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Abstract— We present a general approach to prove existence
of solutions for optimal control problems not based on typical
convexity conditions which quite often are very hard, if not
impossible, to check. By taking advantage of several relaxations
of the problem, we isolate an assumption which guarantees the
existence of solutions of the original optimal control problem.
Showing the validity of this crucial hypothesis through various
means and in various contexts is the main goal of this contri-
bution. In each such situation, we end up with some existence
result. In particular, we would like to stress a general result
that takes advantage of the particular structure of both the cost
functional and the state equation. One main motivation for our
work here comes from a model for guidance and control of
ocean vehicles. Some explicit existence results and comparison
examples are given.

I. INTRODUCTION

This paper focuses on the analysis of optimal control
problems of the general form

S

T
(Py) Minimize in u : /O D cila®)gi(u(t)]dt (1)

i=1
subject to
#(t) = Qi(x(t)di(u(t) in (0,T), 2
i=1
2(0) = zo € RV, 3)
and
uwe L>(0,T), u(t)eK, “)

where K C R™ is compact. The state = : (0,7) — R

takes values in R". The mappings
¢: RV >R, ¢,:R"—>R, Q;:R"Y—-RV

as well as the restriction set X C R™ will play a fun-
damental role. We assume, at this initial stage, that ¢; are
continuous, ¢; are of class C', and each Q; is Lipschitz so
that the state system is well-posed.

In such a general form, we cannot apply results for not-
necessarily convex problems like the ones in [1], [14] or [17].
Besides, techniques based on Bauer’ Maximum Principle are
quite difficult to extend to our general setting because it is
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hard to analyze the concavity of the cost functional when the
dependence on both state and control comes in product form.
Also the Rockafellar’s variational reformulation introduced
in [15], and well-described in [2], [5] or recently in [13],
looks as if it cannot avoid assuming a separate dependence
on the state and control variables, since this is the main
structural restriction on the variational problem for which
the existence of solution has been so far ensured ([3]).

Concerning the classical Filippov-Roxin theory introduced
in [6] and [18], it is not easy at all to know if typical
convexity assumptions hold, or when they may hold, as
we can see from the examples and counter-examples in
[2]. When analyzing explicit examples, one realizes such
difficulties coming from the need of a deep understanding of
typical orientor fields. The same troubles would arise when
applying refinements of this result as the ones in [10] and
[11].

Our aim is to provide hypotheses on the different ingre-
dients of the problem so that existence of solutions can be
achieved through an independent road. Actually, it is not
easy to claim whether our results improve on classical or
more recent general results. They provide an alternative tool
which can be more easily used in practice than such results
when one faces an optimal control problem under the special
structure we consider here. As a matter of fact, convexity
will also occur in our statements but in an unexpected and
non-standard way.

Before stating our main general result, a bit of notation is
convenient. We will write

CZRN—>RS, (ban—>Rs, QZRN—>RNS, (5)

with components ¢;, ¢;, and @Q);, respectively. Consider also
a new ingredient of the problem related to ¢. Suppose that
there is a C! mapping

U:R°* >R, U= (¢1,..,0s_n),

so that ¢(K) C {¥ = 0}. This is simply saying, in a rough
way, that the embedded (parametrized) manifold ¢(K) of
R? is part of the manifold defined implicitly by ¥ = 0.
In practical terms, it suffices to check that the composition
U(p(u)) =0 for u € K.

For a pair (¢, @), put

N, Q) ={veR’:Qu=0,cv <0}. (7

(s>mn), (6

Similarly, set

N(K,¢) = ®)
{veR’: VI(¢d(u))v =0V I, Vih(d(u))v > 0,Vu € K}



Our main general result is the following.

Theorem 1.1: Assume that the mapping ¥ as above is
strictly convex (componentwise) and C*. If for each x € RV,
we have

N(e(z),Q(x)) € N(K, ), ©)

then the corresponding optimal control problem (P;) admits
at least one optimal solution.

