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In Ref. 2 V. Arnold has shown that the Euler flow can be identified with a

geodesic on the group G of volume preserving diffeomorphisms with respect to

the L2 metric. Following this approach, the geometry of G plays a fundamental

role in hydrodynamics and is important for instance in the study of the stability

of the fluids motion. It has been developed by many authors, one of the first

being Ref. 5, see also Ref. 3 and references therein.

In this paper we consider the d-dimensional torus as the underlying mani-

fold, we compute the constants of structure and the Christoffel symbols of the

corresponding group of volume preserving L2 diffeomorphisms.

Using infinite dimensional stochastic analysis we construct the stochas-

tic parallel transport on G along Brownian paths where some weights on the

Fourier modes are considered. Then there is a matrix which describes the en-

ergy transfer between modes: its exact computation in the two dimensional

case has been done in Ref. 4, where a machinery already developed in Ref. 1 in

the context of the Virasoro algebra was used. Here, for the d-dimensional case,

we prove the existence of such matrix and establish some qualitative estimates.

Keywords: Stochastic parallel transport; geometry of diffeomorphisms group

1. Basis of Lie algebra of vector fields with vanishing

divergence

We shall denote by G the group of measure preserving diffeomeophisms of

the torus T d and by G its Lie algebra, consisting of real vector fields on T d

with vanishing divergence.
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We look for an L2-orthonormal basis of complex vector fields with van-

ishing divergence. We use the key fact of the invariance of this space by the

translation operator:

[(τϕ)∗Y ](θ) := Y (θ − ϕ).

Define

Y n :=
1

(2π)d

∫

T d

[(τϕ)∗Y ] exp(in.ϕ) dϕ, n = (n1, . . . , nd) ∈ Zd.

Then Y n has a vanishing divergence; furthermore

((τϕ0
)∗Y

n)(θ) =
1

(2π)d

∫

T d

Y (θ − ϕ− ϕ0) exp(in.ϕ) dϕ.

Make the change of variable ϕ′ − ϕ0 = ϕ; then

((τϕ0
)∗Y

n)(θ) = exp(−in.ϕ0)Y
n)(θ).

Considering this identity at θ = 0 we find Y n(−ϕ0) = exp(−in.ϕ0)Y
n(0).

Therefore we can look for a basis of vector fields with vanishing divergence

of the form

zn exp(in.θ), zn is a fixed vector in Rd.

As we have div(zn exp(in.θ)) = i n.zn exp(in.θ), we get

Proposition 1.1. The vector fields of the form

zk exp(i k.θ), k.zk = 0 (1.1a)

generate the vector space of complex vector fields with zero divergence, and

vector fields asssociated to two distinct values of k are orthogonal.

To find an orthonormal basis we have to find for each k an orthonormal

basis of the space Vk := {z ∈ Cd : k.z = 0}; define

Ek := {x ∈ Rd : k.x = 0}, then E−k = Ek; (1.1b)

and Vk = Ek ⊗ C. We obtain the wanted orthonormal basis by picking,

for ∀k 6= 0, an orthonormal basis ǫ1k, . . . , ǫ
d−1
k of each Ek; we make the

convention to take

ǫα−k := ǫαk . (1.1c)

Proposition 1.2. Denote Z̃d a subset of Zd such that each equivalence

class of the equivalence relation on Zd defined by k ≃ k′ if k+ k′ = 0 has a
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unique repesentative in Z̃d; denote Hr the Hilbert space of square integrable

real vector fields on T d with a vanishing divergence, then
{

ǫαk cos k.θ, ǫαk sin k.θ,

}

k∈Z̃d, α∈[1,d−1]

(1.2)

constitute an orthonormal basis of Hr.

Proof. We have

Y =
∑

k

zk × exp(i k.θ), zk ∈ Ek, with the reality condition z−k = z̄k

(1.3a)

and ‖Y ‖2
L2 =

∑

k ‖zk‖2
Rd .

