Existence results for optimal control problems with general
dependence on state and control

Pablo Pedregal® Jorge Tiago'

Abstract. We present a general approach to prove existence of optimal solutions for optimal
control problems not based on typical convexity conditions which quite often are very hard, if
not impossible, to check. By taking advantage of several relaxations of the problem, we isolate
an assumption which guarantees the existence of solutions of the initial optimal control problem.
To show the validity of this crucial hypothesis through various means and in various contexts
is the main body of this contribution. In each such situation, we end up with some existence
result. In particular, we would like to stress a general result that takes advantage of the
particular structure of both the cost functional and the state equation. One main motivation
for our work here comes from a model for guidance and control of ocean vehicles. Some explicit
existence results and comparison examples are given.
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1 Introduction

This paper focuses on the analysis of optimal control problems of the general form (P)

o . . . T ®
Minimize in w : /0 [zl: ci(z(t))pi(u(t))] dt

subject to

2'(t) = Z Qi(z(t)¢i(u(t) in (0,T), (0) ==z € RY,

and
ue L*0,T), ut) ek,

where K C R™ is compact. The state z : (0,7) — R” takes values in R". The mappings
¢:RV>R, ¢,:R" >R, Q :RY—-RVN

as well as the restriction set K C R™ will play a fundamental role. We assume, at this initial
stage, that ¢; are continuous, ¢; are of class C!, and each Q; is Lipschitz so that the state system
is well-posed.

In such a general form, we cannot apply results for non-necessarily convex problems like the
ones in [2], [5], [23] or [28]. Besides, techniques based on Bauer’ Maximum Principle ([3]) are
quite difficult to extend to our general setting because it is hard to analyse the concavity of the
cost functional when the dependence on both state and control comes in product form. Also
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the Rockafellar’s variational reformulation introduced in [25], and well-described in [6], [11] or
recently in [21] or [22], looks as if it cannot avoid assuming a separated dependence on the
state and control variables, since this is the structure of the variational problem for which the
existence of solution has been so far ensured ([7]).

Concerning the classical Filippov-Roxin theory introduced in [12] and [29], it is not easy at
all to know if typical convexity assumptions hold, or when they may hold, as we can see from
the examples and counter-examples in [6]. We also stress such difficulties while analysing our
examples.

Recently ([8]), an existence result has been shown for minimum time problems where the
typical convexity assumptions over the set valued function on the differential inclusion has been
replaced by more general conditions. In fact, the intersection of this result with the ones we
present here is not empty although, as we will comment, our frame extends to more general
situations.

Our aim is to provide hypotheses on the different ingredients of the problem so that existence
of optimal solutions can be achieved through an independent road. Convexity will also occur
in our statements but in an unexpected and non-standard way.

Before stating our main general result, a bit of notation is convenient. We will write

c: RV >R, ¢:R"—>R°, Q:RY >RV,

with components ¢;, ¢;, and Q);, respectively. Consider also a new ingredient of the problem
related to ¢. Suppose that there is a C! mapping

U:R*—= R, (s>n),

so that ¢(K) C {¥ = 0}. This is simply saying, in a rough way, that the embedded (parametrized)
manifold ¢(K) of R® is part of the manifold defined implicitly by ¥ = 0. In practical terms, it
suffices to check that the composition ¥(¢(u)) =0 for u € K.

For a pair (¢, @), put

N, Q) ={veR’:Qu=0,cv <0}.
Similarly, set
N(K,¢)={veR’: for each u € K, either V¥ (¢(u))v = 0 or there is i with Viy;(¢(u))v > 0}.
Our main general result is the following.

Theorem 1.1. Assume that the mapping ¥ as above is strictly convex (componentwise) and
Cl. If for each x € RN, we have

Ne(z), Q(x)) C N (K, ¢), (1)
then the corresponding optimal control problem (Py) admits at least one optimal solution.

As it stands, this result looks rather abstract, and it is hard to grasp to what extent may
be applied in more specific situations.

A particular, yet still under some generality, situation where this result can be implemented
is the case of polynomial dependence where the ¢;’s are polynomials of various degrees. The
main structural assumption, in addition to the one coming from the set K, is concerned with
the convexity of the corresponding mapping W.

Suppose we take ¢;(u) = u;, for i =1,2,...,n, and then ¢p4;(u), i =1,2,...,s —n, convex
polynomials of whatever degree, or simply polynomials whose restriction to K is convex. In
particular, K itself is supposed to be convex. Then we can take

Ui (v) = onyi(0) = Uy, i=1,2,...,58 = n,0 = (V;)i=1,2,....n-



In this case, it is clear that
U(p(u)) =0 for u € K,

by construction. And, in addition, ¥ is smooth and convex. The important constraint (1)
can also be analyzed in more concrete terms, if we specify in a better way the structure of the
problem.

As an illustration, though more general results are possible, we will concentrate on an
optimal control problem of the type

n

T n
Minimize in u : /0 [Z ci(z(t))ui(t) + Z Cnpi(z(D))u2(t) | dt
=1

i=1
subject to
2(8) = Qola(t) + Q1 (@(t))u(t) + Qa(a(t)w(t) in (0,T), @(0) = o € R,

and u(t) € K C R™. We are taking here N = n. 1 and Q2 are n X n matrices that, together
with the vector g, comply with appropriate technical hypotheses so that the state law is a
well-posed problem. Set

Q=(Q1 Q2), c=(a c),

where Q1 is a non-singular n X n matrix, and ¢; € R”. In addition, we put

D(z) = —(Ql)_ng, E(z)=c1D+cy, U(m,z)=2 Zmiei ®eD—id, m = ¢(u),

(2

where the e;’s stand for the vectors of the canonical basis of R™, and id is the identity matrix
of size n X n.

