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Abstract. We consider optimal control problems of systems governed by sta-

tionary, incompressible generalized Navier-Stokes equations with shear-dependent

viscosity in a two-dimensional or three-dimensional domain. We study a general

class of viscosity functions which switches between shear-thinning and shear-

thickening behaviour. We prove an existence result for such class of optimal

control problems.
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1 Introduction

This paper is devoted to the proof of existence of solution for a distributed

optimal control problem of a viscous and incompressible fluid. The control and

state variables are constrained to satisfy a system with shear dependent viscosity

which switches between shear-thinning and shear thickening behavior.

More specifically, we deal with a quasi-linear generalization of the stationary

Navier-Stokes system described as
−div (S(Dy)) + y · ∇y +∇p = u in Ω

div y = 0 in Ω

y = 0 on ∂Ω ,
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where S is the extra stress tensor given by

S(η) = (1 + |η|)α(x)−2η

and α(x) is a positive bounded continuous function. The vector y denotes the

velocity field, p denotes the pressure, Dy = 1
2

(
∇y + (∇y)T

)
is the symmetric

part of the velocity gradient, u is the given body force and Ω (n = 2 or n = 3)

is an open bounded subset of IRn.

System (1) can be used to model steady incompressible electro-rheological fluids.

It is based on the assumption that electro-rheological materials, composed by

suspesions of particles in a fluid, can be considered as a homegenized single

continuum media. The corresponding viscosity has the property of switching

between shear-thinning and shear-thickening under the application of a magnetic

field. This model is described and analyzed in [13, 14, 15] or [7]. More recently,

in [5], the authors proved the existence and uniqueness of a C1,γ(Ω̄)∩W2,2(Ω)

solution under smallness data conditions for the system (1). This regularity

result motivate us to the analysis of the associated distributed optimal control

problem that we describe in the following.

Let us look for the control u and the corresponding yu solution of (1) such that

the pair (yu,u) solves

(Pα)

{
Minimize J(u,yu)

subject to (1)
(2)

where J : L2(Ω)×W1,2
0 (Ω)→ IR is given by

J(u,y) =
1

2

∫
Ω

|yu − yd|2 dx+
ν

2

∫
Ω

|u|2 dx. (3)

and yd denotes a fixed element of L2(Ω).

Such type of optimal control problems has been subject of intensive research in

the past decades. For systems governed by non-Newtonian fluids we mention

the results in [1, 3, 4, 8, 9, 12, 16] where the authors used several techniques to

deal properly with the shear-thickening and shear-thinning viscosity laws, both

in the 2D and 3D cases. For the existence of solution, such techniques consist in

exploring correctly the properties of S in order to establish compactness results
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necessary for the application of the direct method of the calculus of variations.

Our purpose here is to show that, based on the regularity results in [5], it is

possible to easily extend these ideas to the case of electro-rheological fluids

modeled by (1). Treating the optimality conditions associated to (Pα) is also

an important, yet delicate, issue. We will therefore postpone this to be treated

elsewhere.

In section 2 we introduce the notation that we are going to use, and we recall

some useful results. In section 3 we characterize the tensor S including the

continuity, coercivity and monotonicity properties. Finally, in section 4 we

prove our main existence result.

2 Notation and classical results

We denote by D(Ω) the space of infinitely differentiable functions with compact

support in Ω, D′(Ω) denotes its dual (the space of distributions). The standard

Sobolev spaces are represented by Wk,α(Ω) (k ∈ IN and 1 < α <∞), and their

norms by ‖ · ‖k,p. We set W0,α(Ω) ≡ Lα(Ω) and ‖ · ‖α ≡ ‖ ·‖Lα . The dual space

of W1,α
0 (Ω) is denoted by W−1,α′(Ω) and its norm by ‖ · ‖−1,α′ . We consider

the space of divergence free functions defined by

V =
{
ψ ∈ D(Ω) | ∇ · ψ = 0

}
,

to eliminate the pressure in the weak formulation. The space Vα is the closure

of V with respect to the gradient norm , i.e.

Vα =
{
ψ ∈W1,α

0 (Ω) | ∇ · ψ = 0
}
.