We can write the complex series (1.3a) as a real series by grouping terms:

Y =
∑

k∈Z̃d

(

zk×exp(ik.θ)+z̄k×exp(−ik.θ)
)

, z0 ∈ Rd, zk ∈ Ek⊗C. (1.3b)

For k ∈ Z̃d, writing zk = αk − i βk, αk, βk ∈ Ek, we get

Y =
∑

k∈Z̃d

(

αk×cos(ik.θ)+βk×sin(ik.θ)

)

, α0 ∈ Rd, αk, βk ∈ Ek. (1.3c)

We want to write automatically the passage from the representation

(1.3a) to the representation (1.3c). We shall formalize the following elemen-

tary Euler identities

cos k.θ =
1

2

(

exp(ik.θ)+exp(−ik.θ)
)

, sin k.θ =
1

2i

(

exp(ik.θ)−exp(−ik.θ)
)

.

(1.3d)

Consider the group ς generated by the symmetry τ : k 7→ −k on Zd;

then ς is a group of order 2. Denote χ the character on ς which takes the

value −1 on τ and the value 1 on the identity. The powers of χ generate a

group of order two; then there exists a coupling of duality ς × ς̂ 7→ {1,−1},
coupling denoted < ∗ , ∗ >, where ς̂ is the dual group of ς. Given a function

a defined on Zd, its ς-Fourier transform is defined as

σ̂ak =
1

2

∑

σ∈ς

aσ(k)× < σ , σ̂ >, k ∈ Z̃d.

Starting from (1.3c) we define a function ψ on ς̂ × Z̃d by

αk =: ψk(e), βk =: ψk(χ), k ∈ Z̃d,
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then we get the universal formula describing the passage from (1.3a) to

(1.3c)

ψk(σ̂) =
1√

< τ , γ >
× σ̂zk, k ∈ Z̃d . (1.3e)

If we apply (1.3e) to the function exp(ik.θ) we find back the Euler identities

(1.3d).

2. Constants of structure of the Lie algebra and Christofell

symbols

The bracket of complex vector fields has the following expression:
[

zk×exp(i k.θ) , zs×exp(i s.θ)

]

=
(

(zk.s) zs−(zs.k) zk

)

×exp
(

i (k+s).θ
)

;

as (zk.s) (k + s).zs − (zs.k) (k + s).zk = 0,
(

(zk.s) zs − (zs.k) zk

)

∈ Ek+s.

Let

bk,s : (Ek ⊗ C) × (Es ⊗ C) 7→ Ek+s ⊗ C be defined by

bk,s(zk, zs) =
(

(zk.s) zs − (zs.k) zk

)

; hence

[

zk × exp(i k.θ) , zs × exp(i s.θ)

]

= bk,s(zk, zs)× exp(i (k + s).θ). (2.1a)

Remark that, granted the identification (1.1b), we have

b−k,−l = −bk,l. (2.1b)

The function bk,l is defined on Ek × El and takes its values in Ek+l. In the

orthonormal basis ǫαk , ǫ
β
l , ǫ

γ
k+s it is expressed as

[bk,l]
γ
α,β or more intrincally bk,l ∈ (Ek ⊗ El ⊗ Ek+l) ⊗ C, (2.1c)

this last indentification being possible granted the euclidean structure of

the E∗.
Let Y, Y ′ be two real vector fields

Y =
∑

k∈Z̃d

(

zk × exp(ik.θ) + z̄k × exp(−ik.θ)
)

,

Y ′ =
∑

s∈Z̃d

(

z′s × exp(is.θ) + z̄′s × exp(−is.θ)
)

,
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[Y, Y ′] =
∑

k,s∈Z̃d

Ak,s where

Ak,s :=

[

zk×exp(i k.θ)+z̄k×exp(−i k.θ) , z′s×exp(i s.θ)+z̄′s×exp(−i s.θ)
]

(2.1d)

= bk,s(zk, z
′
s) × i exp

(

i (k + s).θ
)

+ b−k,s(z̄k, z
′
s) × i exp

(

i (−k + s).θ
)

+bk,−s(zk, z̄
′
s) × i exp

(

i (k − s).θ
)

+ b−k,−s(z̄k, z̄
′
s) × i exp

(

− i (k + s).θ
)

Denote by δ the Kronecker symbol and define the constants of structure

of the complex Lie algebra H by

crk,s = bk,s δ
r
k+s (2.1e)

Previously the component of a vector was depending only upon indices

k ∈ Zd. Now the constants of structure depend upon three indices; the

natural group of symmetry is ς3, group which has for dual group ς̂3, the

coupling being given by

< σ , σ̂ >=

3
∏

i=1

< σi , σ̂i >

Define

σ̂c
r

k,s =
1

8
√
< τ , γ >

∑

σ∈ς3

c
σ3(r)
σ1(k),σ2(s) < σ , σ̂ >, (2.2)

τ = (τ1, τ2, τ3), k, s, r ∈ Z̃d, σ̂ ∈ ς̂3.

