
Notes by Richard Taylor

10 Function Spaces

Many of the ideas of linear algebra, which we have studied in the context of Rn or Cn,
are applicable much more widely in the mathematical sciences. To try to capture the
domain of validity of these methods, mathematicians introduce the concept of “vector
space” or “linear space”. (These two terms are synonyms.) Rather than studying linear
spaces in the abstract, we shall look at some examples which are important in the theory
of differential equations.

10.1 Ordinary Linear Differential Equations

(Compare this section with sections 4.1, 4.2 and 9.3 in the book)

By a smooth function from the real numbers to themselves we shall mean a function
f : R → R which can be differentiated as many times as you like. We will denote the set
of all such functions by C∞. For instance

f(t) = 1

g(t) = t

h(t) = et

are all smooth functions. Indeed

dnf

dtn
= 0 for all n > 0

dg

dt
= 1 ;

dng

dtn
= 0 for all n > 1

dnh

dtn
= et for all n > 0.

On the other hand f(t) = |t| is not a smooth function as it is not even once differentiable
at t = 0.
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f(t) = |t|

If c ∈ R and if f and g are smooth functions, so is (cf + g)(t) = cf(t)+ g(t). (Recall that
if f and g are differentiable, so is cf + g and (cf + g)′(t) = cf ′(t) + g′(t).)

Thus for example 1 + t and t + 2et are in our collection C∞.
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Thus on our collection of functions C∞, we have defined two operations:

(a) “addition” e.g. if f(t) = 1 and h(t) = et then (f + h)(t) = 1 + et;

(b) and “scalar multiplication” e.g. if h(t) = et then (2h)(t) = 2et.

These are the same basic operations that we have studied on Rn. Just as most of our
study of Rn was immediately applicable to Cn, so many of the same ideas also apply to
our new “space” Cn. More specifically Cn is a “linear space” in the sense of section 9.1.

Examples

(1) Any polynomial function antn + an−1t
n−1 + · · · + a1t + a0 is smooth and so the

collection of all polynomial functions forms a subset P of C∞. This subset P has
the following two important properties

(a) If f(t), g(t) are polynomials so is f(t) + g(t)

(b) If f(t) is a polynomial and c is a real number then cf(t) is a polynomial.

Because P has properties (a) and (b) we call P a subspace of C∞.

(2) Suppose c1 and c2 are real numbers and c1t + c2e
t is the zero function. Then we

must have that c1 = c2 = 0. (Why? If c2 6= 0 then for t very large and positive c2e
t

will be much larger than c1t in magnitude and so c1t + c2e
t 6= 0. Thus one must

have c2 = 0 and hence also c1 = 0.) Because of this property we say that t and et

are linearly independent.

(3) On the other hand
1.1 + 1.t + (−1).(1 + t) = 0

and so we say that
1, t and (1 + t)

are linearly dependant.

(4) If f(t) ∈ C∞ we define a new function (Df)(t) by

(Df)(t) = f ′(t) =
df

dt
(t).

(For example D(sin(t)) = cos(t).) In general D(f) is again a smooth function so D
gives a function from C∞ to C∞. (D is a “function of functions”.) Moreover D has
the following two important properties:

(a) D(f(t) + g(t)) = D(f(t)) + D(g(t))

(b) D(cf(t)) = cD(f(t)),

whenever c ∈ R; f(t), g(t) ∈ C∞. Because D has these two properties, we call D a
linear transformation or we simply say D is linear.
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(5) What is the kernel of D? It is simply the collection of functions f(t) ∈ C∞ such that
D(f(t)) = 0. But the only functions with zero derivative are the constant functions.
Thus ker(D) is the collection all constant functions.

(6) What is the image of D? It is the whole of C∞. Why? If f(t) ∈ C∞ then we can
define a new function

g(t) =

∫ t

0

f(s)ds.

Then g(t) is also a smooth function and by the fundamental theorem of calculus
D(g(t)) = f(t).

(7) If T : Rn → Rn is a linear transformation and Im T = Rn then ker T = (0). However
D : C∞ → C∞ is a linear transformation and Im D = C∞, but ker D 6= (0). This
can happen because C∞ is “infinite dimensional”, by which we mean that C∞ cannot
be spanned by any finite number of elements fi(t) ∈ C∞.

(8) Now consider D2 = D ◦ D : C∞ → C∞. Its kernel is the collection of smooth
functions f(t) such that f ′′(t) = 0, i.e. such that f ′(t) = a, a constant, i.e. such
that

f(t) = at + b

for some real numbers a, b. Thus any element f(t) ∈ ker D2 is a linear combination
of t and 1, i.e.

f(t) = a.t + b.1

We say that t and 1 span ker D2.

(9) In fact the functions t and 1 are also linearly independant and so we say that
they form a basis of ker D2. As this basis has two elements we say that ker D2 is
two dimensional.

(10) Find all solutions f(t) of the equation D2f(t) = et.

It is not too hard to spot that f0(t) = et is one solution of this equation. If f(t) is
any other solution then D2

(

f(t) − f0(t)
)

= D2(f(t)) − D2(f0(t)) = et − et = 0. On
the other hand if D2

(

f(t) − f0(t)
)

= 0 then D2(f(t)) = D2(f0(t)) = et.
Thus f(t) is a solution of D2f(t) = et if and only if f(t)− f0(t) ∈ ker D2. Thus the
general solution is

f(t) = f0(t) + at + b = et + at + b.

Just as for linear equations, to find the general solution of an inhomogeneous equa-
tion (eg. D2f(t) = et) you find any solution and add to it a general solution of the
corresponding homogeneous equation (eg. D2f(t) = 0).