The space of Hölder cont́ınuos functions is a Banach space defined as

Cm,γ(Ω̄) ≡ {y ∈ Cm(Ω̄) : ‖y‖Cm,γ(Ω̄) <∞}

where

‖y‖Cm,γ(Ω̄) ≡
m∑
|α|=0

‖Dαy‖∞ + [y]Cm,γ(Ω̄), (4)
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[y]Cm,γ (Ω̄) ≡
∑
|α|=m

sup
{x1,x2∈Ω̄,x1 6=x2}

|Dαy(x1)−Dαy(x2)|
|x1−x2|γ < +∞,

for m a nonnegative integer and 0 < γ < 1 and

Dαy ≡ ∂|α|y

∂xα1
1 ...∂xαnn

for α = (α1, ..., αn), αi ∈ IN0 and |α| =
n∑
i=1

αi.

We recall now two important inequalities.

Lemma 2.1 (Poincaré’s inequality). Let y ∈ W1,α
0 (Ω) with 1 ≤ α < +∞.

Then there exists a constant C1 depending on α and Ω such that

‖y‖α ≤ C1(α,Ω)‖∇y‖α.

Proof. [2].

Lemma 2.2 (Korn’s inequality). Let y ∈ W1,α
0 (Ω) with 1 < α < +∞. Then

there exists a constant C2 depending on Ω such that

C2(Ω)‖y‖1,α ≤ ‖Dyα‖α.

Proof. [11].

Finally two simple, yet very useful, properties of the convective term.

Lemma 2.3. Let us consider u in V2 and v, w in W1,2
0 (Ω), then

(u · ∇v,w) = −(u · ∇w,v) and (u · ∇v,v) = 0. (5)

3 Extra tensor properties

We assume that the tensor S : IRn×nsym −→ IRn×nsym has a potential, i.e. there exists

a function Φ ∈ C2(IR+
0 , IR

+
0 ) with Φ(0) = 0 such that
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Sij(η) =
∂Φ(|η|2)

∂ηij
= 2Φ′(|η|2) ηij , S(0) = 0

for all η ∈ IRn×nsym

(
here IRn×nsym consists of all symetric (n × n)-matrices). An

example of such tensor is the one we are going to work with:

S(η) = (1 + |η|)α(x)−2η

where α(x) is a continuous function in Ω̄ such that

α(x) : Ω̄→ (1,+∞)

and

1 < α∞ ≤ α(x) ≤ α0 < +∞ (6)

min α(x) = α∞,

max α(x) ≤ α0 for α0 > 2.

The case 1 < α(x) < 2 corresponds to shear-thinning behaviour fluids for vis-

cosity, whereas α(x) > 2 corresponds to shear-thickening. The case α(x) = 2

corresponds Newtonian case. For such α(x), it can be proved that S satisfies

the standard properties

Properties 3.1. Consider α ∈ (1,∞), C3 and C4 positive constants we have

A1 - ∣∣∣∣∂Sk`(η)

∂ηij

∣∣∣∣ ≤ C3 (1 + |η|)α(x)−2
.

A2 -

S′(η) : ζ : ζ =
∑
ijk`

∂Sk`(η)

∂ηij
ζk`ζij ≥ C4 (1 + |η|)α(x)−2 |ζ|2

for all η, ζ ∈ IRn×nsym and i, j, k, ` = 1, · · · , d.

Proof. In fact,∣∣∣∣∂Skl∂ηij

∣∣∣∣ =
∣∣∣(α(x)− 2) (1 + |η|)α(x)−3

δikδjl + (1 + |η|)α(x)−2
δikδjl

∣∣∣
=
∣∣∣(α(x)− 2) (1 + |η|)α(x)−3

δikδjl + (1 + |η|)α(x)−2
δikδjl

∣∣∣
≤ |α(x)− 2| (1 + |η|)α(x)−3 |δikδjl|+ (1 + |η|)α(x)−2 |δikδjl| . (7)
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Taking into account that

δikδjl =

{
1 if i = k, j = l
0 otherwise

we can write

(7) ≤ |α(x)− 2| (1 + |η|)α(x)−3
+ (1 + |η|)α(x)−2

= (1 + |η|)α(x)−3
(|α(x)− 2|+ (1 + |η|)) (8)

Considering that α(x) ≤ α0, we have

(8) ≤ (1 + |η|)α(x)−3
((α0 − 2) + (1 + |η|))