Remark 2.1. We have c
σ3(r)
σ1(k),σ2(s) ∈ Eσ1(k) ⊗ Eσ2(s) ⊗ Eσ3(r) ⊗ C which by

(1.1b) is equal to Ek ⊗ Es ⊗ Er ⊗ C; therefore all the elements of the sum

(2.2) belong to the same vector space.

Theorem 2.1. Define a function ψ giving the expression of the bracket in

the basis

xk cos k.θ, yk sink.θ, k ∈ Z̃d, xk, yk ∈ Ek as

ψr
k,s(1, 1, 1) is the term which gives the contribution of the terms in

cos k.θ, , cos s.θ on the component on cos rθ; ψk,s(1, 1, χ) the component of

the same term on sin rθ and so on. Then we have the universal formula

ψr
k,s(σ̂) = σ̂c

r

k,s . (2.3)
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Proof. We define an induction on the number of components. We have

proved the universal formula when we have a single component. Assume

that we have proved it for tensors with a number of indices < p. Consider a

tensor with p indices. Fixing the last index we obtain a tensor with (p− 1)

indices for which the universal formula holds true; fixing the first (p − 1)

components we obtain a vector for which the universal formula holds true;

finally the universal formula stays stable by cartesian product.

Christofell symbols

The Christofell symbol in the complex basis are defined in tems of the

structural constant

2Γl
k,s := clk,s − cks,l + csl,k = bk,sδ

l
k+s − bs,lδ

k
s+l + bl,kδ

s
k+l (2.4a)

Remark 2.2. If kls 6= 0 at most a single Kronecker symbol does not

vanish and in the sum (2.4a) at most one term is different from zero; for

this reason we have not to worry about adding objects which belong to

different vector spaces. To avoid to check constantly facts of this nature we

shall use the canonical injections jk : Ek 7→ Rd, which induce a canonical

injection jk ⊗ js ⊗ jl : Ek ⊗ Es ⊗ El 7→ Rd ⊗ Rd ⊗ Rd; all the considered

objects will belong to the fixed vector space Rd ⊗Rd ⊗Rd.

We obtain the Christofell symbols in the real basis by applying the

universal formula (2.2):

[σ̂Γ]lk,s :=
1

8
√
< τ , γ >

∑

σ∈G3

Γ
σ3(l)
σ1(k),σ2(s) × < σ , σ̂ >, (2.4b)

< σ , σ̂ >:=
∏3

i=1
< σi , σ̂i >,

where k, s, l ∈ Z̃d.

Proposition 2.1. For every γ ∈ σ̂3 we have [σ̂Γ]lk,s ∈ Ek ⊗ Es ⊗ El.

In the usual theory Christofell coefficients are scalar; to realize this

situation we have to pick a basis ǫαk , α ∈ [1, d − 1] of each Ek; then the

coefficient [γΓ]lk,s will give rise to (d − 1)2 scalar coefficients. We prefer to

avoid this explicit computation by introducing the following vector valued

tensor calculus. We consider the vector bundle F of basis Z̃d defined as

F :=
⋃

k∈Z̃d

Ek and its dual bundle defined as F :=
⋃

k∈Z̃d

E∗
k ;

of course the euclidean structure of Ek defines an identification of (E∗
k )∗ with

Ek. In tensor calculus we shall forget this identification. A tensor q-times
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covariant and p-times contravariant is by definition a section of the vector

bundle [F∗]⊗q
⊗

[F ]⊗p

Proposition 2.2. Fix σ̂ ∈ ς̂3, then we can consider [σ̂Γ]∗∗,∗ as a tensor

2-times covariant and 1-times contravariant.

Proof. Use Prop. 2.1 and the identification between [Ek]∗ and Ek.

Tensorial contraction

Given ξ∗ a contravariant tensor an η∗ a covariant tensor their contrac-

tion is
∑

k∈Z̃d

trace ξk ⊗ ηk :=
∑

k∈Z̃d

< ξk , ηk >

We can contract two contravariant (resp. covariant) indices using the

identification of Ek with Ek granted the underlying euclidean metric. We

shall emphasize the use of this euclidean structure by the notation
∑

k∈Z̃d

trace k,k ξ
k ⊗ ηk =

∑

k∈Z̃d

(ξk | ηk)Ek

Proposition 2.3. Fix k ∈ Zd and fix z ∈ Ek; denote Γ(z) the correspond-

ing operator on F . Then Γ(z) is antisymmetric operator.