A particular, yet still under some generality, situation
where this result can be implemented is the case of polyno-
mial dependence where the ¢;’s are polynomials of various
degrees. The main structural assumption, in addition to the
one coming from the set K, is concerned with the convexity
of the corresponding mapping V.

Suppose we take ¢;(u) = wu;, for i = 1,2,...,n, and
dnti(u),i=1,2,..., s—n, convex polynomials of whatever
degree, or simply polynomials whose restriction to K is
convex. In particular, K itself is supposed to be convex. Then
we can take

U, (v) = pti(V) — Untis

1=1,2,...,58 —n,

(10)
U= (Vi)i=1,2,..n-
In this case, it is clear that

U(p(u)) =0 for u € K,

by construction, and, in addition, ¥ is smooth and convex.
The important constraint (9) can also be analyzed in more
concrete terms, if we specify in a better way the structure of
the problem.

As an illustration of the use of Theorem 1.1 above, though
more general results are possible, we will concentrate on an
optimal control problem of the type

(P) Minimize in w :

n

T n
/0 [Zci(x(t»ui(t)+ch+i(m(t>)u?<t>] dt (11

=1

subject to

o'(t) = Qo(x(t) + Qu(x()u(t) + Q2(z(H)u(t) (12)
in (0,7),
z(0) =z € R", and u(t) € K C R™. (13)

We are taking here N = n. Q1 and ()2 are n X n matrices
that, together with the vector )y, comply with appropriate
technical hypotheses so that the state law is a well-posed
problem. Set

Q= (@1 @2,

where ()7 is a non-singular n X n matrix, and ¢; € R". In
addition, we put

D(z) =—(Q1)'Q2, E(@)=ciD+cz,  (15)
U(m,x) :2Zmiei®eiD—id, m=¢(u), (16)

c=(a @), (14)

where the e;’s stand for the vectors of the canonical basis of
R", and id is the identity matrix of size n X n.

Theorem 1.2: Suppose that for the ingredients (¢, Q, K)
of (P), we have

1) the matrix U is always non-singular for v € K, and

z € R";
2) for such pairs (u,z), we always have U"TE < 0,
componentwise.
Then the corresponding optimal control problem admits
optimal solutions.

Our strategy to prove these results is not new as it is based
on the well-established philosophy of relying on relaxed
versions of the original problem, and then, under suitable
assumptions, prove that there are solutions of the relaxed
problem which are indeed solutions of the original one ([4],
[8], [19] and [20]). From this perspective, it is a very good
example of the power of relaxed versions in optimization
problems.

The relaxed version of the problem that we will be using
is formulated in terms of Young measures associated with se-
quences of admissible controls. These so-called parametrized
measures where introduced by L. C. Young ([20]), and have
been extensively used in Calculus of Variations and Optimal
Control Theory ( see for example [11], [12] and [16]).
Because of the special structure of the dependence on u,
we will be concerned with (generalized) “moments” of such
probability measures. Namely, the set

L={meR’:m;=0¢;u),l1<i<s,uec K}, (17)

and the space of moments A given by
{m ER:m,; = / Gi(N) du(N),1<i<s e P(K)} (18)
K

will play a fundamental role. Here P(K) is the convex set of
all probability measures supported in K. Since the mapping

Mipe PR) = A M) = [ 600 du()

is linear, we easily conclude that A is a convex set of vectors,
and, in addition, that the set of its extreme points is contained
in L. In fact, for some particular ¢;’s of polynomial type, the
set of the extreme points of A is precisely L. This is closely
related to the classical moment problem ( [9]).

A crucial fact in our strategy is the following.

Assumption 1.1: For each fixed x € RY, and ¢ €
Q(z)A C RY, the minimum

min {e(x) - m: § = Q(a)m}

is only attained in L.

Under this assumption, and the other technical require-
ments indicated at the beginning, one can show a general
existence theorem of optimal solutions for our problem.

