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Abstract

We prove a local existence result for the manoeuvrability control of a submarine. The problem is
formulated as an optimal control problem with a nonlinear and highly coupled system of ODEs for
the state law, a Lagrange type cost function, and nonlinear controls which take values on a convex
and compact subset of R3. Finally, the existence of solution for this problem is obtained by applying
a recent general existence result [11] which, however, requires some modifications to be used in our
specific case.
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1 Introduction

In this paper we turn over the existence of solution for the model of manoeuvrability control of a subma-
rine which has been recently proposed in [4]. It corresponds to a real-life engineering problem so that all
the hypotheses and ingredients that we will consider in the sequel are motivated by real (non-academic)
requirements. To describe such model a state vector is defined

x = (x, y, z, φ, θ, ψ, u, v,w, p, q, r) ∈ Ω ⊂ R12, (1)

where Xworld = (x, y, z; φ, θ, ψ) indicates the position and orientation of the submarine in the world fixed
coordinate system, and Vbody = (u, v,w; p, q, r) is the vector of linear and angular velocities measured in
the body coordinate system. Throughout this paper we follow the usual SNAME notation [3]. Permitted
ranges of Euler angles are

−π < φ < π, −
π

2
< θ <

π

2
, 0 < ψ < 2π, (2)

so that
Ω = R3 × ]−π, π[ ×

]
−
π

2
,
π

2

[
× ]−0, 2π[ × R6.

The control vector is
u = (δb, δs, δr) , (3)
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Cartagena, Spain - f.periago@upct.es. Supported by projects MTM2007-62945 from Ministerio de Ciencia y Tecnologı́a
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where δb and δs represent, respectively, the angle of the bow and stern coupled planes, and δr is deflection
of rudder. These controls act on the system in linear and quadratic form. Therefore, it is convenient to
consider the mapping

Φ (u) =
(
u,u2

)
≡

(
δb, δs, δr, δ

2
b, δ

2
s , δ

2
r

)
∈ R6.

Admissible controls u are measurable functions that should lie in a certain set K ⊂ R3, which, in our
case, is given by

K = [−a1, a1] × [−a2, a2] × [−a3, a3] ,

with 0 < a1, a2, a3 < π/2. Finally, the state law is described by a system of twelve ordinary differential
equations

x′ (t) = Q (x (t)) Φ (u (t)) + Q0 (x (t)) (4)

where
Q : R12 →M12×6 and Q0 : R12 → R6

will be described in Section 3. At this point, we just indicate that the right-hand side of (4) includes both
kinematic and dynamic equations of motion (see [2, 3, 4, 5] for more details).

The manoeuvrability control problem for an underwater vehicle describes a situation where we want
to reach (or to be very close to) a final state xT in time T, while minimizing the use of control during the
time interval [0,T ] . The latter can be understood as minimizing the typical cost∫ T

0
‖u (t)‖2 dt

while the first aspect can be seen as minimizing

1
2

∥∥∥x (T ) − xT
∥∥∥2

=
1
2

∫ T

0

d
dt

∥∥∥x (t) − xT
∥∥∥2

dt +
1
2

∥∥∥x (0) − xT
∥∥∥2

=

∫ T

0
< x (t) − xT , Q (x (t)) Φ (u (t)) + Q0 (x (t)) > dt +

1
2

∥∥∥x (0) − xT
∥∥∥2
.

Hence, we consider the cost∫ T

0

[
< x (t) − xT , Q (x (t)) Φ (u (t)) + Q0 (x (t)) > + ‖u (t)‖2

]
dt

=

∫ T

0
[c (x (t)) Φ (u (t)) + c0 (x (t))] dt

where the vector c is given by ci (x) =
∑12

j=1

(
x − xT

)
j
Q ji, i = 1, 2, 3,

ci (x) =
∑12

j=1

(
x − xT

)
j
Q ji + 1, i = 4, 5, 6,

and
c0 (x) =< x − xT , Q0 (x) > .

Typically, some penalty parameters are introduced to weigh at convenience the above two goals, but
for simplicity and since it does not change mathematically the problem we have not considered such
weights.

To sum up, we can write the manoeuvrability control problem as

(P)


Minimize in u :

∫ T
0 [c (x (t)) Φ (u (t)) + c0 (x (t))] dt

subject to
x′ (t) = Q (x (t)) Φ (u (t)) + Q0 (x (t)) , 0 < t < T
x (0) = x0 ∈ Ω

x (t) ∈ Ω and u (t) ∈ K, 0 ≤ t ≤ T.

The main goal of this paper is to prove the following local existence result.
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Theorem 1.1. For T > 0, small enough, there exists an optimal solution of (P).

We notice that the constraint on T is imposed to be able to guarantee that the state law is well-posed.
The existence of T will be established during the proof of Theorem 1.1. As we will see later on, the
fundamental question for this existence result is the relation between the vector c, the matrix Q, the
mapping Φ and the set K. The role played by Q0 is related to the existence and uniqueness of solution
for the state law, and c0 does not influence at all. To prove Theorem 1.1 we will apply a very recent
general existence result [11] which requires some modifications to adapt the specific structure of our
model. Section 2 is devoted to present this general result (Theorem 2.1) with its corresponding changes.
In Section 3 we will check that our model satisfies the hypotheses required by this last theorem.