Proof. Choose z∗, z
′
∗, z

′′
∗ such that z−q = z̄q, z

′
−s = z̄′q, z′′−q = z̄q. Define

the euclidean scalar product on E∗ ⊗ C by the algebraic prolongation of

the euclidean scalar product on E∗: we obtain a scalar product which is

C-linear relatively to the second factor. Using formula (2.4a), introduce the

expression
∑

k,s

(

bk,s(zk, z
′
s) | z′′k+s

)

−
(

bs,k−s(z
′
s, z

′′
k−s) | zk

)

+
(

bs−k,k(z′′s−k, zk) | z′s
)

.

(2.5a)

Fix z and show the antisymmetry in z′, z′′; firstly

bs,k−s(z
′
s, z

′′
k−s) = −bk−s,s(z

′′
k−s, z

′
s)

according to the expression

bk,l(zk, zs) = (zk.s) zs − (zs.k) zk

therefore the antisymmetry of the middle term of (2.5a) is obtained.
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In the third term of (2.5a) making the change of index of summation

(s−k) 7→ q ≃ s, we obtain that the contribution of the first and third term

of (2.5a) can be written as
∑

k,s

(

bk,s(zk, z
′
s) | z′′k+s

)

+
(

bs,k(z′′s , zk) | z′k+s

)

On the other hand,
(

bk,s(zk, z
′
s) | z′′k+s

)

+
(

bs,k(z′′s , zk) | z′k+s

)

= (zk.s) (z′s | z′′k+s) − (z′s.k) (zk | z′′k+s) −
(zk.s) (z′′s | z′k+s) + (z′′s .k) (zk | z′k+s)

= −(z′s.k) (zk | z′′k+s) + (z′′s .k) (zk | z′k+s),

expression which is obviously antsymmetric in z′, z′′.

Corollary 2.1. For fixed k the matrices

σ̂Γ
∗

k,∗ are antisymmetric ∀σ̂ ∈ ς̂3. (2.5b)

Proof. As γΓ∗
k,∗ is obtained by averaging an antisymmetric operator, it is

antisymmetric.

Notation 2.1. Given ξk a contravariant tensor, we denote the following

antisymmetric operator
∑

k

σ̂Γ
∗

k,∗ ξ
k =: σ̂Γ(ξ)∗∗ . (2.6)

Proposition 2.4. The component of the Christofell symbol on the three

cosines type vanishes.

Proof. This component is equal to σ̂0Γ, where σ̂0 = (1, 1, 1); remark that

< τσ , σ̂0 >=< σ , σ̂0 > and that δ
τ(l)
τ(k),τ(s) = δl

k,s. Therefore the sum

of twenty four terms defining σ̂0Γ can be split in the sum of twelve terms

each having in factor the following expression δl′

k′,s′ × (bk′,s′ + bτ(k′),τ(s′))

and (2.1b) finishes the proof.

3. Stochastic parallel transport, symmetries of the noise

Consider for each k ∈ Z̃d the complex brownian motion ζk(t) associated

to the natural hermitian metric on Ek ⊗ C; all these brownian motion are

taken to be independent on the system of relations

ζ−k(t) = ζ̄k(t), or in real terms ζk = xk + i yk(t), k ∈ Z̃d , (3.1)
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the xk, yk being independent brownian motion on Ek. Define

Γ(dxk(t)) =
∑

γ1=1

γΓ(dxk(t)), Γ(dyk(t)) =
∑

γ1=−1

γΓ(dyk(t)), (3.2a)

where the sumation is taken on γ = (γ1, γ2, γ3) ∈ ς̂3, the first sum been

restricted to those γ for which γ1 = 1 the second to those γ for which

γ1 = −1.

Choose a weight ρ(k) ≥ 0, k ∈ Z̃d and consider the G valued process

pt =
∑

k∈Z̃d

ρ(k)(xk(t) × cos k.θ + yk(t) × sin k.θ) (3.2b)

Consider the Stratonovitch SDE,

dψt =

(

∑

k∈Z̃d

ρ(k) (Γ(dxk(t)) + Γ(dyk(t)))

)

◦ ψt = Γ(dpt) ◦ ψt, (3.3)

ψ0 = Identity.

