t

0

T (n)
s L(n)gn ds

)

= λ

∫ ∞

0

T (n)
s L(n)gn ds

( ∫ ∞

s

e−λtdt
)

= λ

∫ ∞

0

e−λsT (n)
s L(n)gn ds

=

∫ ∞

0

e−sT
(n)
s/λL(n)gn ds,

Thus

L(n,λ)gn − L(n)gn =

∫ ∞

0

e−sds
(
T

(n)
s/λL(n)gn − L(n)gn

)

=

∫ ∞

0

e−sds
( ∫ s/λ

0

T
(n)
t (L(n))2gndt

)
.

Therefore

‖L(n,λ)gn − L(n)gn‖L2
n
≤

( ∫ ∞

0

e−ss ds
)
‖(L(n))2gn‖L2

n
/λ ≤ C/λ,

which yields the result. ¤
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Theorem 4.3. Let gn ∈ L2
n be such that ingn → g in L2. Then for any T > 0, we have

lim
n→∞

sup
t∈(0,T ]

‖inT (n)
t gn − Ttg‖L2 = 0.

Proof. We first prove this for special g and gn. For h ∈ L2, set

g = (I − L)−2h = (G1)
2h, gn = (I − L(n))−2(jnh) = (G

(n)
1 )2(jnh).

Then from Proposition 4.1, we know

lim
n→∞

‖ingn − g‖L2 = 0.

Hence
sup

n
‖(L(n))2gn‖L2

n
= sup

n
‖jnh + gn − 2G

(n)
1 (jnh)‖L2

n
< ∞.

Since T
(n,β)
t can be written as

T
(n,β)
t := e−tλ

∞∑
m=0

(tλ)m

m!
(λG

(n)
λ )m ; t, λ > 0, n ∈ N.

by Lemma 4.2 and Hille-Yoshida approximation, changing the order of the limits we
obtain

lim
n→∞

inT
(n)
t gn = lim

n→∞
lim

λ→∞
inT

(n,λ)
t gn

= lim
λ→∞

lim
n→∞

e−tλ

∞∑
m=0

(tλ)m

m!
in(λG

(n)
λ )mgn

= lim
λ→∞

e−tλ

∞∑
m=0

(tλ)m

m!
lim

n→∞
in(λG

(n)
λ )mgn

= lim
λ→∞

e−tλ

∞∑
m=0

(tλ)m

m!
(λGλ)

mg

= Ttg, in L2

where we used Lebesgue’s dominated convergence theorem in the third step.
Next we prove this for arbitrary g ∈ L2. Since D((I − L)2) is dense in L2, there exist

hk ∈ D((I − L)2) such that
lim
k→∞

‖hk − g‖L2 = 0.

Set
g′n = jng, hn,k = jnhk.

Then

‖inT
(n)
t g′n − Ttg‖L2

≤ ‖inT
(n)
t g′n − inT

(n)
t hn,k‖L2 + ‖inT

(n)
t hn,k − Tthk‖L2 + ‖Tthk − Ttg‖L2

≤ ‖hn,k − g′n‖L2
n

+ ‖hk − g‖L2 + ‖inT (n)
t hn,k − Tthk‖L2 .

First letting n →∞, and then k →∞, we get

lim
n→∞

‖inT
(n)
t g′n − Ttg‖L2 = 0.

Lastly, for any gn ∈ L2
n, if

lim
n→∞

‖ingn − g‖L2 = 0.



ORNSTEIN-UHLENBECK SEMIGROUPS ON RIEMANNIAN PATH SPACES 9

Then

lim
n→∞

‖inT (n)
t gn − Ttg‖L2 = lim

n→∞
‖inT

(n)
t gn − inT

(n)
t g′n‖L2

≤ lim
n→∞

‖gn − g′n‖L2
n

= 0,

we complete the proof. ¤

5. Some properties of the O.U. semigroup

In [8] we have shown some properties that hold in the general theory of Dirichlet forms
for self-adjoint Markovian semigroups. They hold in particular for the Ornstein-Uhlenbeck
semigroup on the path space we have been studying.

For example, for α > 0 and any exponent 1 < p < ∞, we have

‖LαTtf‖p ≤ cp

tα
‖f‖p

and, for f in the domain of L and with constant sign

‖df‖p ≤ cp‖f‖
1
2
p ‖Lf‖

1
2
p , 1 < p ≤ 2.