Theorem 1.2. Suppose that for the ingredients (¢, Q, K) of our optimal control problem above,
we have

1. the matriz U is always non-singular for u € K, and x € R";

2. for such pairs (u,x), we always have UTE <0, componentwise.
Then the optimal control problem admits optimal solutions.

As a more specific example of the kind of existence result that can be obtained through this
approach, we state the following corollary whose proof amounts to going carefully through the
arithmetic involved after Theorem 1.2.

Corollary 1.1. Consider the optimal control problem

T
Minimize in u : / [ (2(8)) (ur (8))%(t) + ca(2(t))uz(t)?] dt
0
under

21 () = ur(t) — ua(t) + qu(@)ur (1) + ua(t)?,
2y (t) = ga(w)un (t) + ua(t) + ui (£) + ua(t)?,
and an initial condition ©(0) = x¢, where u(t) € K = [0,1]?,

L), @ e(=11), a@), @) >0,

and
qi(z) +1 2(q1(x))? + q1(2)(g2(x) + 1) — qa(x) —3,

2 4(q1(z) — 1)
Then there is, at least, one optimal solution of the problem.

ca(z) < ei(x) <

2($)



Our strategy to prove these results is not new as it is based on the well-established philosophy
of relying on relaxed versions of the original problem, and then, under suitable assumptions,
prove that there are solutions of the relaxed problem which are indeed solutions of the original
one ([9], [14], [16], [17], [31] and [32]). From this perspective, it is a very good example of the
power of relaxed versions in optimization problems.

The relaxed version of the problem that we will be using is formulated in terms of Young
measures associated with sequences of admissible controls. These so-called parametrized mea-
sures where introduced by L. C. Young ([32], [33] and [34]), and have been extensively used in
Calculus of Variations and Optimal Control Theory ( see for example [19], [20], [26] and [27]).
Because of the special structure of the dependence on u, we will be concerned with (generalized)
“moments” of such probability measures. Namely, the set

L={UecR’:U;,=¢i(u),1 <i<s,ue K},

and the space of moments

a={verivi= [ama.1<isse pi)

will play a fundamental role. Here P(K) is the convex set of all probability measures supported
in K. Since the mapping

M:peP(K)— A, M(u) = /K 6(\) du()

is linear, we easily conclude that A is a convex set of vectors, and, in addition, that the set of
its extreme points is contained in L. In fact, for some particular ¢;’s of polynomial type, the set
of the extreme points of A is precisely L. We examine and comment on the set A in Section 3.
This is closely related to the classical moment problem ([1], [30] or more recently [10], [18]).

A crucial fact in our strategy is the following.

Assumption 1.1. For each fized x € RN, and £ € Q(z)A C RN, the minimum

min {c(z) -m: £ = Q(z)m}

meA

1s only attained in L.

It is interesting to realize the meaning of this assumption. If we drop the linear constraint
& = @Qm on the above minimum, then the minimum is always attained in a certain point in L
simply because a linear function on a convex set will always take its extreme values on extreme
points of such convex set. However, precisely the presence of the linear constraint & = Qm
makes the hypothesis meaningful as the extreme points of the section of A by such set of linear
constraints may not (indeed most of the time they do not) belong to L, so that the extreme
points of the linear function ¢ - m over such convex section may not attain its minimum on L.
Our main hypothesis establishes that this should be so, and fundamentally, that the minimum
is only attained in L.

Under this assumption, and the other technical requirements indicated at the beginning,
one can show a general existence theorem of optimal solutions for our problem.

Theorem 1.3. Under Assumption 1.1 and the additional well-posedness hypotheses on (¢, Q)
indicated above, the initial optimal control problem admits optimal solutions.

Notice that we are not assuming any convexity on the set K in this statement. The proof of
this theorem can be found in Section 2. As remarked before, the proof is more-or-less standard,
and it involves the use of an appropriate relaxed formulation of the problem in terms of moments
of Young measures ([19], [27]).



Condition 1 in Theorem 1.1 is nothing but a sufficient condition to ensure Assumption 1.1
in a more explicit way. As a matter of fact, all of our efforts are directed towards finding in
various ways more explicit conditions for the validity of this assumption. In this vein, the rest of
the paper focuses on exploring more fully our Assumption 1.1 either through duality, geometric
arguments, or in order to prove Theorem 1.1. Ideally, one would like to provide explicit results
saying that for a certain set M, Assumption 1.1 holds if for each x € RY, (c(x),Q(x)) € M.
In fact, by looking at Assumption 1.1 from the point of view of duality, one can write a general
statement whose proof is a standard exercise.

Proposition 1.1. If for any x € RY, (¢, Q) = (c(z), Q(x)) are such that for every n € RN
there is a unique m(n) € L optimal solution of the problem

Minimize inm e L: (c+nQ)m
then Assumption 1.1 holds.