As the Γ are antisymmetric operators this equation takes formally its values

in the unitary group of G; establishing this fact under mild assumptions on

the weight ρ, will be the purpose of next four paragraphs.

The geometric meaning of (3.3) is to describe in terms of the algebraic

parallelism inherited from the group structure of G the Levi-Civita paral-

lelism inherited from the Riemannian structure of G; for this reason we call

(3.3) the equation of the stochastic parallel transport.

Symmetries of the noise

Denote as before by G the group of measure preserving diffeomeophisms

of the torus T d and by G its Lie algebra.

Proposition 3.1. Given g ∈ G, z ∈ G, the adjoint action

z 7→ d

dǫ |ǫ=0

g exp(ǫz)g−1,

is the direct image g∗(z) of the vector field z by the diffeomorphism g.

Proof. Reference [6], page 210.

In particular the translation τϕ : θ 7→ θ + ϕ is a diffeomorphism whose

Jacobian matrix is the Identity; therefore

[(τϕ)∗(z)](θ) = z(θ − ϕ)
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The collection (τϕ)∗, ϕ ∈ T d, constitutes a unitary representation of

T d on G which decomposes into irreducible components along the basis

cos k.θ ⊗ Ek, sin k.θ ⊗ Ek, (3.4a)

the action of (τϕ)∗ on Ek ⊕ Ek being the rotation

Dk(ϕ) :=
(cos kϕ
sin kϕ

− sin kϕ
cos kϕ

)

. (3.4b)

Furthermore τϕ preserves the Lie algebra structure. The Christofell sym-

bols are derived from the Hilbertian structure and from the bracket struc-

ture of G. Therefore they commute with τϕ in the sense that

(τϕ)∗[Γ(ξ)(η)] = Γ((τϕ)∗ξ)[(τϕ)∗η)], ξ, η ∈ G (3.5a)

or denoting by Γ(z) the antihermitian endomorphism of G defined by the

Christofell symbols, we have

Γ((τϕ)∗(z)) = (τϕ)∗ ◦ Γ(z) ◦ (τ−ϕ)∗ (3.5b)

Denote by su(G) the vector space of antisymmetric operators on the

Hilbert space G.

Proposition 3.2. Let pt the G-valued process defined in (3.2b) denote

pϕ =: (τϕ)∗p; then pϕ and p have the same law.

Proof. The rotation Dk(φ) preserves in law the Brownian motion on Ek ⊗
Ek.

Corollary 3.1. The processes (τϕ) ◦ ψt ◦ (τ−ϕ) and ψt have the same

law.

Proof. Denoting by ψ
p
t the solution of (3.3) associated the noise pt, we

have

(τϕ) ◦ ψt ◦ (τ−ϕ) = ψ
pϕ

t

Definition 3.1. We say that an endomorphism u of G is pseudo diagonal

in the direct sum decomposition G =
⊕Vk if the restriction of u to Vk

takes its values in Vk; then u is determined by a sequence uk ∈End(Vk); we

denote u = [uk], k ∈ Z̃d.
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Theorem 3.1. The Itô contraction describing the passage from the

Stratonovitch equation (3.3) to its associated Itô form is an operator B
which is pseudo diagonal in the direct sum decomposition

G =
⊕

k∈Z̃d

[Ek ⊕ Ek] (3.6a)

Furthermore the diagonal term on the component Ek ⊕ Ek is of the form

−[λk, λk] where λk is a positive symmetric operator on Ek.

Proof. Denote E1
k (resp. E2

k) the first (resp. the second) component of the

direct sum Ek⊕Ek and pick an orthonormal basis ǫαk of each Ek. As we have

two injections of Ek 7→ Ek ⊕ Ek, the first having its image in the first factor

of the direct sum, the second in the second factor; we denote again ǫαk the

image by the first injection and ηα
k the image by the second injection; we

get in this way an orthonormal basis of E i
k, i = 1, 2.

The Itô SDE has the shape

dψ
p
t =

(

∑

k∈Z̃d

ρ (Γ(dxk(t)) + Γ(dyk(t)))+

ρ

2
Γ(dxk) ∗ Γ(dxk) +

ρ

2
Γ(dyk) ∗ Γ(dyk)

)

ψt .