Let us take this opportunity to explain what we mean by saying a sequence f1(t), f2(t), . . .
of elements of a subspace V ∈ C∞ span V . We will mean that if g(t) is any element of V
then we can find a finite number of real numbers c1, . . . , cn such that

g(t) = c1f1(t) + · · ·+ cnfn(t).
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The sequence f1(t), f2(t), . . . may be infinite, but we require that any g(t) is a linear combi-
nation of only finitely many f1(t), . . . , fn(t). The number n we need may depend on g(t).
For example 1, t, t2, t3, . . . spans P but does not span C∞. (See exercises for 9.1.)

Suppose that an(t), . . . , a0(t), g(t) ∈ C∞. Then we will refer to an equation of the form

an(t)
dnf(t)

dtn
+ an−1(t)

dn−1f(t)

dtn−1
+ · · · + a0(t)f(t) = g(t) (∗)

as a linear ordinary differential equation. To the equation (∗) we may associate a linear
transformation

T : C∞ → C∞

defined by

T
(

f(t)
)

= an(t)
dnf(t)

dtn
+ · · ·+ a1(t)

df

dt
+ a0(t)f(t).

It is easy to check that T is indeed a linear transformation. The equation (∗) can be
rewritten

T
(

f(t)
)

= g(t).

If g(t) 6= 0 we will call this equation inhomogeneous. If g(t) = 0 we will call it homogeneous.
We will refer to the associated equation

T
(

f(t)
)

= 0

as the associated homogeneous equation.

If f0(t) is any given solution of
T

(

f(t)
)

= g(t)

then the general solution is
f(t) = f0(t) + h(t)

where h(t) ∈ ker T , i.e. h(t) is a solution of the associated homogeneous equation.

We have the following two important facts which guarantee the existence of solutions of
certain linear ODE’s (Ordinary Differential Equations)

Fact 10.1.1. Suppose

T
(

f(t)
)

=
dnf(t)

dtn
+ an−1(t)

dn−1f(t)

dtn−1
+ · · ·+ a1(t)

df(t)

dt
+ a0(t)f(t)

is a linear transformation from C∞ to C∞. Then ker T has dimension n.

Fact 10.1.2. Suppose

T
(

f(t)
)

=
dnf(t)

dtn
+ an−1(t)

dn−1f(t)

dtn−1
+ · · ·+ a1(t)

df(t)

dt
+ a0(t)f(t)

and suppose g(t) ∈ C∞. Then there exists f(t) ∈ C∞ with

T
(

f(t)
)

= g(t).
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Note that in both these facts we are assuming that the coefficient of dnf(t)
dtn

are 1. Both
facts become false if we do not assume this. For instance if T

(

f(t)
)

= tf ′(t) + f(t)
then dim(ker T ) = 0. Also if S

(

f(t)
)

= tf ′(t) then there is no function f(t) ∈ C∞ with
S
(

f(t)
)

= 1. (See the exercises.)

For example consider the case of “constant coefficients”, i.e.

T = Dn + an−1D
n−1 + · · ·+ a1D + A0

where an+1, . . . , a0 ∈ R. It is convenient to look at the polynomial

Xn + an−1X
n−1 + · · ·+ a1X + a0,

sometimes, if slightly confusingly, called the characteristic polynomial of T . Over the
complex numbers we may factorise this polynomial

(X − α1)(X − α2) . . . (X − αn)

where α1, α2, . . . , αn ∈ Cn; and we may also factorise

T = (D − α1) . . . (D − αn).

If αj ∈ R then d
dt

eαj t = αje
αj t so (D − αj)e

αj t = 0, so that Teαj t = 0, i.e. eαj t ∈ ker T .

For instance if T = D2 − D − 2, then the “characteristic polynomial” is X2 − X − 2 =
(X − 2)(X + 1). Thus T = (D − 2)(D + 1) and so e2t and e−t are in ker T . As ker T has
dimension 2 by Fact 10.1.1 we see that e2t and e−t form a basis of ker T , i.e. ker T is the
collection of all functions c1e

2t + c2e
−t.

If on the other hand αj ∈ C but is not real then the complex conjugate αj of αj is also a
root of Xn + an−1X

n−1 + · · ·+ a1X + a0. Write

αj = a + ib

αj = a − ib.

Then Teαjt = 0, but now eαj t is not in C∞ as it is not real valued.

eαj t = eat(cos bt + i sin bt).

Also Teαj t = 0 and
eαj t = eat(cos bt − i sin bt).

Thus

T

(

1

2
(eαj t + eαj t)

)

= 0 i.e. T (eat cos bt) = 0

and

T

(

1

2i
(eαj t − eαj t)

)

= 0 i.e. T (eat sin bt) = 0;

i.e. eat cos bt and eat sin bt ∈ ker T .
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For instance if T = D2 − 6D + 13 then the “characteristic polynomial” is X2 − 6X + 13
which has roots

3 ±
√
−4 = 3 ± 2i.

Thus e3t cos 2t and e3t sin 2t ∈ ker T . As dim ker T = 2 we see that e3t cos 2t and e3t sin 2t
is a basis of ker T , i.e. the general solution of

T
(

f(t)
)

= 0

is
c1e

3t cos 2t + c2e
3t sin 2t.

Suppose now we are asked to find the general solution of

T
(

f(t)
)

= 30 cos t.

We must first look for some particular solution to this equation. Experience can teach us
that a good bet is to look for a solution

f(t) = A cos t + B sin t.

Then

T
(

f(t)
)

= −A cos t − B sin t + 6A sin t − 6B cos t + 13A cos T + 13B sin t

= (12A − 6B) cos t + (6A + 12B) sin t.