We briefly comment on this in Section 3. One then says that (¢, Q) € M if this pair verifies
the condition on this proposition. A full analysis of this set M turns out to depend dramatically
on the ingredients of the problem. In particular, we will treat the cases n = N = 1, and the
typical situation of algebraic moments of degree 2 and 3 in Section 4, Section 5, and Section 6.
In Section 7 we apply our results to a few explicit examples and compare it with the application
of the classical Filippov-Roxin theory.

Situations where either N > 1 or n > 1 are much harder to deal with, specially because
existence results are more demanding on the structure of the underlying problem. In particular,
we need a convexity assumption on how the non-linear dependence on controls occurs. We
found that (1) turns out to be a general sufficient condition for the validity of Assumption 1.1,
thus permitting to prove Theorem 1.1 based on Theorem 1.3. Both Theorem 1.2, and Corollary
1.1 follow then directly from Theorem 1.1 after some algebra. This can be found in Section 8.

Finally, we would like to point out that one particular interesting example, from the point
of view of applications, that adapts to our results comes from the control of underwater vehicles
(submarines). See [4], [13], and [15]. This served as a clear motivation for our work, and plan
to go back to this problem in the near future.

2 Proof of Theorem 1.3

Consider the following four formulations of the same underlying optimal control problem.
(Py) The original optimal control problem as described above.

(P2) The relaxed formulation in terms of Young measures ([19], [20], [26], [27]) associated with
sequences of admissible controls:

B T
Minimize in = (b s 100 = [ ([ 3Dt di(n]a

subject to

20 = [ 30 Qual)(N) diu()

and
supp(ue) € K, x(0) =29 € RV,



(P3) The above relaxed formulation (P») rewritten by taking advantage of the moment structure
of the cost density and the state equation. If we put ¢ = (¢q,...,¢s) € R®, Q € My« and
m such that

m; = / di(N) due(N) Vi € {1, ..., s},
K

then we pretend to
T
Minimize in m € A = co(L) : / c(z(t)) -m(t) dt
0

subject to

(1) = Qz(t))m(t), x(0) = =o.

(Py) Variational reformulation of formulation (Ps) ([6], [21], [22], [25]). This amounts to defining
an appropriate density by setting

pl2,€) = minfe(z) - m : € = Q(x)m}.

Then we would like to
T
Minimize in z(t) : / o(x(t), 2 (t)) dt
0

subject to z(t) being Lipschitz in (0,7) and z(0) = xo.

We know that the three versions of the problem (), (Ps), and (Py) admit optimal solutions
because they are relaxations of the original problem (P;). In fact, since K is compact, (P»)
is a particular case of the relaxed problems studied in [19] and [27]. The existence of solution
for the linear optimal control problem (P3) is part of the classical theory ([6]). Indeed, (P3) is
nothing but (P;) rewritten in terms of moments, so that the equivalence is immediate. (Py) is
the reformulated problem introduced in [25] whose equivalence to (P3) was largely explored in
[6] and [21], [22].

Let & be one such optimal solution of (P4). By Assumption 1.1 applied to a. e. ¢t € (0,7,
we have

P(E(t), # (1)) = min{e(@(®) -m(t) : #(t) = QEE)m(t)} = (& (t)) - ()

meA

for a measurable m(t) € L, optimal solution of (P3) (see [21]). The fundamental fact here
(through Assumption 1.1) is that m(t) € L for a.e. ¢ € (0,7, and this in turn implies that m(t)
is the vector of moments of an optimal Dirac-type Young measure p = {11t }1e(0,7) = {0a@) }ee(0,1)
for an admissible @ for (Py). This vector of admissible control @ is optimal for (P;). This finishes
the proof.

3 The set A and duality

The moment set A deserves some comments before proceeding further. Consider the mapping
¢ : R" — R? given by
¢(a) = (¢1(a), ... ¢s(a)),
and put
L=6(K) = {6(a) : acK}.
We can regard L as an embedded n-manifold in R®, s > n, and ¢ its standard or canonical

parametrization. The moment set A is the convex hull of this manifold which can also be
identified as

A:{mERS:mZ-:/Kqﬁi()\)d,u()\), uEP(K)}:{m:<¢,u>: we P(K)},

6



where P(K) is the set of all probability measures supported in K.
The most important fact about A that one may need in our analysis is stated in the next
proposition.

Proposition 3.1. The set of extreme points of A is contained in L.

Proof. First notice that, as it was shown in [18] in a context similar to ours, the compactness
of K implies B
co(p(K)) = co(¢(K)) = co(L) = A = A.

The fact of K being bounded plays an important role because otherwise A can be shown to be
not necessarily closed ([10]).
Since A = co(L) then it is known from convex analysis ([24]) that

ext(A) C L.
U

Remark 3.1. For some ¢’s it is possible to conclude that ext(A) = L. This is the case, for
example when ¢ contains all the linear and quadratic terms of a n-variable polynomial. However
this is not essential in what follows.

Due to this result the proof of Proposition 1.1 is standard (see [24]), so that we shall only
make a few remarks.
Since

extA C co(L)

which is a compact set, the minimum of

(c+nQ)m

in A is always attained at least in one point of L (it can be attained also in points of A\ L).
However, if this point happens to be unique, because of Proposition 3.1, it is also immediate to
check that it must be the unique minimizer in A.