Denote by x
ϕ
k (t) = (τϕ)∗xk(t), yϕ

k (t) = (τϕ)∗yk(t); then x
ϕ
k (t) has the

same law as xk(t). Therefore

(dxϕ
t ) ∗ (dxϕ

t ) = (dxt) ∗ (dxt)

Using formula (3.5b),

Γ(dxϕ
t ) ∗ Γ(dxϕ

t ) = (τϕ)∗ ◦ Γ(dx) ∗ Γ(dx) ◦ (τ−ϕ)∗

Denoting

B dt =
1

2

∑

k∈Z̃d

[ρ(k)]2
(

Γ(dxk) ∗ Γ(dxk) + Γ(dyk) ∗ Γ(dyk)

)

(3.6b)

we have

B = (τϕ)∗ ◦ B ◦ (τ−ϕ)∗ (3.6c)

Lemma 3.1. An endomorphism of G satisfying (3.6b) is diagonal in the

basis (3.6a).
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Proof. Pick As ∈ E1
s , Ak ∈ E1

k , Bs ∈ E2
s , Bk ∈ E2

k and consider the

2 × 2 matrix Ms,k

Ms,k :=
((As | B(Ak))
(As | B(Bk))

(Bs | B(Ak))
(Bs | B(Bk))

)

Then formula (3.6c) implies that

Ms,k = Ds(ϕ) ◦ Ms,k ◦ Dk(−ϕ) (3.6d)

Integrating this identity over T d we get

(2π)d Ms,k =

∫

T d

Ds(ϕ) ◦ Ms,k ◦ Dk(−ϕ) dϕ1 ⊗ dϕ2

If we develop the product of matrices of the r.h.s. we find an expression of

the form (cos s.ϕ)(cos k.ϕ) which will have an integral equal to 0 if s 6= k.

As Γ(∗) are antisymmetric we get that their square are negative sym-

metric operators.

As on Ek ⊕Ek, this symmetric operator commutes with the rotations, it

decomposes into two identic copies on each component.

4. Transfer energy matrix of the stochastic parallel

transport

A sequence of vectors with norm 1 of an Hilbert space can converge weakly

to zero: this phenomena corresponds to a “dissipation of energy towards the

higher modes”. For the construction of the stochastic parallel transport it

is essential to control this dissipation.

We fix ξ0 ∈ G and consider

ξ
p
t := ψ

p
t (ξ0)

Pick As ∈ E1
s , Ak ∈ E1

k , Bs ∈ E2
s , Bk ∈ E2

k and consider

α1
s,k(ξ0) = E((As | ξp

t ) × (Ak | ξp
t )), α2

s,k(ξ0) = E((Bs | ξp
t ) × (Bk | ξp

t )),

α3
s,k(ξ0) = E((As | ξp

t ) × (Bk | ξp
t ))

Theorem 4.1. Denote (τϕ)∗(ξ0) := ξ
ϕ
0 , then

∫

T d

αi
s,k(ξϕ

0 ) dϕ = 0, s 6= k, i = 1, 2, 3. (4.1)
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Proof. Using (3.5b) we get

Γ(pϕ
t ) = (τϕ)∗ ◦ Γ(pt) ◦ (τ−ϕ)∗

or by exponentiating

ψ
pϕ

t = (τϕ)∗ ◦ ψ
p
t ◦ (τ−ϕ)∗

(τ−ϕ)∗ ◦ ψ
pϕ

t = ψ
p
t ◦ (τ−ϕ)∗ (4.2a)

Applying this identity to the vector ξ0 and changing ϕ in −ϕ we get

(τϕ)∗ ◦ ψp
−ϕ
t = ψ

p
t (ξϕ

0 )

Therefore

α1
s,k(ξϕ

0 ) = E((A−ϕ
s | ξp−ϕ

t ) × (A−ϕ
k | ξp−ϕ

t ))

Using now the key fact that p−ϕ
t and pt have the same law, we obtain

α1
s,k(ξϕ

0 ) = E((A−ϕ
s | ξp

t ) × (A−ϕ
k | ξp

t )) (4.2b)

Using the identity A
−ϕ
k = cos(k.ϕ) × Ak + sin(k.ϕ) × Bk and similar

identities we get

α1
s,k(ξϕ

0 ) = cos(k.ϕ) cos(s.ϕ)α1
s,k(ξ0) + sin(k.ϕ) sin(s.ϕ)α2

s,k(ξ0) (4.2c)