≤
(
1 + |η|2

)α(x)−3
((α0 − 2) (1 + |η|) + (1 + |η|))

=
(
1 + |η|2

)α(x)−3
(α0 − 1)(1 + |η|)

= (α0 − 1) (1 + |η|)α(x)−2
,

and therefore we have A1 with C3 = α0 − 1. To obtain A2 we write

S′(η) : ζ : ζ =
∑
ijk`

∂Sk`(η)

∂ηij
ζk`ζij

=
∑
ijk`

[
(α(x)− 2) (1 + |η|)α(x)−3

δikδjl + (1 + |η|)α(x)−2
δikδjl

]
ζijζk`

= (α(x)− 2) (1 + |η|)α(x)−3
∑
ijk`

δikδjlζijζk` + (1 + |η|)α(x)−2
∑
ijk`

δikδjlζijζk`

(9)

Considering that ∑
ijk`

δikδjlζijζk` =
∑
ij

ζijζij = |ζ|2

expression (9) is equal to

(α(x)− 2) (1 + |η|)α(x)−3 |ζ|2 + (1 + |η|)α(x)−2 |ζ|2

= (1 + |η|)α(x)−3
[(α(x)− 2)|+ (1 + |η|)] |ζ|2

(10)

Taking account α(x)− 2 < 0 and α∞ ≤ α(x) it follows that



7

(10) ≥ (1 + |η|)α(x)−3
[(α(x)− 2)(1 + |η|) + (1 + |η|)] |ζ|2

= (1 + |η|)α(x)−3
[(α(x)− 1)(1 + |η|)] |ζ|2

= (α(x)− 1) (1 + |η|)α(x)−2 |ζ|2

≥ (α∞ − 1) (1 + |η|)α(x)−2 |ζ|2.

Instead, α(x)− 2 ≥ 0 gives

(10) ≥ (1 + |η|)α(x)−3
(1 + |η|) |ζ|2

= (1 + |η|)α(x)−2 |ζ|2.

Then we have

S′(η) : ζ : ζ ≥

 (α∞ − 1) (1 + |η|)α(x)−2 |ζ|2 if α(x)− 2 < 0

(1 + |η|)α(x)−2 |ζ|2 if α(x)− 2 ≥ 0.

Assumptions A1-A2 imply the following standard properties for S (see [11]):

• Continuity

|S(η)| ≤ (1 + |η|)α(x)−2|η|, (11)

• Coercivity

S(η) : η ≥

{
ν(1 + |η|)α(x)−2|η|2 if α(x)− 2 < 0

|η|2 if α(x)− 2 ≥ 0
(12)

• Monotonicity

(S(η)− S(ζ)) : (η − ζ) ≥ ν(1 + |η|+ |ζ|)α(x)−2|η − ζ|2. (13)

For continuity we have

|S(η)| =
∣∣∣(1 + |η|)α(x)−2η

∣∣∣ =
∣∣∣(1 + |η|)α(x)−2

∣∣∣ |η| = (1 + |η|)α(x)−2|η|.

Coercivity is equivalent to monotonocity taking S(ζ) = ζ = 0M therefore is

enough to prove monotonocity. Taking account that
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Sij(η)− Sij(ζ) =

1∫
0

∂

∂t
Sij(tη + (1− t)ζ) dt

=

1∫
0

∑
kl

∂Sij(tη + (1− t)ζ)

∂Dkl
(η − ζ)kl

we can write

(S(η)− S(ζ) : (η − ζ) =

1∫
0

∑
ij

∑
kl

∂Sij(tη + (1− t)ζ)

∂Dkl
(η − ζ)kl : (η − ζ)ij dt

=

1∫
0

S′(tη + (1− t)ζ)) : (η − ζ) : (η − ζ) dt (14)

Using A2 and considering α(x)− 2 < 0 we have

(14) ≥
1∫

0

(α∞ − 1) (1 + |tη + (1− t)ζ|)α(x)−2 |η − ζ|2 dt (15)

Once we have (t ∈ [0, 1])