The condition of Proposition 1.1 means that

min(c +n@)m = min(c +nQ)m = (¢ +1Q)é(a)

for a single a € K, which also verifies
min(c + nQ)m — n§ = (¢ + nQ)¢(a) — ng
meA

for £ such that Assumption 1.1 is non empty.
In particular the associated Karush-Kuhn-Tucker vector 7 verifies (see [24])

¢+ 9(a) +1(Qé(a) ~ §) = minfe-m: Qm=¢} = c-4(a)

for a single a € K complying with Q¢(a) = £. As a consequence, for all admissible m € A
different from ¢(a), we have
c-m>c-p(a).



4 Polynomial Dependence. The case N =n =1, p=2

Until Section 8, we concentrate in the situation where
¢:R" — R?

is such that ¢;(u) = u;, fori =1,2,...,n, and ¢p4i(u), i = 1,2,...,s—n are convex polynomials
of some degree p, or simply polynomials whose restriction to K is convex. We will consider K
itself to be convex.

Our goal is to explore different possibilities to apply directly Theorem 1.3 by ensuring
Assumption 1.1. In other words, we will search for functions

¢c:RY - R*, Q:RN - RYs,

such that for every z € RV,
(c(z),Q(z)) € M
where

M = {(C,Q): V& e QA, argmei%{c-mzszm}eL}

During the following three sections we will focus on the one dimensional case N =n = 1 and
use some ideas based in duality (Proposition 1.1) and in geometric interpretations.

In Sections 4, 5, and 6, we explore various scenarios where Assumption 1.1 can be derived,
and defer explicit examples until Section 7. In particular, we consider in this section the situation
where ¢ is given by ¢(a) = (a,a?). We are talking about polynomial components of degree less
or equal than p = 2.

Let K = [a1,az2], L = ¢(K), and A = co(L). Here, we have s = 2 and

c:R—R?’ Q:R—R?

can be identified with vectors in R?, or more precisely, with plane curves parametrized by z.
To emphasize that function @ is not a matrix-valued but vector-valued, we will call it q.

ay ag

Figure 1: A = co(L) for p =2

Next we describe sufficient conditions for (¢(x),q(x)) € M.

Lemma 4.1. Let K, L and ¢ be as above. For every x € R, let ¢ = q(x) and ¢ = c(x) be
vectors such that one of the following conditions is verified

C1 C2
det 0;
¢ (fh QZ> 7

1. ¢1 + q2(a1 +a2) =0 and



2. g1+ q(a1 + a2) # 0 and

(@1 + @2(a1 + a2))det <Cl 02) < 0.
q1 Q2

Then (c,q) € M, and consequently Assumption 1.1 is verified.

Proof. Suppose there is 1 such that the minimum of (¢ 4+ nq) - m is attained in more than one
point of L = ¢(K). This means that the real function

g(t) = (c+nq) - $(t) = (c1 +naq1)t + (c2 + 1g2)t?

has more than one minimum point over K. For that to happen, either ¢ is constant on ¢, i. e.,

c =0
1+ nq o det <C1 62> — 0,
c2+ng =0 a1 q2
which contradicts our hypothesis; or else we must have

ot g <0, ¢ (‘”;‘”) —0.

This condition can be written as
c1 + (a1 + az)ca +nlq1 + (a1 + az2)ge] = 0.

If 1 + q2(a1 + a2) = 0, but ¢1 + (a1 + az)c2 # 0 (condition 1. in statement of lemma), then
this equation can never be fulfilled. Otherwise, there is a unique value for 7, by solving this
equation, which should also verify the condition on the sign of cs 4+ nge. It is elementary, after
going through the algebra, that the condition on this sign cannot be true under the second
condition on the statement of the lemma. O

5 Thecase N=n=1,p=3

We study the case where ¢(a) = (a,a?,a®), s = 3, and ¢ and ¢ can be identified as vectors
in R3. The understanding of the set A and its sections by planes in R? is much more subtle

however.

Figure 2: A = co(L) for p=3

To repeat the procedure used for p = 2, and apply Proposition 1.1, we would like to give
sufficient conditions for the function

g(t) = (c+nq) - ¢(t) = (c1 +nq1)t + (c2 + ng2)t* + (c3 + ng3)t> (2)



to have a single minimum over K = [ay, ag] for every 7. As indicated, and after some reflection,
a complete analysis of the situation is rather confusing and the conditions on the vectors ¢ and
¢ much more involved. To illustrate this, we give a sufficient condition in the following form.

Lemma 5.1. For all x € R, let ¢ = c(x) and q = q(x) be vectors in R? such that

3 —3q1q3 <0, (2c2q2 — 3c1qs — 3ques)® — 4(c3 — eres) (@5 — 3qugs) <0,
then (c,q) € M, and Assumption 1.1 is verified.

Proof. The proof consists in the realization that the conditions on the vectors ¢ and ¢ ensure
that the cubic polynomial (2) is monotone in all of R (avoiding degenerate situations), and thus
it can only attain the minimum in a single point of any finite interval. Notice that this condition
is independent of the interval. In fact, we have to discard the possibility for the derivative of the
polynomial g(t) to have roots. This amounts to the negativity of the corresponding discriminant.
And this, in turn, is a quadratic expression in n that ought to be always negative. This occurs
when that parabola has a negative discriminant, and the leading coefficient is also negative.
These two conditions are exactly the ones in the statement of this lemma. O

A more general condition would focus on considering the local maximizer and the local
minimizer of g(t), M4 and M_, respectively, and demanding that the interval [a;, as] have an
empty intersection with the interval determined by M, and M_. But this would lead to rather
complicated expressions. Even so, some times under more specific hypotheses on the form of
the vectors ¢ and ¢, these conditions can be exploited.