Theorem 1.3: Under Assumption 1.1 and the additional
well-posedness hypotheses on (¢, Q) indicated above, the
initial optimal control problem (P;) admits a solution.

Notice that we are not assuming any convexity on the set
K in this statement. The proof of this theorem can be found
in Section II. As remarked before, the proof is more-or-less
standard, and it involves the use of an appropriate relaxed



formulation of the problem in terms of moments of Young
measures ([11], [16]).

Condition (9) in Theorem 1.1 is nothing but a sufficient
condition to ensure Assumption 1.1 in a more explicit way.
Ideally, one would like to provide explicit results saying that
for a certain set M, Assumption 1.1 holds if for each = €
RY, (c(z),Q(x)) € M. In fact, by looking at it from the
point of view of duality, one can write a general statement
whose proof is a standard exercise.

Proposition 1.1: If for every z € RY, (¢,Q) =
(e(z),Q(x)) are such that for every n € RY there is a
unique m(n) € L solution of the problem

Minimize in m € L: (¢4 nQ)m (19)

then Assumption 1.1 holds.

One then says that (c,Q) € M if this pair verifies the
condition on this proposition. A full analysis of this set M
turns out to depend dramatically on the ingredients of the
problem. In particular, we will treat the cases n = N =1,
and the typical situation of algebraic moments of degree 2
and 3 in Section III, Section IV, and Section V, respectively.

Situations where either N > 1 or n > 1 are much harder
to deal with, specially because existence results are more
demanding on the structure of the underlying problem. In
particular, we need a convexity assumption on how the non-
linear dependence on controls occurs. We found that (9)
turns out to be a general sufficient condition for the validity
of Assumption 1.1, thus permitting to prove Theorem 1.1
based on Theorem 1.3. Theorem 1.2 follows then directly
from Theorem 1.1 after some algebra. This can be found in
Section VI.

Finally, we would like to point out that one particular
interesting example, from the point of view of applications,
that adapts to our results comes from the control of under-
water vehicles (submarines). See [7]. This served as a clear
motivation for our work. We plan to go back to this problem
in the near future.

II. PROOF OF THEOREM 1.3

Consider the following four formulations of the same
underlying optimal control problem.

(Py) The original optimal control problem described above
in (1)-(4).

(Py) The relaxed formulation in terms of Young measures
([11], [12] and [16]) associated with sequences of admissible
controls:

Minimize in g = {ftt }e(o,7) :
T
T = [ 3D ealol)o ) du)
subject to

20 = [ ¥ Q) du)

and supp(u;) C K, x(0) = zo € RY. (P;) The above
relaxed formulation (P;) rewritten by taking advantage of the

moment structure of the cost density and the state equation.
If we put ¢ = (c1,...,¢s) € R®, Q € My« and m such that

m; = / gbl()\) dﬂt(/\) Vi € {1,...,8},
K

then we pretend to
T
Minimize in m € A : / c(z(t)) - m(t) dt
0

subject to

' (t) = Qx(t))m(t),

(Py) Variational reformulation of formulation (P3) ([2], [13],
[15]). This amounts to defining an appropriate density by
setting

2(0) = xo.

plr,€) = min{e(z) -m :€ = Q(x)m}.

Then we would like to
T
Minimize in z(t) : / o(x(t), 2/ (t)) dt
0

subject to z(t) being Lipschitz in (0,7") and z(0) = xo.

We know that the three versions of the problem (P),
(Ps), and (P,) admit optimal solutions because they are
relaxations of the original problem (P;). In fact, since K
is compact, (P,) is a particular case of the relaxed problems
studied in [11] and [16]. The existence of solution for the
linear optimal control problem (P3) is part of the classical
theory ([2]). Indeed, (Ps) is nothing but (P») rewritten in
terms of moments, so that the equivalence is immediate.
(Py) is the reformulated problem introduced in [15] whose
equivalence to (Ps) was largely explored in [2] and [13].