This will give a solution to
T

(

f(t)
)

= 30 cos t

if and only if

12A − 6B = 30

6A + 12B = 0

i.e.
A = 2 B = −1.

Thus we have found a particular solution

f(t) = 2 cos t − sin t.

We deduce that the general solution is

f(t) = 2 cos t − sin t + c1e
3t cos 2t + c2e

3t sin 2t

WE RECOMMEND YOU ALSO READ SECTION 9.3
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EXERCISES

(1) which of the following sets are subspaces of C∞? Justify your answers.

(a) All continuous functions from R to R.

(b) All f ∈ C∞ such that f(0) + f ′(0) = 0.

(c) All f ∈ C∞ such that f + f ′ = 0.

(d) All f ∈ C∞ such that f(0) = 1.

(2) Which of the following subsets of C∞ are LI? Justify your answers.

(a) 1, t, t2, t3.

(b) 1 + t, 1 − t, t2, 1 + t + t2.

(c) sin t, et, e−t.

(d) sin t, cos t, sin(t + π/3).

(3) Which of the following functions are linear? Justify your answers.

(a) T : C∞ → R; T (f) = f(0).

(b) T : C∞ → C∞; T (f) = f 2 + f ′.

(c) T : C∞ → R2; T (f) =

[

f(0)
f(1)

]

.

(d) T : C∞ → R; T (f) =
∫ 1

0
f(t)dt.

(4) Find a basis for the kernel of T : C∞ → C∞ given by

T (f)(t) = f ′′(t) − f(0).

(5) Find a basis for the image of T : C∞ → C∞ given by

T (f)(t) = f(0) + f ′(0)t + (f(0) + f ′(0))t2.

(6) Find the eigenvalues and eigenspaces for T : C∞ → C∞ given by T (f) = f ′ + f .

(7) Let T
(

f(t)
)

= f ′′(t)+f ′(t)−12f(t). Find a basis for ker T . Find a smooth function
f(t) such that

T
(

f(t)
)

= 0

and f(0) = f ′(0) = 0.

(8) Let T
(

f(t)
)

= f ′′(t)+2f ′(t)+2f(t). Find a basis for ker T . Find a smooth function
f(t) such that

T
(

f(t)
)

= 0

and f(0) = f ′(0) = 1.
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(9) Problem 34 of section 9.3

(10) Let T
(

f(t)
)

= f ′′(t) + 9f(t). Find a basis for ker T . Also find the general solution
of

T
(

f(t)
)

= cos(αt)

where α is a positive real number. Distinguish the cases α = 3 and α 6= 3. [HINT:
In the case α = 3 consider At cos 3t + Bt sin 3t.]

(11) Solve the equation t
df(t)

dt
= 1 and explain why it has no solution in C∞.

(12) Let T
(

f(t)
)

= tf ′(t) + f(t). Suppose T
(

f(t)
)

= 0. If g(t) = tf(t) show that
g′(t) = 0. Conclude that dim(ker T ) = 0.
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10.2 Fourier Series

(Compare this with section 5.5.) In the last section we looked at spaces of
functions which behaved like Rn, but we did not look at any analogues of the concepts
of length, angle or dot product. In this section we will discuss an example in which the
analogues of these concepts play an important role.

Recall that if a and b are real numbers with a < b then [a, b] denotes the interval

{x ∈ R : a ≤ x ≤ b} .

R
a b

interval [a, b] - includes end points@@I

s s

We will let C[−π, π] denote the collection of all continuous functions from the
interval [−π, π] to R.

For example

t, sin t, |t|, 1

t2 − 16

are all functions in C[−π, π]

−π π −π π −π π
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−π π

On the other hand the function

f(t) =











1 t > 0

0 t = 0

−1 t < 0

does not lie in C[−π, π]
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−π π
r

b

b

Again C[−π, π] is a linear space:

(a) If f(t) and g(t) ∈ C[−π, π] then f(t) + g(t) ∈ C[−π, π] (recall that the sum of
continuous functions is continuous), eg. |t| + sin t ∈ C[−π, π]

(b) If f(t) ∈ C[−π, π] and c ∈ R then cf(t) ∈ C[−π, π], eg. 2 sin t ∈ C[−π, π].

We will define the inner product of two functions f(t), g(t) ∈ C[−π, π] to be

〈f(t), g(t)〉 =
1

π

∫ π

−π

f(t)g(t)dt.

You should think of it as an analogue of the dot product of two vectors in Rn.
It shares with the dot product the following three key properties:

(1) If f(t) and g(t) ∈ C[−π, π] then

〈f(t), g(t)〉 = 〈g(t), f(t)〉

(2) If f(t), g(t) and h(t) ∈ C[−π, π] and if c ∈ R then

〈cf(t) + g(t), h(t)〉 = c〈f(t), h(t)〉 + 〈g(t), h(t)〉

(3) If f(t) ∈ C[−π, π] is non-zero (i.e. not identically zero) then

〈f(t), f(t)〉 > 0.

We will let you check properties (1) and (2) for yourself. Let us explain property (3).
Firstly

〈f(t), f(t)〉 =
1

π

∫ π

−π

f(t)2dt.

As f(t)2 ≥ 0 for all t we see that 〈f(t), f(t)〉 ≥ 0.
Suppose f(t) 6= 0, why is 〈f(t), f(t)〉 6= 0 ? Well suppose f(t0) 6= 0. Because f is
continuous we can find δ > 0 such that

|f(t)| >
1

2
|f(t0)| for all t ∈ [t0 − δ, t0 + δ].