Remark 5.1. Notice that the relation
exth = ¢(K) =L

is not true for a general K if it has positive and negative values. However, it is true if we
consider ap > 0 or ag < 0.

Lemma 5.2. Let K = [a1,a2] with ay > 0 and

(C7 q) = ((07 C2, 03)7 (07 q2, CI3))
such that

2 0 (epe3)- (1, - )

q3 q3
Then the assumptions of Proposition 1.1 are valid, and consequently so is Assumption 1.1.

< 0.

Proof. In this situation, the maximizer M, referred to above is given by

—(c2 +nq2) — |e2 + 1ga|

M+:

3(cs +ngs)
If g2 > 0, then g3 > 0, and we have
@2 .8
q2 q3

. c c:
Hence if n €] — oo, = 2]\ {2

—(c2 +1g2) + c2 +1g2

M — = 0.
- 3(c3 +nq3)
Ifn > —;—;,
M. () = —(c2 +1g2) = (c2+1mg2) _ —2(c2 + ng2) <0
3(c2 + ng2) 3(c3 +nq3)

10



In any case M (n) <0, thus a; > M.

Also if n = —Z—g,
q2
9(t) = (c2 + ng2)t? = (c2,¢3) - (1, —g)#
which has a unique minimum in K since we have assumed a; > 0. We conclude that the
condition of Proposition 1.1 is verified. ]

In a very similar way we can prove the following.

Lemma 5.3. Let K = [a,a3] with ay < 0 and

(e,q) = ((0,¢2,¢3),(0,q2,93))

such that

—qj > 0, (02763) . (1, —@) < 0.

q3 q3
Then (c,q) € M and consequently Assumption 1.1 is valid.

6 A geometric approach to the case N =n=1, p = 3.

As we have seen, the use of Proposition 1.1 is simpler only when restricted to some particular
classes of examples. Thus we propose a general criteria for obtaining Assumption 1.1, based on
a geometric approach.

We first give a result that generalizes the strictly convexity of a ¢-parametrized plane curve
for a 3-dimensional one.

Lemma 6.1. Let K = [a1,az] with ay > 0, ¢(t) = (¢,t2,t3), and L the curve parametrized by
¢ fortin K.

1. Given t in K, then for all s € K such that s # t we have
(¢(s) = ¢(t)) - N(t) >0
where N(t) is the normal vector to ¢ at t.
2. For everyt € K, v e A= co(L)\{¢(t)}, we have

(v—¢(t)) - N(t) > 0.

Proof. To check the first part of the statement notice that since

¢'(t) = (1,2t,3t%)
and

¢"(t) = (0,2, 6t)
we have that the normal vector, colinear to ¢'(t) x ¢"(t), is given by

N(t) = ¢;(=9t* — 2t,1 — 9t*, 6t + 3¢)
where ¢; > 0 is a normalizing constant. Setting
Ny =—9t3—2t, Ny=1-9t", N3=6t3+3t,

we find that the solution s of

(¢(s) — ¢(t)) - N(t) = 0

11



also verifies
N3s3 + Nys® + Nys — N - ¢(t) = 0,

which is equivalent to
(8 — t)Q(Ngs + Ny + 2tN3) = 0.
This means that
No 3t 4612 +1

AL, P
TN, 613 + 3t

is the only solution different from ¢, but also that it is negative for all ¢ > 0, and consequently
that it should be excluded. Once we assumed K C R™T and s # t the conclusion is immediate.

By using the previous discussion, proving the second part of the statement is trivial once
we notice that both m and ¢(t) can be rewritten as

4 4
Z a;¢(s;) and Z a;o(t)
i=1 i=1
respectively, where s; € K and Z?Zl a; = 1.

Another useful lemma.
Lemma 6.2. If g and ¢ are such that
(¢'(t) x (¢ x q)) - (6(s) — $(t))
does not change sign fort,s € K, s #1t, then if v € A, v # ¢(t), and q- (v — ¢(t)) = 0 we have
¢ (0= 6(t) £0.

This means that the linear function ¢ cannot take the same value over ¢(t) and any v # ¢(t)
in the plane section

{fver: go=q (1)}
Proof. Notice that for v € A,

4 4
(60 % (e a) - (0= 0(0) = (&(8) x (e x @)+ (Y wdlss) = 3 auo(t)

4

= S ail@ () x (¢ x 9)) - (és5) — 6(t) > 0( or < 0),

=1

so that the condition stated is also verified for any v € A.
Suppose now that v € A verifies ¢ - (v — ¢(t)) = 0 for given ¢t € K with v # ¢(t) and is such
that ¢- (v — ¢(t)) = 0, then

(@'(t) x (cxq))-(v=0(t) = [(¢'(t) g)c— () gl (v—o(t))
= (¢'(t) - q)c- (v=0(t) = (¢(t) - ) (v — (1)) =0,

a contradiction concerning the argument above. O

We now define the set M of pairs (¢, q) € R3 x R? through the following requirements:

e the quantity
(@'(t) x (¢ x q)) - (¢(s) — &(t))

does not change sign over the pairs t,s € K, s # t;

12



e whenever there is a unique a € K = [ay, az] such that

(#(a1) + d(az) —2¢(a)) - ¢ =0,

then
(¢(a1) + ¢(az) — 2¢(a)) - ¢ > 0.