Let & be one such solution of (P;). By Assumption 1.1
applied to a. e. t € (0,T), we have

p(E(t), (1) =
F(t) = QE(1)m(1)} = c(&(t))-m(t)

for a measurable m(t) € L, a solution of (Ps) (see [13]).
The fundamental fact here (through Assumption 1.1) is that
m(t) € L for a.e. t € (0,7T), and this in turn implies that
m(t) is the vector of moments of an optimal Dirac-type
Young measure i = {fi}ieo,r) = {a) teeo,r) for an
admissible @ for (P;). This admissible control @ is optimal
for (P1). This finishes the proof.

From now on, we focus on furnishing conditions which in
various contexts guarantee that Assumption 1.1 is fulfilled
so that, whenever that is the case, through Theorem 1.3, we
will have an existence result.

min{e(F(1)) m(®) :

III. POLYNOMIAL DEPENDENCE. THECASEN =n=1,p=2

Until Section VII, we concentrate in the situation where
¢:R" — R*

is such that ¢;(u) = u;, for i = 1,2,...,n, and ¢,4:(u),
i=1,2,...,8 —n are convex polynomials of some degree



p, or simply polynomials whose restriction to K is convex.
We will consider K itself to be convex.

Our goal is to explore different possibilities to apply
directly Theorem 1.3 by ensuring Assumption 1.1. In other
words, we will search for functions

c:RY - R*, Q:RM —RMs,
such that for every € RY,

(c(x), Q(x)) € M

where M represents the set

{(C,Q) :VE € QA, argglégl\{c-m:{:@m} GL} (20)

During the following three sections we will focus on the
one dimensional case N = n = 1 and use some ideas based
in duality (Proposition 1.1) and in geometric interpretations.

Next we explore various scenarios where Assumption 1.1
can be derived, and defer explicit examples until Section VI.
In particular, we consider in this section the situation where ¢
is given by ¢(a) = (a,a?). We are talking about polynomial
components of degree less than or equal to p = 2.

Let K = [a1,as], L, and A as in (17)-(18). Here, we have
s =2 and

¢c:R—R? @Q:R—R?

can be identified with vectors in R2, or more precisely, with
plane curves parametrized by x. To emphasize that function
(@ is not a matrix-valued but vector-valued, we will call it q.
We illustrate this situation in Figure 1.

(a2)? 7
///
/
1
_t
-
(a)? A
L
ay az
Fig. 1. A = co(L) for p =2

Next we describe sufficient conditions for (c¢(x),q(z)) €
M.

Lemma 3.1: Let K, L and ¢ be as above. For every = €
R, let ¢ = g(z) and ¢ = ¢(x) be vectors such that one of
the following conditions is verified

) ¢1+ g2(a1 +a2) =0 and
C1 C2
det 0;
¢ (Q1 Q2> 7
2) q1 + q2(a1 + a2) # 0 and

(Q1 + qg(al + ag))det (Cl 02> < 0.
q1 Qg2

Then (¢,q) € M, and consequently Assumption 1.1 is
verified.

Proof: Suppose there is 1 such that the minimum of
(c+mnq)-m is attained in more than one point of L = ¢(K).
This means that the real function

g(t) = (c+nq) - ¢(t) = (c1 +nar)t + (c2 + na2)t

has more than one minimum point over K. For that to
happen, either g is constant on ¢, i. e.,

=0
=0 ()2
ca+1ng =0 qQ g2

which contradicts our hypothesis; or else we must have

a; +a
c2+ngq2 <0, g’ (122> =0.

This condition can be written as
c1 + (a1 4+ az)ea + gy + (a1 + az)ge] = 0.

If g1 + g2(a1 +a2) =0, but ¢1 + (a1 + az)ca # 0 (condition
1. in statement of lemma), then this equation can never be
fulfilled. Otherwise, there is a unique value for 7, by solving
this equation, which should also verify the condition on the
sign of co 4+ nge. It is elementary, after going through the
algebra, that the condition on this sign cannot be true under
the second condition on the statement of the lemma. |

IV. THECASEN =n=1,p=3

We study the case where ¢(a) = (a,a?,a®), s = 3, and
c and g can be identified as vectors in R3. This situation is
represented in Figure 2. The understanding of the set A and
its sections by planes in R? is much more subtle however.