1 + |tη + (1− t)ζ| ≤ 1 + |η + ζ| ≤ 1 + |η|+ |ζ| (16)

we can write

(15) ≥
1∫

0

(α∞ − 1) ((1 + |η|+ |ζ|))
α(x)−2

2 |η − ζ|2 dt

Using A2 and considering α(x)− 2 ≥ 0 we have

(14) ≥
1∫

0

(1 + |tη + (1− t)ζ|)α(x)−2 |η − ζ|2 dt (17)

≥
1∫

0

1α(x)−2|η − ζ|2 dt (18)

≥ |η − ζ|2 (19)

Then we conclude that

(S(η)−S(ζ)) : (η−ζ) ≥

{
(α∞ − 1)(1 + |η|+ |ζ|)α(x)−2|η − ζ|2 if α(x)− 2 < 0

|η − ζ|2 if α(x)− 2 ≥ 0
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4 Main Result

Definition 4.1. Assume that u ∈ L2(Ω). A function y is a C1,γ-solution of

(1) if y ∈ C1,γ(Ω̄), for γ ∈ (0, 1), div y = 0, y|∂Ω = 0 and it satisfies the

following integral equality

(S(Dy), Dϕ) + (y · ∇y, ϕ) = (u, ϕ), for all ϕ ∈ V2. (20)

Next proposition, due to [5], present us an existence and uniqueness result of a

C1,γ0 solution of the system (1) with certain conditions made on u, but without

adicional conditions on exponent α.

Proposition 4.2. We assume u ∈ Lq(Ω) for some q > n. Let us consider

Ω a C1,γ0 domain, and α ∈ C0,γ0(Ω̄), with γ0 = 1 − n
q . Then there exist

positive constants C5 and C6, depending on ‖α‖C0,γ(Ω̄), n, q and Ω such that,

if ‖u‖q < C5, for some γ < γ0 there exists a C1,γ solution (y, p) of problem (1)

with

‖y‖C1,γ(Ω̄) + ‖p‖C0,γ(Ω̄) ≤ C6‖u‖q. (21)

Furthermore, there exists a constant C7 depending on α∞, ‖α‖C0,γ(Ω̄), n, q and

Ω such that if ‖u‖q ≤ C7 the solution is unique.

Proposition 4.3. Assume that A1 and A2 are fullfilled. Considering y ∈ C1,γ(Ω̄)

we have

‖Dy‖2 ≤ C8‖u‖2 (22)

where y is the associated state to u.

Proof. Taking ϕ = y in (20) and recalling the convective term properties we

have

(S(Dy), Dy) = (u,y). (23)

The fact y ∈ C1,γ(Ω̄) implies that y belongs to C1(Ω̄) which means that y and

Dy are limited functions in Ω̄ and consequently belong to Lα(Ω) for any α > 1,
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in particular we consider y ∈ L2(Ω). Then, on one hand, by using Holder´s

inequality and the Poincaré and Korn inequalities there existes a constant C8

such that

|(u,y)| ≤ ‖u‖2‖y‖2 ≤ C8‖u‖2‖Dy‖2.

On the other hand, by coercivity we write

‖Dy‖22 ≤ (S(Dy), Dy)

Putting together both inequalities with (23) we have the pretended result.

Once we have the guaratee of existence of a solution for (1) provided by Propo-

sition 4.2 and a estimative of energy for Dy given by proposition 4.3, we can

now formulate and prove the following existence result for the control problem

(Pα).

Theorem 4.4 (Main Result). Assume that A1-A2 are fulfilled, with 1 < α ≤ 2.

Then (Pα) admits at least a solution.

To prove this theorem we have to establish some important results:

Proposition 4.5. Assume that (uk)k>0 converges to u weakly in L2(Ω). Then

there exists y ∈W1,2
0 (Ω) and S̃ ∈ L2(Ω) such that

(yk)k ⇀ y in W1,2
0 (Ω) (24)

(Dyk)k ⇀ Dy in L2(Ω) (25)

(S(Dyk))k ⇀ S̃ in L2(Ω). (26)

Proof. The convergence of (uk)k>0 to u in the weak topology of L2(Ω) implies

that (uk)k>0 is bounded, ie, there exists a positive constant M such that

‖uk‖2 ≤M, for k > k0. (27)

Due to (22) and (27), it follows that
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‖Dyk‖2 ≤ C8M

By Korn´s inequality yk is then bounded in W1,2
0 (Ω) and thus there is a subse-

quence still indexed in k that weakly converges to a certain yk in W1,2
0 (Ω). Also,

by using a Sobolev’s compact injection, yk converges strongly (then weakly) to

y in L2(Ω). It is straightforward to conclude (25).

