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2 LIX, École Polytechnique, 91128 Palaiseau Cedex, France

Gödel’s System T is an extremely powerful calculus: essentially anything that we want to
compute can be expressed [3]. A linear variant of this well-known calculus, called System L, was
introduced in [1], and shown to be every bit as expressive as System T . The novelty of System L
is that it is based on the linear λ-calculus, and all duplication and erasing can be done through
an encoding using the iterator.

There are many well-known, and well-understood, strategies for reduction in the (pure) λ-
calculus. When investigating deeper into the structure of terms, we get a deeper understanding of
reduction. For instance, calculi with explicit resource management or explicit substitution allow a
finer control over reduction. In a similar way, System L splits the usual λ in two different constructs:
a binder, able to generate a substitution, and an iterator able to erase or copy its argument. This
entails a finer control of these fundamentally different issues, which are intertwined in the λ-
calculus. Having a calculus which offers at the same time a lot of freedom in reduction and a lot
of information about resources makes it an ideal framework to start a fresh attempt at studying
reduction strategies in λ-calculi.

We present a first step towards a thorough study of reduction strategies for System L. In
particular:

1. we present, and compare, different ways of writing the reduction rules associated to iterators;
2. we define a weak reduction relation for System L (we call this new system weak System L)

similar to weak reduction used in the implementation of functional programming languages,
where reduction is forbidden inside abstractions;

3. we present reduction strategies for the weak reduction relation: call-by-name, call-by-value,
and call-by-need (emphasising this last one), proving that they are indeed strategies in a
technical sense. Since neededness is usually undecidable, extra features (like sharing graphs,
environments, explicit substitutions) are generally added to actually implement call-by-need.
In contrast, for System L, we can define call-by-need within the calculus in an effective way.

4. we give a proof of minimality of the call-by-need strategy. It is well-known that there exists no
computable minimal strategy for the λ-calculus [2]. One of our main contributions is a (family
of) computable minimal strategies for weak System L.
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