As long as t0 6= ±π we may also suppose t0 − δ > −π and t0 + δ < π. (We leave the cases
t0 = ±π to you, they are only slightly different.)
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−π π

r

t0
t0−δ t0+δ

1
2
|f(t0)|

Then

∫ π

−π

f(t)2dt ≥
∫ t0+δ

t0−δ

f(t)2dt

≥
∫ t0+δ

t0−δ

1

4
|f(t0)|2dt

≥ δ

2
|f(t0)|2 > 0.

We define the length of a function f ∈ C[−π, π] to be
√

〈f(t), f(t)〉 and we will denote it
‖f‖. We define the distance between two functions f(t), g(t) ∈ C[−π, π] to be ‖f − g‖.
Roughly speaking two functions f(t) and g(t) are close if the area between their graphs
is small.

−π π −π π

close functions far apart functions

Examples

(1) To calculate ‖t‖

〈t, t〉 =
1

π

∫ π

−π

t2dt =
1

π

[

t3

3

]π

−π

=
2π3

3π
=

2π2

3

‖t‖ =

√

2

3
π
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(2) To calculate the distance between 1 and |t|

〈|t| − 1, |t| − 1〉 =
1

π

∫ π

−π

(|t| − 1)2dt =
2

π

∫ π

0

(t − 1)2dt

=
2

π

∫ π

0

(t2 − 2t + 1)dt

=
2

π

[

t3

3
− t2 + t

]π

0

=
2

3
π2 − 2π + 2

‖|t| − 1‖ =

√

2

3
π2 − 2π + 2

(3) If n is a positive integer find ‖ sin nt‖.

〈sin nt, sin nt〉 =
1

π

∫ π

−π

(sin nt)2dt

To evaluate this integral recall the usefull trigonometric formulae:

sin(A + B) = sin A cos B + cos A sin B

cos(A + B) = cos A cos B − sin A sin B

1 = (cos A)2 + (sin A)2

Putting B = A in the second of these we get

cos(2A) = (cos A)2 − (sin A)2

= 1 − 2(sin A)2

Thus

〈sin nt, sin nt〉 =
1

π

∫ π

−π

1

2
(1 − cos 2nt)dt = 1 − 1

2π

∫ π

−π

cos 2nt = 1.

Thus ‖ sin nt‖ = 1.

Similarly if n is a positive integer one can check that ‖ cos nt‖ = 1. Moreover
‖ 1√

2
‖ = 1.

We will call two functions f(t), g(t) ∈ C[−π, π] orthogonal if

〈f(t), g(t)〉 = 0.

We will call a collection of functions f1(t), . . . , fn(t), . . . (finite or infinite) orthonormal if

(a) ‖fj(t)‖ = 1 for each j

(b) 〈fj(t), fk(t)〉 = 0 if j 6= k.
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Examples

(1) If n 6= m are positive integers then sin nx and sin mx are orthogonal

〈sin nt, sin mt〉 =
1

π

∫ π

−π

sin nt sin mtdt

=
1

π

∫ π

−π

1

2

(

cos(n − m)t − cos(n + m)t
)

dt

=
1

2π

[

sin(n − m)t

(n − m)
− sin(n + m)t

(n + m)

]π

−π

= 0.

Again we use the formula for cos(A + B) (and for cos(A − B)).

(2) In fact the sequence of functions

1√
2
, sin(t), cos(t), sin(2t), cos(2t), sin(3t), cos(3t), . . .

is orthonormal. We leave it to you to evaluate the necessary integrals.

The following facts can be proved exactly as they were for R
n.

(1) If f1(t), . . . , fn(t) are orthonormal then they form a basis of an n-dimensional sub-
space of Rn.

The main point here is to check that f1(t), . . . , fn(t) are linearly independent.
Suppose

c1f1(t) + . . . + cnfn(t) = 0.

Taking the inner product

〈fj(t), c1f1(t) + . . . + cnfn(t)〉 = 0

we see that
0 = c1〈fj(t), f1(t)〉 + · · · + cn〈fj(t), fn(t)〉 = cj

for each j.

(2) If f(t) and g(t) are orthogonal then

‖f(t) + g(t)‖2 = ‖f(t)‖2 + ‖g(t)‖2

Indeed

‖f + g‖2 = 〈f + g, f + g〉
= 〈f, f〉 + 〈f, g〉 + 〈g, f〉+ 〈g, g〉
= 〈f, f〉 + 〈g, g〉
= ‖f‖2 + ‖g‖2.
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(3) Suppose V is a subspace of C[−π, π] and that f(t) ∈ C[−π, π]. If we can find
g(t) ∈ V such that f(t) − g(t) is orthogonal to each element of V then

‖f(t) − g(t)‖ ≤ ‖f(t) − h(t)‖

for all h(t) ∈ V with equality if and only if g(t) = h(t).

���������������

���������������

J
J

J
J

J
J

JJ

J
J

J
J

J
J

JJ

V

r

r

f(t)

g(t)

h(t)

We have

‖f(t) − h(t)‖2 = ‖f(t) − g(t) + g(t) − h(t)‖2

= ‖f(t) − g(t)‖2 + ‖g(t) − h(t)‖2

≥ ‖f(t) − g(t)‖2 with equality only if ‖g(t) − h(t)‖ = 0 i.e. g(t) = h(t).

The main point is that g(t) − h(t) is in V and so orthogonal to f(t) − g(t).

(4) If f1(t), . . . , fn(t) are an orthonormal basis of a subspace V ∈ C[−π, π] then

projV
(

f(t)
)

= 〈f(t), f1(t)〉f1(t) + · · ·+ 〈f(t), fn(t)〉fn(t)

is in V ; f(t) − projV
(

f(t)
)

is orthogonal to every element of V ; and projV
(

f(t)
)

is
closer to f(t) then any other element of V .

