INSTITUTO SUPERIOR

DEPARTAMENTO DE MATEMÁTICA

Probabilidades e Estatística

LEGM, LEIC-A, LEIC-T, MEAer, MEMec

 2^{o} semestre – 2010/11

2º Teste - Código B

(3.0)

09/06/2011 - 14 horas

Duração: 1 hora e 30 minutos

Justifique convenientemente todas as respostas!

Grupo I 10 valores

- 1. Seja X uma variável aleatória que representa o número de fluxos (de tráfego) iniciados por uma aplicação de rede num intervalo de tempo fixo. Admita que X tem distribuição de Poisson de parâmetro λ .
 - (a) Deduza o estimador de máxima verosimilhança de λ com base numa amostra aleatória de dimensão (3.0) $n, (X_1, \ldots, X_n)$, proveniente da população X.
 - (b) Obtenha a estimativa de máxima verosimilhança da probabilidade de não haver nenhum fluxo (2.0) iniciado nesse intervalo de tempo, com base numa amostra de dimensão 200 onde se obteve $\sum_{i=1}^{200} x_i = 1314$.
- 2. Numa amostra de 10 baterias de lítio produzidas por determinada empresa, escolhidas ao acaso, observouse uma duração média de 24 mil horas. Admita que o tempo de vida dessas baterias, em milhares de horas, tem distribuição normal com desvio padrão unitário.
 - (a) Conjectura-se que a duração esperada das baterias de lítio produzidas pela empresa é igual a 27 mil (3.0 horas. Teste essa conjectura ao nível de significância de 5%.
 - (b) Calcule a probabilidade de o teste anterior rejeitar correctamente a hipótese nula quando a duração (2.0) esperada das baterias é igual a 25 mil horas.

Grupo II 10 valores

1. Um grupo de investigadores seleccionou ao acaso 100 ovos de tartaruga tendo medido os seus comprimentos (em centímetros) e resumido os resultados, os quais se encontram na seguinte tabela:

Classe]0; 2.5]	$]2.5; 5/\sqrt{2}]$	$]5/\sqrt{2};\sqrt{75/4}]$	$]\sqrt{75/4};5]$
Freq. abs. observada	26	23	30	21
Freq. abs. esperada sob H_0	E_1	25	E_3	25

Esse grupo afirma que o comprimento dos ovos de tartaruga pode ser modelado por uma variável aleatória,

X, com função de distribuição:

$$G(x) = \begin{cases} 0, & x < 0\\ \frac{x^2}{25}, & 0 \le x < 5,\\ 1, & x \ge 5, \end{cases}$$

- (a) Complete a tabela acima com os valores das frequências absolutas esperadas sob a validade de (2.0) $H_0: X$ tem função de distribuição $G(x), x \in \mathbb{R}$.
- (b) Teste a validade da hipótese H_0 definida na alínea anterior. Decida com base no valor-p. Se não (3.5) respondeu à alínea anterior, considere $E_1 = E_3 = 25$.
- 2. Um gastroenterologista considera que o modelo de regressão linear simples $Y = \beta_0 + \beta_1 x + \epsilon$, com as hipóteses de trabalho habituais, é adequado para descrever o efeito da percentagem de gordura alimentar ingerida, x, no aumento do perímetro abdominal, Y (em cm), numa dada população. Para testar essa convicção, seleccionou ao acaso uma amostra de 30 indivíduos, tendo obtido os seguintes resultados:

$$\sum_{i=1}^{30} x_i = 229.20 \quad \sum_{i=1}^{30} x_i^2 = 1781.58 \quad \sum_{i=1}^{30} y_i = 87.90 \quad \sum_{i=1}^{30} y_i^2 = 263.13 \quad \sum_{i=1}^{30} x_i y_i = 683.55$$

- (a) Determine um intervalo de confiança a 99% para o declive da recta de regressão.
- (b) Tendo por base o intervalo de confiança obtido na alínea anterior, diga o que pode concluir sobre a (1.5) significância da regressão.