Once more we can establish the following result.
Proposition 6.1. Ifa; >0, and (c,q) € My, then (¢,q) € M and Assumption 1.1 holds.

Proof. 1. Suppose first that there is a € K such that

(p(a1) + d(az) —2¢(a)) - ¢=0
Let

P(ar) + ¢(a2).

Vg = 9

Consider v € A such that
[v—¢(a)]-q=0.
Suppose
¢ [v—¢(a)] <0,
and consider the continuous function
G(v,u) =c-(v—u)
over the bounded path connecting (v,, ¢(a)) and (v, ¢(a) given by

S = {al(v,¢(a)) — (va, #(a))] + (v, d(a)) = a €[0,1]}.
It is easy to check that every component of a vector of S is contained in the section
{fveA:qg-v=q-¢(a)}
Then there exists a such that
G(a[(v,¢(a)) — (va, d(a))] + (v, #(a))) = 0,

or in other words

c- [a(v - Ua) + Vg — ¢(a)] =0,
which by Lemma 6.2 means that necessarily
a(v —v,) +vq = ¢(a).

Consequently
a(v—o(t)) - N(t) + (1 — a)(ve = ¢(t)) - N(t) = 0

and this is in contradiction with Lemma 6.1. Hence
c-[v—=9(a)] >0if ¢ [vg — ¢(a)] > 0.

Let ¢ be such that
q-¢la1) =q- ¢(t)
and t # a, t > t, such that

vr = af¢(az) — d(ar)] + ¢(ar) € A

13



verifies
[ve —o(t)]-¢=0
Considering once more the continuous function G(v,u) over the path connecting (v, ¢(¢)) and
(va, p(a)), as
O‘[Ut_va]"i_va € {U:Q‘U:‘I‘(b(t)L
we can, as we did above, conclude that if

¢ o —¢t)] <0

then for certain c«,
vt — Vo] + Vg = ¢
and consequently
¢ o — o) >0
for any ¢t > t. The same type of arguments show that
c-lv=0(t)] >0
for any v such that
q-v=q-¢(t).
If t < t, there exists s € K such that
q-¢(s) =q- (1)

In this situation, again the continuity of G should be applied to the path connecting

(vf7 (ﬁ(i)) = (¢(a1)7 d)(i))
and

(0(s), ¢(1),

repeatedly until the limit case when ¢(s) = ¢(¢).
If there is t # as such that

q-¢az) = q- &(t)
we shall proceed in an analogous way.
2. Suppose now that there are a,b € K such that

(va — ¢(a)) g = (va — &(b)) - ¢ =0.
Then it is not difficult to conclude that
a=a; and b = as.
Hence assuming (without loss of generality) that
(¢(a1) — d(az)) - ¢>0
we can, once again, use the continuity of G to conclude
c-[6(s) = 6(t)] > 0

where ¢(s) and ¢(t), verify
(¢(s) —o(t) - ¢=0

and after that, for a general v such that

(v—¢(b))-¢=0.
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Remark 6.1. This type of argument can be also deduced for the case N =n =1, p = 2 where it
can be seen to be equivalent to the conditions in Lemma 4.1. However when the parameters N, n
and p increase their values, it becomes very hard to give geometrically-based sufficient conditions
in such an exhaustive manner as we have done here. Even so, in Section 8 we show how to
give more restrictive yet more general sufficient conditions (Theorem 1.2 and Theorem 1.1) for
interesting high dimensional particular situations, where some geometrical ideas can be used as
a way to verify Assumption 1.1.

7 Examples

Before going further to higher dimensional situations we gather in this section some typical,
academic examples for which either Lemma 4.1, Lemma 5.2, or Proposition 6.1 can be applied.

7.1 Example 1

Let us consider the optimal control problem
T
Minimize in u : / [c(z(t))u(t) + u?(1)] dt
0

under
2'(t) = q(z(t))u(t) + u*(t), 2(0) = o
where |u(t)| < 1.
We have the following remarkable existence result.

Lemma 7.1. If the functions q and c are Lipschitz, and

a(q —c) > 0.
then the optimal control problem admits optimal solutions.

The proof reduces to performing some elementary algebra to check the conditions of Lemma 4.1.

Instead of applying that lemma, as both our cost and state-equation functions have cross
dependence on x and on u so that we can’t apply results in [3], [23], one can try the classical
existence result based on the classical Filippov-Roxin theory. For that we need to check if the
orientor field

A ={(E0) s v>c(@)u+u?, € =ql@)u+u? ue K =[-1,1]}

is a convex set. Notice that K is bounded so coercivity is not an issue here. Proceeding in that
direction, we can see that
¢ = q(z)u + u?

is equivalent to

which are possible solutions when ¢ is such that £ > — 2 and at least one of them belongs to

4
K =[-1,1]. Letting
Fi(z,€) = c(x)u; +u?, i = 1,2,
we see that
F2 < Fla

for all £ as above. Consequently

Ay = ALU A2 =

15



2
{(§0) : v > P, )6 € uy (K) N[ +oo}

q2

{(&v): v= Fi(e,0),¢ € (u (K) \uy (K)) N[

where, for i = 1,2, u; ! refers to the pre-image of the solutions u; as functions of &.
Because of the assumption on (c, ¢) it is easy to see that A2 = (), and consequently that the
convexity of A, reduces to the convexity of the function

Fa(¢) = LS — Vg + 49)

2

, +oo[}

over a certain convex set
up () N [= L ool

This can be checked by elementary calculus.