Fig. 2.

A=co(L)forp=3

To repeat the procedure used for p = 2, and apply
Proposition 1.1, we would like to give sufficient conditions
for the function

g(t) = (c+mnq) - o(t) =
= (c1 + gt + (c2 + n@)t” + (cs + ngz)t®  (21)

to have a single minimum over K = [ay, ag] for every 7. As
indicated, and after some reflection, a complete analysis of



the situation is rather confusing, and the conditions on the
vectors ¢ and ¢ much more involved.

Searching some type of general condition would focus
on considering the local maximizer and the local minimizer
of g(t), My and M_, respectively, and demanding that the
interval [a1, az] have an empty intersection with the interval
determined by M, and M_. But this would lead to rather
complicated expressions. Even so, some times under more
specific hypotheses on the form of the vectors ¢ and ¢, these
conditions can be exploited.

Remark 4.1: Notice that the relation

ext(A) =L

is not true for a general K if it has positive and negative
values. However, it is true if we consider a1 > 0 or as < 0.
Lemma 4.1: Let K = [a1,az2] with a3 > 0 and

(c;q) = ((0,¢c2,¢3), (0, g2, g3))
such that

—qj <0, (62,03)'(17—%)<0.

a3 a3
Then the assumptions of Proposition 1.1 are valid, and
consequently so is Assumption 1.1.
The proof is short and based in basic calculus ideas relative
to the exact localization of M and M_. We should skip it
for the sake of brevity.

V. A GEOMETRIC APPROACH TO THE CASEN =n =1,p = 3.

Besides using Proposition 1.1, we can try to propose a
general criteria for obtaining Assumption 1.1, based on a
geometric approach.

We define the set M of pairs (c,q) € R® x R3 through
the following requirements:

« the quantity

(&'(t) x (¢ x ) - (6(s) — (1))

does not change sign over the pairs t,s € K, s # t;
» whenever there is a unique a € K = [ay, az] such that

(¢(a1) + d(az) — 2¢(a)) - ¢ =0, (22)

then
(¢(a1) + ¢(a2) —2¢(a)) - ¢ > 0.

Hence we can establish the following result.

Proposition 5.1: Let M be as in (20).

If ay > 0, and (¢,q) € My, then (¢,q) € M and
Assumption 1.1 holds.

This type of result can be also deduced for the case
N =n =1, p =2 where it can be seen to be equivalent to
the conditions in Lemma 3.1. However, when the parameters
N, n and p increase their values, it becomes very hard
to give geometrically-based sufficient conditions in such an
exhaustive manner as we have done here. Therefore, we skip
the proof and we refer to Section VI where we show how to
give more adequate sufficient conditions for interesting high
dimensional particular situations, where some geometrical

ideas can be used as a way to verify Assumption 1.1. Before
going further to higher dimensional situations we illustrate
how to apply these results for N = n = 1 with a simple
example where Lemma 4.1 can be applied. Consider the
problem of minimizing in u

T -
A[dawm%w+wanm
under

@' (t) = lg(a(®)]u?(t) +u°(t),

where u(t) € [ag,a1], ap > 0.
Lemma 5.1: If the functions ¢(x) and c(x) are Lipschitz,

c(x) < q(z) Ve,

and g(x) is always positive, then the optimal control problem
admits solutions.

This result comes directly by applying Lemma 4.1 and
Theorem 1.3. Nevertheless, note that checking the convexity
of the set A, defined by

z(0) = zo

{(&,0) v > c(x)u?+u?, € = q(z)u’+u®,u € K = [ag, a1]}
as asked in classical theory can be very difficult.

VI. THECASE N, n > 1

The previous analysis makes it very clear that checking
Assumption 1.1 may be a very hard task as soon as n and/or
N become greater than 1. Yet in this section we would like to
show that there are chances to prove some non-trivial results.