Finally, the previous estimate, together with (11) implies

‖S(Dyk)‖22 ≤
∫
Ω

(1 + |Dyk|)(α(x)−2)2|Dyk|2 dx

≤
∫
Ω

(1 + |Dyk|)(α(x)−2)2(1 + |Dyk|)2 dx

=

∫
Ω

(1 + |Dyk|)2(α(x)−1) dx

≤ C8

∫
Ω

(1 + |Dyk|2(α(x)−1)) dx

≤ C8

|Ω|+ ∫
Ω

|Dyk|2(α0−1) dx


= C8

(
|Ω|+ ‖Dyk‖2(α0−1)

2(α0−1)

)
.

The last expression is then bounded once Dyk ∈ C(Ω̄) and consequently the

sequence (S(Dyk))k is bounded in L2(Ω) and we finish the proof by establishing

the existence of a subsequence, still indexed by k, and S̃ ∈ L2(Ω) such that

(S(Dyk))k>0 weakly converges to S̃ ∈ L2(Ω).

Proposition 4.6. Assume that (25), (24) and (26) are verified. Then the weak

limit of (yk)k, y, is the solution of (20) corresponding to u ∈ L2(Ω).

Proof. Let us consider

(S(Dyk)− S(y), Dϕ) + (yk · ∇yk − y · ∇y, ϕ) = (uk − u, ϕ), (28)

for all ϕ ∈ V2. Taking account the convective term properties and the regularity

results assumed on y, we have
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|(yk · ∇yk − y · ∇y, ϕ)|

= |((yk − y) · ∇yk, ϕ) + (y · ∇(yk − y), ϕ)|

= |((yk − y) · ∇yk, ϕ)− (y · ∇ϕ, (yk − y))|

≤ |((yk − y) · ∇yk, ϕ)|+ |(y · ∇ϕ, (yk − y))|

≤ C2
E (‖∇yk‖2‖ϕ‖4 + ‖y‖4‖∇ϕ‖2) ‖yk − y‖4

→ 0 when k → +∞.

This result is a consequence of the compact injection of W1,2
0 (Ω) into L4(Ω)

which provide a strong convergence in L4(Ω) once we have (24). Note that CE

corresponds to the embedding constant.

Hence, passing to the limit in

(S(Dyk), Dϕ) + (yk · ∇yk, ϕ) = (uk, ϕ), for all ϕ ∈ V2,

we obtain

(S̃,Dϕ) + (y · ∇y, ϕ) = (u, ϕ) for all ϕ ∈ V2, (29)

In particular, taking ϕ = y and considering (5) we may write

(S̃,Dy) = (S̃,Dy) + (y · ∇y,y) = (u,y). (30)

On the other hand, the monotonocity assumption (13) gives

(S(Dyk)− S(Dϕ), D(yk)−Dϕ) ≥ 0 for all ϕ ∈ V2. (31)

Since,

(S(Dyk), Dyk) = (uk,yk),

replacing the first member in (31), we obtain

(uk,yk)− (S(Dyk), Dϕ)− (S(Dϕ), Dyk −Dϕ) ≥ 0 for all ϕ ∈ V2.

Passing to the limit it follows
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(u,y)− (S̃,Dϕ)− (τ(Dϕ), Dy −Dϕ) ≥ 0 for all ϕ ∈ V2.

This inequality together with (30), implies that

(S̃ − S(Dϕ), Dy −Dϕ) ≥ 0 for all ϕ ∈ V2

Taking ϕ = y − λv (see [10]), which is possible considering any v ∈ V2 and

λ > 0, we have

(S̃ − S(D(y − λv)), Dy − (Dy − λv)) ≥ 0 for all ϕ ∈ V2 (32)

which is equivalent to

λ(S̃ − S(D(y − λv)), Dv)) ≥ 0 for all v ∈ V2 (33)

once λ > 0,

(S̃ − S(D(y − λv)), Dv)) ≥ 0 for all v ∈ V2 (34)

Passing to the limit when λ→ 0 and considering the continuity of S we obtain

(S̃ − S(D(y)), Dv)) ≥ 0 for all v ∈ V2, (35)

and this implies that

S̃ = S(D(y))

and then

(S(Dy), Dϕ) + (y · ∇y, ϕ) = (u, ϕ) for all ϕ ∈ V2.