We now turn over the possibility of applying the result in [8] to this example. First, in order
to write our problem as an minimum time problem, we need that c¢(z)u 4 u? never changes sign
in R x K ([6]). So a first restriction must be imposed. For example, consider ¢(.) and ¢(.) such
that

q(z) > c(x) > 1.

The right member of the differential equation of the minimum time problem is given by

Fla, K) = {q(m)u+u2 '

@t ue K}

The result in [8] doesn’t ask for the convexity of the set-valued map F, but it requires a linear
boundedness in the sense that

Ja, B s. t. Ve € R, V¢ € F(x, K) then

€]l < allz]] + 5.

It is easy to see that this condition places a real constraint on the relative growth of pairs (c, q),
even before verifying the remaining assumptions in [8].

7.2 Example 2
Look at the problem

T
inimize i : c(z(t))u? u?
Minimize in u : /0 [e(z(t)u”(t) + u’(t)] dt

under
(1) = [q((t)]u®(t) + u*(t),  2(0) = o

where u(t) € [ao, a1], ap > 0.
Lemma 7.2. If the functions q(x) and c(x) are Lipschitz,
c(x) < q(z) Ve,

and q(z) is always positive, then the optimal control problem admits optimal solutions.
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This result comes directly by applying Lemma 5.2 and Theorem 1.3.
Let us see, what we would need to do if, alternatively, we decided to use the classical
existence theory.

Like we have seen in the previous example we need to check the convexity of the orientor
field

A ={(&v) 1 v>clz)u® + 4P, € = qa)u® +u?, u e K = [ag, a1}
In this case, accordingly to the discriminant
A = 2762 — 4&q

of the equation
¢ = q(x)u?® +u?

we will have from one to three possible real solutions. Consider for each &
F; = c(x)u? + ul

such that
i <F, <F;

where u; = u7(§), ¢ = 1,2,3 are the three, possible equal, real solutions. Then
Ay =AU A2 U A3 =
{6w): v> R, eu ()}
{(€v): v= P, €€y (K) \u ' (K)}H
{(€v): v=F, geug'(K)\ (ug ' (K) Uup ' (K))}
Checking the convexity of this set, or alternatively, of the function

F(&)if €eur'(K)
po(6) = ¢ F2(O) if € €uy'(K)\uy'(K)
F3(&) if €€ ug'(K)\ (uy'(K)Uuy'(K))

is not an easy task at all, specially when compared to the almost immediate exercise of verifying
the conditions of Lemma 5.2. It is also plausible that the inherent difficulties to apply classical
theory will increase until a practically impossible scenario when we let IV, n and p grow.

7.3 Example 3

In order to give an heuristic for using the criteria given in Proposition 6.1 let us consider the
previous problem, just by rewriting g as ¢ — 8 and for a specific K.

T
“ . . . . clx u2 uS
Minimize in  : /O le(a(8))u2(t) + u3(8)] dt

under
@' (t) = [e(x(t)) = Bla()]u®(t) +u’(t),  =(0) = zo
where u(t) € [1,2].

Lemma 7.3. If the functions 8 and ¢ are Lipschitz, and
f < min{0, c}.

then the optimal control problem admits optimal solutions.
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Proof. First notice that for a € K = [a1, az], we can find « such that the vector

B = al¢(as) — ¢(ar)] + ¢(ar)

verifies
[B —¢(a)] - q=0.

Moreover, it is not difficult to see that

a® — a:f —m(a? — a%)
o=
a3 — ai —m(a3 — ai)

and in the projection plane yz, (Ba, B3) belongs to the line of slope m passing through (a?, a?),
Bs — a® = m(By — da?),

where
(a — a1)[a®(ag + a1) — a®(a + a1)]

BQ — a2 = 3 3
a5+ ajaz + af —m(az + ay)

and m = —%2,

3
In our case K = [1,2], so, because of what we have just seen, taking a; = 1 and as = 2 we
see that for a € K, we can find

a’ —ma®+m—1
a= - € [0,1]
such that
[afp(az) — ¢(a1)] + ¢(a1) — ¢(a)] - ¢ =0,
where
m:—c_lﬁzﬁ—c<0.

Furthermore, it is easy to see that the equation o = % has a unique solution in K. Consequently,
if we consider ¢ = (0,c — 3,1) and ¢ = (0, ¢, 1), there exists a unique a € K such that

[6(1) = 6(0) = 2¢(a)] - ¢ = 0.