The three main ingredients in Assumption 1.1 are:

o the vector ¢ € R? in the cost functional;
o the matrix QQ € MY ** occurring in the state equation;
o the convexification A of the set of moments L.

For (¢, Q) given, consider the set (¢, @) as it was defined
in (7). Let ¥ be as in (6) and such that V¥ (m) is a rank s—n
matrix and L can be seen as the embedded (parametrized)
manifold of R® in the manifold defined implicitly by ¥ = 0.
This means that ¥(¢(u)) =0 for all u € K.

Consider also the set of vectors N (K, ¢) described in (8),
that is, the set of “ascent” directions for ¥ at points of L.

We are now in a good condition to prove Theorem 1.1.

Proof: The proof is rather straightforward. Firstly, note
that due to the convexity assumption on W, and the fact that
L c {¥ =0}, we have A C {¥ < 0}.

Suppose that mg € L and m; € A, so that ¥(mg) = 0,

\Il(ml) <0, emy < cmy, and le = Qm() (: g)

Then it is obvious that m = my; — mg € N(c, Q). Because
of our assumption, m € N (K, ¢). We have two possibilities:

1) VU(mg)m = 0. Because of the convexity of each
component of ¥, we have

U(my) — U(mg) — V¥ (mp)m > 0.

But then
0= W(mo) < W(my) <0,



so that m; € L. Because of the strict convexity of
each component of ¥, this means that m; = mg, and
Assumption 1.1 holds.

2) Vpi(mg)m > 0 for some i. Once again we have

Yi(m1) — i(mo) — Vipi(mo)m > 0.

But this is impossible because t;(m;) > 0 cannot
happen for a vector in A.
|
Remark 6.1: Notice that if in the original problem (P;)
we would have considered the dynamics given by

Q(x)p(u) + Qo(x)

instead of just Q(x), Assumption 1.1 and Theorem 1.1 could
be written exactly in the same way.

Though Theorem 1.1 can be applied to more general cases,
we will focus on a particular situation motivated by the
control of underwater vehicles ([7]). We will briefly describe
the structure of the state equation. Indeed, it is just

'(t) = Qu(z)d(u) + Qo()

where the state z € R!? incorporates the position and
orientation in body and world coordinates, and the control
u € R accounts for guidance and propulsion. Under
suitable simplifying assumptions ([7]), the components of the
control vector u only occur as either linear or pure squares,
in such a way that ¢(u) = (u,u?) € R, and u? = (u?),,
componentwise. ()1 and (o are matrices which may have
essentially any kind of dependence on the state x.

To cover this sort of situations just described, we will
concentrate on the optimal control problem (P) already
stated in (11)-(13), and set D, E and U as in (14)-(15).

We can now prove Theorem 1.2.

Proof:

Notice that accordingly to (10), since s = 2n, we have,

for m € R?,

Yi(m) =mi —mpi, i=1,2,...,n,

which are certainly smooth and (strictly) convex. Moreover,
VU (m) = (2m —id)
where
m = 2Zmzez ®€i7
i
and e; is the canonical basis of R"™.
Suppose we have, for a vector v € R?", v = (v, v2), that
Qu =0,
A more explicit way of writing this is

Q1v1 + Q2v2 =0,

cv < 0.

c1v1 + cove < 0.

So

v = l)’l)g7 EU2 S 0.

We have to check that such a vector v is not a direction of
descent for every function ;, or it is an ascent direction for
at least one of them. Note that

VU (m)v =Uve, FEvy <0.

It is an elementary Linear Algebra exercise to check that
if U"TE < 0, then condition (9) is verified so that Theo-
rem 1.1 can be applied. [ ]
By using similar ideas, more general situations can be
treated. In a forthcoming work, we will see how to apply
Theorem 1.1 to an optimal control problem modeling an
underwater vehicle maneuvering, in a situation where the
state variable lies in R'? while the control belongs to R>.
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