It suffices to check that for each j = 1, . . . , n : 〈fj(t), projV
(

f(t)
)

− f(t)〉 = 0

But

〈fj(t), projV
(

f(t)
)

− f(t)〉 = 〈f(t), f1(t)〉〈fj(t), f1(t)〉 + · · ·
+〈f(t), fn(t)〉〈fj(t), fn(t)〉 − 〈fj(t), f(t)〉

= 〈f(t), fj(t)〉 − 〈fj(t), f(t)〉 = 0.

We will let Tn denote the subspace of C[−π, π] with orthonormal basis

1√
2

, sin t , cos t , . . . , sin nt , cos nt.

Then projTn

(

f(t)
)

is an approximation to f(t) constructed from these trigonometric func-
tions. As n increases one might expect these approximations to become better and better.

14



In fact we have:

Fact 10.2.1. (1) If f ∈ C[−π, π] then

‖projTn

(

f(t)
)

− f(t)‖ → 0

as n → ∞.

(2)

‖f(t)‖2 = 〈f(t),
1√
2
〉2 +

∞
∑

1

(

〈f(t), sin nt〉2 + 〈f(t), cosnt〉2
)

Although we will not prove this, let us at least explain how (2) follows from (1).

∥

∥projTn

(

f(t)
)
∥

∥

2
=

∥

∥

∥

∥

〈f(t),
1√
2
〉 1√

2
+ 〈f(t), sin t〉 sin t + · · · + 〈f(t), cosnt〉 cos nt

∥

∥

∥

∥

2

= 〈f(t),
1√
2
〉2 + 〈f(t), sinnt〉2 + · · · + 〈f(t), cosnt〉2.

On the other hand

‖f(t)‖2 = ‖projTn

(

f(t)
)

‖2 + ‖f(t) − projTn

(

f(t)
)

‖2

= 〈f(t),
1√
2
〉2 + · · ·+ 〈f(t), cosnt〉2 + ‖f(t) − projTn

(

f(t)
)

‖2.

Letting n → ∞ gives part (2).

Although this tells us that “on average” projTn

(

f(t)
)

is close to f(t), it does not tell us
what happens for any given t ∈ [−π, π]. However if we place some smoothness hypothesis
on f(t) then we can say what happens.

Fact 10.2.2. Suppose f(t) ∈ C[−π, π] is differentiable at a point x ∈ [−π, π], and if
x = ±π also assume that f(−π) = f(π). Then the series

〈 1√
2
, f(t)〉 1√

2
+

∞
∑

n=1

(

〈sin nt, f(t)〉 sin nx + 〈cos nt, f(t)〉 cosnx
)

converges to f(x).

The series

〈 1√
2
, f(t)〉 1√

2
+

∞
∑

n=1

(

〈sin nt, f(t)〉 sin nt + 〈cos nt, f(t)〉 cosnt
)

is called the Fourier series for f after the French mathematician Jean-Baptiste-Joseph
Fourier (1768-1830). Fact 10.2.2 was known to Fourier and is often referred to as Fourier’s
theorem, although the first rigorous proof was only found later by Dirichlet.

We recommend that you read section 5.5.
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Example Find the Fourier series for t.

〈 1√
2
, t〉 =

1

π

∫ π

−π

t√
2
dt = 0

〈cos nt, t〉 =
1

π

∫ π

−π

t cos ntdt = 0 because t cos nt is an odd function

〈sin nt, t〉 =
1

π

∫ π

−π

t sin ntdt

=
1

π

[− cos nt

n
t

]π

−π

+
1

π

∫ π

−π

cos nt

n
dt

=
1

π

(−(−1)n

n
π − −(−1)n

n
(−π)

)

=
2(−1)n+1

n

Thus

t = 2
∞

∑

n=1

(−1)n+1

n
sin nt.

By part (2) of Fact 10.2.1 we see that

‖t‖2 =

∞
∑

n=1

4

n2

i.e.
2

3
π2 = 4

∞
∑

n=1

1

n2
i.e.

π2

6
=

∞
∑

n=1

1

n2

i.e.
π2

6
= 1 +

1

4
+

1

9
+

1

16
+

1

25
+

1

36
+ · · ·

an amazing expression of π as an infinite sum.

On the other hand by Fact 10.2.2 if we put t = π
2

we get

π

2
= 2

∞
∑

n=1
n odd

(−1)n+1

n
(−1)

n−1
2

i.e.
π

4
=

∞
∑

m=0

(−1)m

2m + 1
= 1 − 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ · · · ,

another amazing expression for π as an infinite sum.
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EXERCISES

(1) Find the length of
1 + sin t + 3 cos 5t + 2 sin 10t

(2) Show that 1/
√

2 and
√

3/2 t/π are orthonormal. Let V be the subspace of C[−π, π]
consisting of functions of the form at + b. Find projV (t2).

(3) Find the Fourier series for |t|.

(4) Calculate

∫ π

−π

eat cos ntdt .