+ cos(k.ϕ) sin(s.ϕ)α3
s,k(ξ0) + sin(k.ϕ) cos(s.ϕ)α3

k,s(ξ
0)

Theorem 4.2. There exists a matrix A defined on Z̃d × Z̃d such that

denoting

u
ξ0

t (k) = E

( d−1
∑

α=1

(ǫαk | ξp
t )2 + (ηα

k | ξp
t )2

)

,

where the basis ǫαk , η
α
k , has been defined in the proof of Theorem 3.4, we

have

du
ξ0

t

dt
= A u

ξ0

t (4.3a)

Proof. We remark that (4.2a) implies that

u
ξ

ϕ
0

t (k) = u
ξ0

t (k) therefore

1

(2π)d

∫

T d

u
ξ

ϕ
0

t (k) dϕ = u
ξ0

t (k) (4.3b)



September 21, 2007 10:54 WSPC - Proceedings Trim Size: 9in x 6in stochpt

14

We can implement this fact by adding to the probability space generated

by p a random initial value ξϕ
0 with a uniform repartition of the variable ϕ.

By Itô calculus we can write

d

dt

∫

T d

u
ξ

ϕ
0

t (k)

in terms of the
∫

T d

αi
s,k(ξϕ

0 ) dϕ1 ⊗ dϕ2

expression which vanishes for s 6= k by (4.1).

Corollary 4.1. We have

u
ξ0

t (k) = 2E

( d−1
∑

α=1

(ǫαk | ξp
t )2

)

, (4.3c)

Proof. Use the identity (4.2c) with s = k and integrate in ϕ.

5. Exact computation of the energy transfer matrix for

d = 2

We shall present in section 6 indirect qualitative estimation of the energy

transfer matrix valid in any dimension d ≥ 2. In this section we recall the

full computation from scratch of the transfer energy matrix in the case

d = 2 which was obtained in Ref. 4. These computations give also another

proof of the orthogonality results proved by symmetry arguments in section

4.

When d = 2 the space Ek is of dimension 1; we take for orthonormal

basis of Ek the vector ( k2

|k| ,−
k1

|k| ). We get for orthonormal basis (for the L2

metric) of vector fields with vanishing divergence on the torus, firstly the

two constant vector fields and

Ak =
1

|k| [(k2 cos k.θ)∂1 − (k1 cos k.θ)∂2)]

Bk =
1

|k| [(k2 sin k.θ)∂1 − (k1 sink.θ)∂2)]

where k = (k1, k2) ∈ Z̃2, with |k| 6= 0, and where k.θ = k1θ1 + k2θ2.
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For k, l ∈ Z̃2, k, l 6= (0, 0), define on Z̃2 the following functions

αk,l :=
1

4|k||l||k + l|(|l + k|2 − |k|2 + |l|2)) =
1

2|k||l||k + l|((l | l + k))

(5.1a)

βk,l := α−k,l =
1

4|k||l||k − l|(|l − k|2 − |k|2 + |l|2))= 1

2|k||l||k − l| (l | (l − k))

(5.1b)

[k, l] = k1l2 − k2l1.

The brackets of the above mentionned vector fields are given in the

following

Theorem 5.1 (Ref. 4). The following expressions hold

[Ak, Al] =
[k, l]

2|k||l|(|k + l|Bk+l + |k − l|Bk−l)

[Bk, Bl] = − [k, l]

2|k||l|(|k + l|Bk+l − |k − l|Bk−l)

[Ak, Bl] = − [k, l]

2|k||l|(|k + l|Ak+l − |k − l|Ak−l)

Concerning the Christoffel symbols,

Theorem 5.2 (Ref. 4). The Cristoffel symbols are

ΓAk,Al
= [k, l](αk,lBk+l + βk,lBk−l)

ΓBk,Bl
= [k, l](−αk,lBk+l + βk,lBk−l)

ΓAk,Bl
= [k, l](−αk,lAk+l + βk,lAk−l)

ΓBk,Al
= [k, l](−αk,lAk+l − βk,lAk−l)

In this two-dimensional case the equation for the stochastic parallel

transport reads

dψt = −(
∑

k 6=0

ρ(k)ΓAk,.odx
k + ρ(k)ΓBk,.ody

k)ψt

with independent Brownian motions in all components, ψ(0) = id.