Concerning the derivatives of the semigroup, the de Rham-Hodge L2 contractivity,
namely

‖Ttf‖1,2 ≤ ‖f‖1,2

where ‖.‖1,2 denotes the Sobolev norm correspondent to the first derivative in L2, was also
derived in [8]. This property had been previously proved by [13] using different methods.

The semigroup also satisfies the following Harnack inequality:

‖dTtf‖p ≤ Cp√
t
‖f‖p

for 1 < p ≤ 2.
An Harnack theorem for the corresponding heat kernel has been announced in [6].
Finally we also refer to [9], where a Littlewood-Paley type inequality on the path space

was proved.

6. The lifted semigroup

In [4] a Markovian connection on the path space was introduced in order to renormalize
the Levi-Civita connection, which produces a divergent curvature. If Z1, Z2 are adapted
vector fields, and zi(·) = tp0←·(Z(·)), i = 1, 2, are the corresponding Cameron-Martin
vectors, the Markovian connection is defined by

d

dτ
(∇z1z2) = Dz1z2 + Qz1 ·

( d

dτ
z2

)
, Qz(τ) =

∫ τ

0

Ω(z, ◦dx)

where Ω denotes the curvature tensor of the manifold M and ◦dx stands for Stratonovich
stochastic integration. Here we have identified the covariant derivative with its image
through the parallel transport.

In [7] we have defined on the finite manifold Mn
ε a Markovian connection which is

Riemannian : for any smooth vector fields Y, Z ∈ T (Mn
ε ), we put

d

ds
(∇n

Y Z)λ(v, s−) := Dn
Y żλ(s−) +

∫ s−

0

Ωλ
γλβ(σv(τ))yγ(τ)d[I−1

n (σv)]
λ(τ) · żβ(s−).

where s− = max{si ≤ s}.
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The operator Ln can be lifted to the frame bundle O(Mn
ε ) through the connection ∇n,

thus defining an operator Ln
O(Mn

ε ) such that, for any smooth function f ,

Ln
O(Mn

ε )(f ◦ π) = (Lnf) ◦ π

where π denotes the canonical bundle projection. Furthermore, if Z is a vector field on
Mn

ε and FZ(r) = r−1(Z) ∈ Hn denotes its scalarizition, we have:

Ln
O(Mn

ε )FZ = FLnZ ,

where

LnZ =
∑
α,i,j

si ∧ sj∇n
zi,α
∇zj,α

f −
∑
α,i,j

si ∧ sjδ
(n)(zi,α)∇n

zj,α
f.

On the other hand, an operator L on vector fields on the path space associated to the
Markovian connection was defined in [3]. For cylindrical vector fields Z ∈ C(H) = {Z(p) =∑k

i=1 Fi(p)hi, Fi cylindrical }, where {hi} denotes a basis in H, it can be written as:

LZ =
∑

α

∫ 1

0

∇2
τ,αZdτ −

∑
α

∫ 1

0

∇τ,αZ ◦ dxα(τ)

In [7] we have proved the following:

Theorem 6.1. For any Z ∈ C(H) we have

(L̃n + I)Zn → (L+ I)Z

in L2(Pm0(M), ν; H), where

Zn(.) =

∫ .

0

( n∑
i=1

1[si,si+1)(s)
( 1

si+1 − si

∫ si+1

si

ż(τ)dτ
))

ds.

Dirichlet forms can be naturally associated in this framework to the operators Ln + I
and L + I and in the correspondent resolvents converge weakly in L2. Concerning the
semigroups, we have constructed in [7] a process rt = (pt, et) on the space Pm0(M) ×
P (O(d)) as the lift of the O.U. process pt on the path space through the Markovian
connection. The following representation formula for the semigroup associated to L + I
holds:

Theorem 6.2. For any Z ∈ C(H) we have

(T
(L+I)
t Z)(p) = e−tE(r−1(w, p, t)Z)

and, concerning the convergence of the semigroups, we have:

Theorem 6.3. Let Z ∈ C(H), Zn ∈ L2(Mn
ε , νn,ε; H

n
ε ). Then for any Y ∈ L2(Pm0(M), ν; H)

we have

Eν((T̃
(Ln+I)
t Zn|Y )H) → Eν((TL+I

t Z|Y )H)

This weak convergence can be improved by the methods described in paragraph 4 that
strong (L2) convergence holds.
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