2 A general existence and uniqueness result for some specific optimal
control problems

Throughout this section we basically follow the same ideas as in [11], but since our problem is slightly
different from the one considered there and to make the paper easier for readers we include detailed
statements and proofs.

To study the existence of solution for (P) we will turn ourself over the general optimal control
problem of the type

(CP) Minimize in u :
∫ T

0
c(x) · Φ(u) + c0(x)dt (5)

subject to
x′ = Q(x)Φ(u) + Q0(x) (6)

x(0) = x0 ∈ RN ,

and
u(t) ∈ K, (7)

where K ⊂ Rm. We search a control u in L∞((0,T ),K) corresponding to an absolutely continuous state
function x : (0,T )→ RN .

The mappings

Φ(u) ∈ Rs,

Q : RN →MN×s,

Q0, c : RN → Rs

should be such that the cost function is defined and takes finite values for admissible pairs (x,u) and the
state system is well-posed.

As we will see, the fundamental question for the existence result is the relation between the vector
c, the matrix Q, the application Φ and set K. For a better understanding of such relations we consider
additionally a C1 mapping

Ψ : Rs → Rs−m, Ψ = (ψ1, ..., ψs−m), (s > m), (8)

so that Φ(K) ⊂ {Ψ = 0}. This means that we are embedding the image space Φ(K) into a level surface
(submanifold) defined by Ψ. Notice for example that for problem (P) where

Φ(u) = (u1, u2, u3, (u1)2, (u2)2, (u3)2) ∈ R6

we have
Ψ(v) = ((v1)2 − v4, (v2)2 − v5, (v3)2 − v6) ∈ R3.
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Also we define for every pair (c,Q) the set

N(c,Q) =
{
v ∈ Rs : Qv = 0, cv ≤ 0

}
. (9)

Similarly, we consider

N(K,Φ) =
(10){

v ∈ Rs : for each u ∈ K, either ∇Ψ(Φ(u))v = 0 or ∃i s. t. ∇ψi(Φ(u))v > 0
}
,

the set of ”growth directions” of Ψ over Φ(K). We are now in conditions to state the existence result
proved in [11] adapted to our frame.

Theorem 2.1. Assume that the mapping Ψ as above is component-wise convex and C1. If for each
x ∈ Rn, we have

N (c (x) ,Q (x)) ⊂ N (K,Φ) , (11)

then the corresponding optimal control problem (CP) has at least one solution. If, in addition, Φ is
component-wise one to one, convex and strictly convex for at least one component over K, then the
solution of (CP) is unique.

Notice that in the statement of Theorem 2.1, we have dropped the strictly convexity of Ψ as it was
asked in [11]. Also we have included a sufficient condition which ensures the uniqueness of such a
solution.

An essential tool to the proof of this result is the verification of the assumption

Assumption 2.1. For each fixed x ∈ RN , and ξ ∈ Q(x)Λ + Q0(x) ⊂ RN , the minimum

min
m∈Λ
{c(x) · m + c0(x) : ξ = Q(x)m + Q0(x)}

is only attained in L, where L = Φ(K) and Λ = co(L).

In fact this hypothesis has a very simple geometrical meaning, as we show in Figure ?? for the simple
case were N = n = 1, K = [a1, a2] and Φ(u) = (u,u2). The set L is part of onedi curve parameterized by
Φ and Λ is its convex hull. As the figure shows, for fixed ξ and Q, c must be oriented from the convex
curve L towards the interior of its convex hull, in such a way that the minimum of c · m over

{ξ = Qm}
⋂

co(L)

must be attained exclusively over L.
This assumption allows us to proceed through a relaxation process using Young measures (as in [7],

[9], [11], [13] and [14]) and conclude that there is a Dirac-type solution of the relaxed problem which
corresponds to a solution of the original problem.

Before starting the proof of the existence result, let us first consider the following Lemma.

Lemma 2.1. Let Ψ be as in Theorem 2.1. If c, Q, Φ and K in (CP) are such that condition (11) is
satisfied, then Assumption 2.1 holds.

Proof. We want to see that for every fixed x ∈ RN and ξ ∈ Q(x)Λ+Q0(x) the minimizer of c(x) ·v+c0(x)
over the set of vectors in Λ verifying the restriction ξ = Q(x)v + Q0(x) can only be in L, where both L
and Λ are as in Assumption 2.1.

Suppose that v0 ∈ L and v1 ∈ Λ both belong to the manifold

{ξ = Q(x)v + Q0(x)}

but they verify
c(x)v1 + c0(x) ≤ c(x)v0 + c0(x).
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As Ψ is component-wise convex and L ⊂ {Ψ = 0}, we have Λ = co(L) ⊂ {Ψ ≤ 0}. Hence,

Ψ(v0) = 0, Ψ(v1) ≤ 0, c · v1 ≤ c · v0, and Qv1 = Qv0 (= ξ − Q0).