We remark the difference with respect to Ref. 4 of the constants appear-

ing in (5.1a) and (5.1b): taking indices in Z̃2, only half of the quantities

computed in Ref. 4, Theorem 3.1, have to be considered.
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Theorem 5.3 (Ref. 4). The coefficient of the transfer energy matrix are

given by

Al
l = −2

∑

k

[ρ(k)]2[l, k]2 ×
(

βk,k−lβk,l + αk,−k−lαk,l

)

Al
s = 2

∑

k

[ρ(k)]2[l, k]2 ×
(

α2
k,l−k δ

l−k
s + β2

k,l+k δ
l+k
s

)

The matrix A is symmetric, the non diagonal terms are positive, the

diagonal terms are negative, the sum of the coefficients on each column

vanishes.

Remark 5.1. Notice that

βk,k−lβk,l = α2
k,l−k =

(l|l − k)2

4|k|2|l|2|l− k|2

αk,−k−lαk,l = β2
k,l+k =

(l|l+ k)2

4|k|2|l|2|l + k|2

Corollary 5.1. Denote χk,l the angle between the vectors k and l; then

|Al
l| =

|l|2
8

∑

k∈Z̃2

(1 − cos 4χk,l) × [ρ(k)]2

∑

k

[ρ(k)]2[l, k]2 × k

(

α2
k,l−k − β2

k,l+k

)

= 0

If ρ(k) depends only upon |k|

|Al
l| ≃ c|l|2, 4c :=

∑

k∈Z̃2

[ρ(k)]2 (5.2)

6. Qualitative estimation of the energy transfert matrix for

d > 2

We propose ourselves to obtain in dimension greater than 2 the estimates

(5.2).

We interpreted the γΓl
∗,s as defining operators E 7 → El, the euclidean

structure of the Ej makes possible to define their adjoint; then

trace(γΓl
∗,s)(

γΓl
∗,s)

∗

is well defined and is equal to the HS norm (Hilbert-Schmidt norm).
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Theorem 6.1. The diagonal terms of the matrix A are expressed by the

diagonal terms of the diagonal matrix B defined in (3.6a),

Al
l = −2 trace (λk) (6.1a)

and, as a consequence, are negative; the non diagonal terms are given by

Al
s =

∑

k∈Z̃d

[ρ(k)]2
∣

∣

∣

∣

∑

γ1=1

γΓl
k,s

∣

∣

∣

∣

2

HS

+
∑

k∈Z̃d

[ρ(k)]2
∣

∣

∣

∣

∑

γ1=−1

γΓl
k,s

∣

∣

∣

∣

2

HS

, l 6= s;

(6.1b)

The non diagonal terms are positive. The sum of the terms of each column

vanishes. The matrix A is symmetric.

Theorem 6.2.

1

4(d− 1)2
Al

l ≤ |l|2
∑

k

[ρ(k)]2 +
∑

k

|k|2[ρ(k)]2. (6.2)

Proof. We have,

|Al
l| ≤

∑

k,s

‖Γl
k,s‖2

HS [ρ(k)]2

which by (2.4a) is equal to
∑

k

[ρ(k)]2(‖bk,l−k‖2
HS + ‖bk−l,l‖2

HS + ‖bl+k,k‖2
HS)

Finally, using the expression of bk,j we get the inequality ‖bk,j‖2
HS ≤ (d −

1)2(|k|2 + |j|2).
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2. V. I. Arnold. Sur la géométrie différentielle des groupes de Lie de dimension

infinie et ses applications a l’hidrodynamique des fluides parfaits. Ann. Inst.

Fourier 16 (1966), 316–361.
3. V. I. Arnold, B. A. Khesin. Topological Methods in Hydrodynamics. Springer-

Verlag, New York, 1998.
4. A. B. Cruzeiro, F. Flandoli, P. Malliavin. Brownian motion on volume

preserving diffeomorphisms group and existence of global solutions of 2D
stochastic Euler equation. J. Funct. Anal. 242 (2007), 304–326.

5. D. Ebin, J. Marsden. Groups of diffeomorphisms and the motion of incom-
pressible fluid. Ann. Math. 92 (2) (1970), 102–163.



September 21, 2007 10:54 WSPC - Proceedings Trim Size: 9in x 6in stochpt

18

6. P. Malliavin. Stochastic Analysis. Grund. der Mathem. Wissen., Springer-
Verlag, 1997.