[HINT: Integrate by parts twice to get an expression
∫ π

−π
eat cos ntdt =

[

a cos nt
n2 eat

]π

−π
−

a2

n2

∫ π

−π
eat cos ntdt and then solve for

∫ π

−π
eat cos ntdt]

(5) If a is a real constant find the Fourier series for

cosh at =
1

2

(

eat + e−at
)

[HINT: cosh(−at) = cosh(at)]

(6) Find a closed formula for

∞
∑

n=1

1

n2 + a2
as a function of a. [HINT: use (5) and Fact

10.2.2]
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10.3 Partial Differential Equation I: The Heat Equation

Consider a uniform metal bar stretching from x = 0 to x = π. Suppose that the ends of
the bar are held at a constant temperature of 0 (eg. are immersed in a mixture of water
and ice) but that otherwise the bar is thermally insulated from its surroundings, except
that at time t = 0 the bar is quickly heated so that it has temperature distribution

T (x, 0) =

{

x if x ≤ π
2

π − x if x ≥ π
2

Describe the temperature of the bar at all subsequent times.

x=0 x=π

-

6

x

T (x,0)

The temperature T (x, t) obeys the equation:

∂T

∂t
= µ

∂2T

∂x2

for some positive constant µ depending on the structure of the bar. (This sort of equation
is called a partial differential equation or PDE)

Where does this particular equation come from?

rate of heat flow past x is −K ∂T
∂x

, K = thermal conductivity. (heat flows from hot to
cold at a rate proportional to the temperature gradient)

rate of temperature increase = C . rate of arrival of heat (C = heat capacity)

We examine what happens to a small length of bar from x to x + δx in the small time
from t to t + δt.

- �

x x + δx

heat in time δt

−K ∂T
∂x

(x, t) δt

heat in time δt

K ∂T
∂x

(x + δx, t) δt

total heat in time δt :

K

(

∂T

∂x
(x + δx, t) − ∂T

∂x
(x, t)

)

δt

rise in temperature in time δt :

T (x, t + δt) − T (x, t) ≈ C

δx
K

(

∂T

∂x
(x + δx, t) − ∂T

∂x
(x, t)

)

δt

18



i.e.
1

δt

(

T (x, t + δt) − T (x, t)
)

≈ CK
1

δx

(

∂T

∂x
(x + δx, t) − ∂T

∂x
(x, t)

)

i.e.
∂T

∂t
= CK

∂2T

∂x2

The equation

∂T

∂t
= µ

∂2T

∂x2

is called the heat or diffusion equation. It arises in many physical situations where some
diffusion process occurs eg. diffusion of pollutants in an aquifer, or of ions through a cell
wall.

Here we are asked to find a solution to this equation subject to the restrictions that

T (0, t) = T (π, t) = 0 (the ends of the bar stay at temperature 0)

T (x, 0) =

{

x if x ≤ π
2

π − x if x > π
2
.

Such restrictions are called initial conditions or boundary conditions. Many different
initial conditions are possible, they will depend on the problem one is trying to solve.
(Another possibility would be that the bar was initially at temperature 0, that the left
end is always kept at temperature 0 but that the right end is made to take on a specified
temperature T (π, t).)

We are only looking for T in the region

0 ≤ x ≤ π (length of bar)
t ≥ 0 (positive time)

-

6

π
x

t

0

Solve for
T (x, t)

T (x, 0) specified

T (0, t) = 0 T (π, t) = 0

19

There are several methods available to tackle this sort of problem, we will present one
based on Fourier series.

We first look for some simple solutions to the equation

∂T

∂t
= µ

∂2T

∂x2
T (0, t) = T (π, t) = 0. (∗)

In fact let us look for a solution

T (x, t) = u(x)v(t).

Then we require u(0) = u(π) = 0 and

v′(t)

v(t)
= µ

u′′(x)

u(x)
.

We see that the quantity
v′(t)

v(t)
= µ

u′′(x)

u(x)

is independent of both position x and time t so that it must be a constant.
We are led to try to solve the equation

u′′(x) = au(x)
v′(t) = aµv(t)
u(0) = u(π) = 0.

But we know how to solve these equation.

(a) If a > 0, say a = λ2 then
u(x) = Aeλx + Be−λx.

The equation u(0) = u(π) = 0 imply that A = B = 0, i.e. u(x) ≡ 0. This is not
much help.

(b) If a = 0 then
u(x) = Ax + B.

Again the equation u(0) = u(π) = 0 imply that A = B = 0, i.e. u(x) ≡ 0. Again
not much help.

(c) Now suppose a < 0, say a = −λ2. Then

u(x) = A sin λx + B cos λx.

The equation u(0) = 0 implies B = 0.

The equation u(π) = 0 implies A = 0 or λ is a whole number n. In this case
v′(t) = −n2µv(t) so that v(t) = Ce−µn2t.

20



Thus we have found a series of solutions to (∗). Namely for each positive integer n we
have a solution

cne−µn2t sin nx

for any constant cn. If we put t = 0 we get cn sin nx so none of these solutions is the one
we are looking for.
However note that both the equations

∂T

∂t
= µ

∂2T

∂x2

and the boundary conditions
T (0, t) = T (π, t) = 0

are linear: i.e. if T1 and T2 are two solutions so is cT1 + T2. Thus we get a lot more
solutions of these two equations: namely any finite sum

N
∑

n=1

cne−µn2t sin nx.

At t = 0 this becomes
N

∑

n=1

cn sin nx.

In fact more is true. If the constants cn become smaller sufficiently rapidly as n → ∞
then the sum ∞

∑

n=1

cne−µn2t sin nx

will converge and give a solution to (∗) which specialises at t = 0 to

∞
∑

n=1

cn sin nx.

If we can find cn such that

∞
∑

n=1

cn sin nx =

{

x x ≤ π
2

π − x x ≥ π
2

then we would have found a solution to our original problem. But this is the sort of
problem we studied in the last section.

To put it more precisely in the form we considered in the last section consider

θ(x) =











π − x x ≥ π
2

x −π
2
≤ x ≤ π

2

−x − π x ≤ −π
2

Note that we extended θ to [−π, π] by
arranging that θ(−x) = −θ(x).

-

6

x

θ

@
@

@
@

�
�

��−π

π
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We now compute the Fourier series of θ.

1

π

∫ π

−π

θ(x)
1√
2
dx = 0 as θ(x) = −θ(−x).