Also, because of what we have seen above

[%(@b(l) —¢(0)) —¢(a)] - ¢ = (B —a*)c+ (B3 —a’) = (By — a®)(c+m)

_ oG tat) (L g o) 5 ),

In addition, given t,s € K, s # t,
(¢'(t) x (e x q)) - (¢(s) —d(t)) =0 <

pt(0,3t,=2) - (¢(s) — ¢(t)) =0«
(s —t)[Bt(s+1) —2(s* + st +1°)] =0 &
s = —; Vs=t

which is impossible since s € K = [1,2] and s # ¢. The result follows then by applying

Proposition 6.1.
O
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8 A multi-dimensional situation

The previous analysis makes it very clear that checking Assumption 1.1 may be a very hard
task as soon as n and/or N become greater than unity. Yet in this section we would like to
show that there are chances to prove some non-trivial results.

The three main ingredients in Assumption 1.1 are:

e the vector ¢ € R? in the cost functional;
e the matrix Q € MV*® occurring in the state equation;
e the convexification A of the set of moments L = ¢(K).

For (¢, @) given, consider the set
N, Q)={veR’:Qu=0,cv <0}.

Let
U:R*—= R, (s>n),

be a C! mapping so that VW¥(m) is a rank s — n matrix and L can be seen as the embedded
(parametrized) manifold ¢(K) of R® in the manifold defined implicitly by ¥ = 0. This means
that ¥(¢(u)) =0 for all u € K.

Consider also the set of vectors

N(K,¢)={veR’: for each u € K, either VU (¢(u))v = 0 or there is i with Vi);(¢(u))v > 0},

the set of “ascent” directions for ¥ at points of L.
We are now in conditions to prove Theorem 1.1.

Proof. The proof is rather straightforward. Firstly, note that due to the convexity assumption
on ¥, and the fact that L C {¥ = 0}, we have A C {¥ < 0}.

Suppose that mg € L and m; € A, so that U(mgy) = 0, ¥(m1) < 0, em; < emyp, and
Qm1 = Qmgo(= £). Then it is obvious that m = my—mg € N (¢, Q). Because of our assumption,
m € N (K, ¢). We have two possibilities:

1. V¥(mg)m = 0. Because of the convexity of each component of ¥, we have
U(my) — ¥(mo) — V¥ (mg)m > 0.

But then
0= W(mg) < ¥(mq) <0,

so that m; € L. Because of the strict convexity of each component of ¥, this means that
my = my, and Assumption 1.1 holds.

2. Vipi(mg)m > 0 for some i. Once again we have
Yi(m1) —¥i(mo) — Vibi(me)m > 0.

But this is impossible because ;(m1) > 0 cannot happen for a vector in A.
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Any time that this lemma can be applied to show that Assumption 1.1 holds, we will have
an existence result. Though from this perspective more general results are possible, we will
focus on a particular situation motivated by the control of underwater vehicles ([4]). We will
briefly describe the structure of the state equation. Indeed, it is just

2'(t) = Q1(2)u + Qo(x)

where the state 2 € RS incorporates the position and orientation in body and world coordinates,
and the control u € R!? accounts for guidance and propulsion. Under suitable simplifying
assumptions ([4], [13], [15]), the components of the control vector u only occur as either linear

or pure squares, in such a way that @ = (u,u?) € R?°, and u? = (u?);, componentwise. 1 and

Qo are matrices which may have essentially any kind of dependence on the state x.
To cover this sort of situations just described, we will concentrate on an optimal control

problem of the type

n

T n
Minimize in w : /0 [Zci(:v(t))ui(t)+ch+i(x(t))u?(t) dt
=1

i=1
subject to
2 (1) = Qo(w(t)) + Q1 (2()u(t) + Qa(w(®))u2(t) in (0,7), 2(0) =z € R,

and u(t) € K C R". @1 and @2 are n X n matrices that, together with the vector Qp, comply
with appropriate technical hypotheses so that the state law is a well-posed problem. Set

Q=(Q1 Q2), c=(a c),

where ()1 is a non-singular n x n matrix, and ¢; € R". In addition, we set

D(z) =—(Q1)'Q2, E(@)=cD+c;, U(m,z)= 2Zmie¢ ® e; D — id,

7

where the e;’s stand for the vectors of the canonical basis of R, and id is the identity matrix
of size n X n.
We can now prove Theorem 1.2.

Proof. Notice that in the particular situation we are considering, where s = 2n we have
Pi(m) = mf —Mpai, =1,2,...,n,
which are certainly smooth and (strictly) convex. Moreover,
V¥ (m)= (2m -id)

where
m=2 E m;e; K e;,
7

and e; is the canonical basis of R™.
Suppose we have, for a vector v € R?", v = (v1,v2), that

Qu=0, cv<O.
A more explicit way of writing this is

Q1v1 + Q2v2 =0, cv1 + cava < 0.
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So
v = DUQ, EUQ < 0.

We have to check that such a vector v is not a direction of descent for every function v;, or it
is an ascent direction for at least one of them. Note that

V¥ (m)v =Uvy, Evy<D0.

It is an elementary Linear Algebra exercise to check that if U=TE < 0, then our lemma above
to have Assumption 1.1 can be applied. O

Corollary 1.1 is a specific example of the kind of existence result that can be obtained through
this approach. Its proof amounts to going carefully through the arithmetic while checking that
matrix U and vector E defined from such given class of (¢(.),Q(.)) verify the assumptions of
Theorem 1.2.

By using the same ideas, more general situations can be treated, for example the number
of controls could be greater than the components of the state. This is in fact the situation in
the model that has served as an inspiration for us. We will pursue a closer analysis of such a
particular situation, even stressing the more practical issues, in a forthcoming work.
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