Combinatory vs. axiomatic completeness (Abstract)

Sabine Broda, Luís Damas DCC-FCUP & LIACC

The Curry-Howard isomorphism establishes an amazing connection between systems of typed λ -calculus and logical systems. In particular, the types of typable λK -terms form the set of provable formulas in intuitionistic logic¹. The same correspondence exists between the λI -calculus and the system R_{\rightarrow} of relevance logic, as well as between the BCK- λ - and BCI- λ calculus and BCK- and BCI-logic respectively. Furthermore, it is well known that the principal types of some standard combinator bases for the four systems of λ -calculus form, together with the inference rules modus ponens and substitution, complete axiom sets for the respective logical systems. The aim of this contribution is to present a study of this pattern in the four cases, i.e. the relationship between the combinatory completeness of a set of typable combinators, with simple types, and the axiomatic completeness of their principal types. We show that the two problems are equivalent in the BCI- λ - as well as in the BCK- λ -calculus, and that for the two remaining cases axiomatic completeness is a sufficient, but not necessary, condition for combinatory completeness.

 $^{^1\}mathrm{Strictly}$ speaking, we refer to Hilbert's positive implicational logic.