1

π

∫ π

−π

θ(x) cos nxdx = 0 for the same reason.

1

π

∫ π

−π

θ(x) sin nxdx =
2

π

∫ π

0

θ(x) sin nxdx

=
2

π

∫ π
2

0

x sin nxdx +
2

π

∫ π

π
2

(π − x) sin nxdx

=
2

π

∫ π
2

0

x sin nxdx − 2

π

∫ 0

π
2

y sin n(π − y)dy

=
2

π

∫ π
2

0

x sin nxdx − 2

π

∫ π
2

0

y sin(ny − nπ)dy

=
2

π
(1 − (−1)n)

∫ π
2

0

x sin nxdx

= 0 n even

=
4

π

∫ π
2

0

x sin nxdx

=
4

π

[− cos nx

n
x

]
π
2

0

+
4

π

∫ π
2

0

cos nx

n
dx

=
4

πn2
[sin nx]

π
2
0

=
4

n2π
(−1)

n−1
2 n odd

θ(x) =

∞
∑

m=0

4 (−1)m

(2m + 1)2π
sin(2m + 1)x

Thus we see that

T (x, t) =

∞
∑

m=0

4 (−1)m

(2m + 1)2π
e−µ(2m+1)2t sin (2m + 1)x

satisfies

∂T

∂t
= −µ

∂2T

∂x2

T (0, t) = T (π, t) = 0

T (x, 0) = θ(x)

as desired.
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Note that as t → ∞, e−µ(2m+1)2t → 0. Thus as t → ∞, T (x, t) → 0. As one might have
expected the bar cools towards having a uniform temperature of 0.
The same method (developed by Fourier at the start of the 19th century) allows one to
so solve the heat equation with any boundary conditions of this form. In fact we have:

FACT Let f(x) be any (reasonable) function on [0, π] which vanishes at both end points.
Then there is a unique function T (x, t) for 0 ≤ x ≤ π, t ≥ 0 such that

∂T

∂t
= −µ

∂2T

∂x2

T (0, t) = T (π, t) = 0

T (x, 0) = f(x).

23

EXERCISES

(1) Solve the equation
∂T

∂t
= µ

∂2T

∂x2
in 0 ≤ x ≤ π, t ≥ 0 subject to T (0, t) = T (π, t) and

T (x, 0) = 4 sinx.

(2) Solve the equation
∂T

∂t
= µ

∂2T

∂x2
in 0 ≤ x ≤ π, t ≥ 0 subject to T (0, t) = T (π, t) = 0

and T (x, 0) =











0 x ≤ π/4

1 π/4 < x < 3π/4

0 x ≥ 3π/4

[You may assume that T (x, 0) has a Fourier sine series, which can be computed in
the same way as when T is continuous.]

(3) Show that T (x, t) = 100
π

x is a solution of
∂T

∂t
=

∂2T

∂x2
subject to T (0, t), T (π, t) = 100.

(4) Solve the equation
∂T

∂t
=

∂2T

∂x2
in 0 ≤ x ≤ π, t ≥ 0 subject to T (0, t) = 0, T (π, t) =

100, T (x, 0) = 0 for 0 ≤ x ≤ π. Describe T (x, t) for very large t. [HINT: look for a
solution T (x, t) = 100

π
x + S(x, t).]

(5) Show that if n = 0, 1, 2, 3, . . . then

T (x, t) = e−n2µt cos nx

is a solution of
∂T

∂t
=

∂2T

∂x2
such that

∂T

∂x
(0, t) =

∂T

∂x
(π, t) = 0. (These boundary

conditions correspond to a bar which is completely thermally insulated, even at its
ends.)

(6) Solve the equation
∂T

∂t
=

∂2T

∂x2
in 0 ≤ x ≤ π, t ≥ 0

and subject to the boundary conditions
∂T

∂x
(0, t) =

∂T

∂x
(π, t) = 0 and T (x, 0) = x.

Describe T (x, t) for very large t.
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10.4 Partial Differential Equations II

We will discuss two other very standard examples of PDE’s.

1) Laplace’s Equation

Consider a square copper plate: 0 ≤ x ≤ π, 0 ≤ y ≤ π. The sides y = 0, y = π and
x = 0 are maintained at a constant temperature of 0. The point (π, y) is maintained at
a temperature

y if 0 ≤ y ≤ π/2

π − y if π/2 ≤ y ≤ π

If the plate is in equilibrium find the temperature distribution on the plate.

The temperature T (x, y, t) satisfies

∂T

∂t
= µ

(

∂2T

∂x2
+

∂2T

∂y2

)

.

If the temperature is constant then we must have

∂2T

∂x2
+

∂2T

∂y2
= 0.

This is called Laplace’s equation.
We must solve Laplace’s equation in 0 ≤ x ≤ π, 0 ≤ y ≤ π subject to T (x, 0) = T (x, π) =
0, T (0, y) = 0,

T (π, y) =

{

y y ≤ π/2

π − y y ≤ π/2

Again we look for simple solutions to Laplace’s equation of the form

T (x, y) = u(x)v(y)

We must then solve
u′′(x) = au(x) u(0) = 0
v′′(y) = −av(y) v(0) = v(π) = 0

As for the heat equation the only non-trivial solutions are for a = n2; n = 1, 2, 3, . . .
Then

v(y) = A sin ny
u(x) = B (enx − e−nx) = 2B sinh(nx)

Thus we get the solutions
cn = sinh(nx) sin(ny)

By linearity
∞

∑

n=1

cn sinh(nx) sin(ny)

will also be a solution if cn tend to zero sufficiently fast.
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We would like to choose cn such that

∞
∑

n=1

cn sinh(nπ) sin(ny) =

{

y y ≤ π/2

π − y y ≥ π/2

As in the last section we see that

cn sinh(nπ) =

{

0 n even

4 (−1)
n−1

2

n π
n odd

Thus

T (x, y) =
∞

∑

m=0

4 (−1)m

π(2m + 1)

sinh
(

(2m + 1)x
)

sinh
(

(2m + 1)π
) sin

(

(2m + 1)y
)

.