Hence, y ≡ yu, i.e, y is the solution associated to u.

Proposition 4.7. Assume that A1 and A2 are satisfied. Then (yk)k strongly

converges to yu in W1,2
0 (Ω).
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Proof. Setting ϕ = yk − yu in (20) and taking (13) we obtain

(S(Dyk)− S(Dyu), D(yk − yu)) ≥ ‖D(yk − yu)‖22 (36)

Therefore, using (5) and classical embedding results, we obtain

lim
k→+∞

‖D(yk − yu)‖22

≤ lim
k→+∞

(S(Dyk)− S(Dyu), D(yk − yu))

= lim
k→+∞

((uk − u,yk − yu)− (yk · ∇yk − yu · ∇yu,yk − yu))

= lim
k→+∞

((uk − u,yk − yu)− ((yk − yu) · ∇yu,yk − yu))

= lim
k→+∞

(
(uk − u,yk − yu)− ‖yk − yu‖24‖∇yu‖2

)
= 0.

and therefore, by Korn’s inequality,

‖yk − y‖1,2 → 0.

We can now prove our main result.

Proof of Theorem 4.4. Let (uk)k be a minimizing sequence in L2(Ω) and (yk)k

the sequence of associated states. Considering the properties of J , we obtain

ν
2‖uk‖

2
2 ≤ J(uk,yk) ≤ J(0,y0) for k > k0

implying that (uk)k is bounded in L2(Ω). From Proposition 4.7, we deduce

that (yk) converges strongly to yu. On one hand J is convex once it is a sum of

quadratic terms, on the other hand, if

(vk, zk)→ (v, z) in L2(Ω)×W1,2
0 (Ω)

implies

J(vk, zk)→ J(v, z) in IR

then the funcional J is also a continuous function. In fact, once we have

|J(vk, zk)− J(v, z)| =
∣∣‖zk − yd‖22 + ‖vk‖22 − ‖z− yd‖22 − ‖v‖22

∣∣
≤
∣∣∣(‖(zk − yd)− (z− yd)‖2 + ‖(z− yd)‖2)

2
+ (‖vk − v‖2 + ‖v‖2)

2 − ‖z− yd‖22 − ‖v‖22
∣∣∣

≤
∣∣∣(‖(zk − z‖2 + ‖(z− yd)‖2)

2
+ (‖vk − v‖2 + ‖v‖2)

2 − ‖z− yd‖22 − ‖v‖22
∣∣∣ .
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Since zk → z strongly also in L2, last expression converges to zero when k →∞
and therefore, J is a semicontinuos function (see result in [2]). We may now

apply the direct method of the Calculus os Variations (see for instance [6])

inf
k
J ≤ J(u,yu) ≤ lim inf

k
J(vk, zk) ≤ inf

k
J

to conclude that (u,yu) is in fact a minimizer and therefore a solution for (Pα).
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[2] H. Brézis, Análisis funcional Teoŕıa y aplicaciones, Alianza Editorial,

Madrid, 1984.

[3] E. Casas, L.A. Fernández, Boundary control of quasilinear elliptic

equations, Rapport de Recherche 782, INRIA, 1988.

[4] E. Casas, L.A. Fernández, Distrubuted control of systems governed by

a general class of quasilinear elliptic equations, J. Differential Equa-

tions 35 (1033), pp. 20–47.

[5] F. Crispo, C. R. Grisanti, On the C1,γ(Ω̄) ∩W 2,2(Ω) regularity for a

class of electro-rheological fluids, J. Math. Anal. and App. 356, pp.

119-132, 2009.

[6] B. Dacorogna, Introduction au Calcul des Variations, Press Poly-

techiques et Universitaires Romandes, 1992.
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valued Solutions to Evolutionary PDEs, Applied Mathematics and

Mathematical Computation, 13, Chapman and Hall, London,

1996.

[12] T. Slawig, Distributed control for a class of non-Newtonian fluids, J.

Differential Equations, 219, pp. 116–143, 2005.
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