FACT If C is any smooth simple closed curve in the plane and f is a smooth function on
C then we can find a function T on the interior of C such that

∂2T

∂x2
+

∂2T

∂y2
= 0

and for (x, y) ∈ C: T (x, y) = f(x, y).

T (x, y)

f(x, y)
���

C

2) The Wave Equation

Suppose a violin string of length π is fixed between the points x = 0 and x = π
and suppose the string is plucked with the end points fixed. Describe the movement of
the string.

r r

0 πx
u(x,t)

Let u(x, t) denote the displacement of the string from the x-axis at time t and at distance
x along the x-axis.
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Then u satisfies the wave equation:

∂2u

∂t2
=

∂2u

∂x2

(as long as time is measures in suitable units).
We are looking for solutions satisfying the boundary conditions u(0, t) = u(π, t) = 0.

We look again for simple solutions

u(x, t) = v(x)w(t)

and obtain the equations

v′′(x) = av(x) v(x) = v(π) = 0
w′′(t) = aw(t)

As in the previous section we see we only obtain a non-trivial solution if a = −n2 for n
an integer.
Thus we obtain solutions

an sin nt sin nx and bn cos nt sin nx.

Again linearity gives solutions
∑

(

an sin nt + bn cos nt
)

sin nx

where we may in fact allow the sums to become infinite if an and bn tend to zero sufficiently
fast as n → ∞.
To get a specific solution we must specify what happens at t = 0. Suppose that at t = 0
the string is stationary with

u(x, 0) =

{

x
100

x ≤ π/2
π−x
100

x ≥ π/2.

Then we rquire that
∞

∑

n=1

bn sin nx =

{

x
100

x ≤ π/2
π−x
100

x ≥ π/2.

As in the last section we see that bn =

{

0 n even

4 (−1)
n−1

2

100n2π
n odd.

What about the an ? They seem to be arbitrary. The point is that the motion of the
string depends not only on its initial position, but also on its initial velocity. Using the
fact that the string is stationary at t = 0 we see that

∑

(

nan cos nt − nbn sin nt
)

sin nx
∣

∣

∣

t=0
= 0.

Thus
∑

nan sin nx = 0 and so an = 0 for all n. Thus

u(x, t) =
∞

∑

m=0

4 (−1)m

100(2m + 1)2π
cos(2m + 1)t sin(2m + 1)x.
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Notice the difference. The equation
∂T

∂t
=

∂2T

∂x2
has a unique solution in 0 ≤ x ≤ π, t ≥ 0

if we specify T (0, t) = T (π, t) = 0 and we specify T (x, 0).

On the other hand the equation
∂2u

∂t2
=

∂2u

∂x2
has infinitely many solutions in 0 ≤ x ≤ π,

t ≥ 0 is we specify u(0, t) = u(π, t) = 0 and we specify u(x, 0). In this case we may also

specify
∂u

∂t
(x, 0).

In general it is a subtle question what boundary conditions we can impose for a PDE and
still expect a solution or a unique solution.
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EXERCISES

(1) Suppose that the the boundary of a uniform copper disc is maintained at a temper-
ature T (x, y) = xy.

Find the temperature at the center of the disc when the temperature over the disc
is constant in time.

(2) A uniform metal square 0 ≤ x ≤ π, 0 ≤ y ≤ π has a temperature distribution which
is constant in time. If

T (0, y) = 0 T (π, y) =

{

y y ≤ π/2

π − y y ≥ π/2

T (x, 0) = 0 T (x, π) =

{

x x ≤ π/2

π − x x ≥ π/2

find T (x, y) over the whole square.

(3) A violin string fixed at x = 0 and x = π is initially undisturbed.

It is then given a velocity

∂u

∂t
(x, 0) =

{

x x ≤ π/2

π − x x ≥ π/2.

Describe the displacement u(x, t) of the string as a function of position and time.

(4) Show that if f(y) and g(y) are any twice differentiable functions then u(x, t) =
f(x + t) + g(x − t) satisfies

∂2u

∂x2
=

∂2u

∂t2
.

If u(0, t) = u(π, t) = 0 show that we must have

f(y) = −g(−y)
f(y + 2π) = f(y)
u(x, t) = f(x + t) − f(t − x).

If further
∂u

∂t
(x, 0) = 0 show that f(y) + f(−y) is constant and hence that f(y) =

−f(−y).

If u(x, 0) =

{

x x ≤ π/2

π − x x ≥ π/2
find f and hence find u(x, t).

(5) Solve the equation
∂2T

∂x2
+

∂2T

∂y2
= 0 in 0 ≤ x ≤ π, 0 ≤ y ≤ π subject to

∂T

∂x
(0, y) = 0 ,

∂T

∂x
(π, y) = sin 2y

∂T

∂y
(x, 0) = 0 ,

∂T

∂y
(x, π) = 0
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(6) Can you solve the equation
∂2T

∂x2
+

∂2T

∂y2
= 0 in 0 ≤ x ≤ π, 0 ≤ y ≤ π subject to

∂T

∂x
(0, y) = 0 ,

∂T

∂x
(π, y) = sin y

∂T

∂y
(x, 0) = 0 ,

∂T

∂y
(x, π) = 0

[HINT: Apply Green’s theorem to
(

∂T
∂x

, ∂T
∂y

)

.]
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