Therefore it is obvious that v = v1−v0 ∈ N(c(x),Q(x)). Due to condition (11), v ∈ N(K,Φ).Accordingly
to the definition of N(K,Φ) either ∇ψi(v0)v > 0 for some i or ∇Ψ(v0)v = 0. Suppose we are in the first
situation. Because of the convexity of Ψ,

ψi(v1) − ψi(v0) − ∇ψi(v0)v ≥ 0⇔

ψi(v1) ≥ ∇ψi(v0)v > 0.

But this is impossible because ψi(v1) > 0 cannot happen for a vector in Λ.
Suppose now that ∇Ψ(v0)v = 0. Again by convexity of each component of Ψ, we have

Ψ(v1) − Ψ(v0) − ∇Ψ(v0)v ≥ 0,

that is,
0 = Ψ(v0) ≤ Ψ(v1) ≤ 0.

Hence, as v1 ∈ Λ = (Λ \ L) ∪ L and

Λ \ L ⊂ {Ψ(v) ≤ 0, ∃i s.t. , ψi(v) < 0}

we conclude that v1 ∈ L and Assumption 2.1 holds. �

We can now prove Theorem 2.1.

Proof. We begin by the relaxation of (CP) using Young measures associated with sequences of admis-
sible controls. Consider the problem

(RP) Minimize in µ = {µt}t∈(0,T ) : Ĩ(µ) =

∫ T

0
[
∫

K
c(x(t)) · Φ(λ)dµt(λ)] + c0(x(t))dt

subject to

x′(t) =

∫
K

Q(x(t))Φ(λ)dµt(λ) + Q0(x(t))

and
supp(µt) ⊂ K, x(0) = x0 ∈ RN .

Notice that the theory of Young measures ([7], [9], [13], [14]) allows us to conclude that this formulation
is, in particular, well posed, as having u ∈ L∞([0,T ],K) for K bounded implies (see [8]) that the
associated Young measures {µt}t belongs to

Yp((0,T ), P(K)) ={
µ = {µt}t∈(0,T ) :

∫ T

0

∫
K
‖λ‖pdµt(λ)dt < ∞, µt ∈ P(K)

}
for every p > 1,

where P(K) is the space of probability measures supported in K. The existence of an optimal measure
for this problem is immediately established by applying the existence result in [7] for the particular case
where K is bounded.

In addition, (RP) can be rewritten by taking advantage of the moment structure of the cost density
and the state equation. If we consider the set

Λ = {m ∈ Rs : m =

∫
K

Φ(λ)dν(λ), ν ∈ P(K)},
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then for each Young measure µ = {µt}t we can associate a function in L∞([0,T ],Λ) given by

m(t) =

∫
K

Φ(λ)dµt(λ).

This relation is not one-to-one but we can also associate at least one Young measure to each function in
L∞([0,T ],Λ). The set Λ is very especial. Indeed, notice that L defined above as L = Φ(K) is part of Λ

as it corresponds to generalized moments associated to Dirac-type Young measures. Moreover, in [6] it
was shown that when K is a compact and convex set we have

Λ = co(L) = co(L)

so that Λ is a convex, compact set, defined as

Λ = co(Φ(K)).

This considerations allow us to conclude that the relaxed problem (RP) is equivalent to the linear optimal
control problem

(LP) Minimize in m ∈ Λ :
∫ T

0
c(x(t)) · m(t) + c0(x(t))dt

subject to
x′(t) = Q(x(t))m(t) + Q0(x(t)), x(0) = x0,

whose optimal solution (for the existence of such a solution see [1]) corresponds to a Young measure
which is an optimal solution (not necessarily unique) of (RP). Next, we will characterize this optimal
solution, say m̃(.) of (LP). To that purpose consider the function

ϕ(x, ξ) =minm∈Λ{c(x) · m + c0(x) : ξ = Q(x)m + Q0(x)} if ξ ∈ Q(x)Λ + Q0(x)
+∞ else.

This density function is the typical integrand of the cost which defines the equivalent variational problem
(VP)

Minimize in x(t) :
∫ T

0
ϕ(x(t), x′(t))dt

subject to x(0) = x0, x(t) ∈ AC([0,T ],RN). The equivalence between problems (VP) and (LP) is well
known and can be found in [12] , [1] and in more recent works under a similar framework [9], [10].
Accordingly, there is a solution for (VP), let us say x̃(.), whose connection to m̃(.) is established through
the relation

ϕ(x̃(t), x̃′(t)) = min
m∈Λ
{c(x̃(t)) · m(t) + c0(x̃(t) : x̃′(t) = Q(x̃(t))m(t) + Qo(x̃(t))}

= c(x̃(t)) · m̃(t) + c0(x̃(t)) a.e. t ∈ (0,T ).

By Lemma 2.1,
m̃(t) ∈ L = Φ(K)

so that there is a Dirac-type Young measure µ solution of (RP), associated to m̃. As a consequence, (CP)
has an optimal solution u ∈ L∞([0,T ],K) such that µ = {δu(t)}t∈(0,T ).

Let us now prove the second part of the theorem. Suppose that u1(.) and u2(.) are different op-
timal solutions of (CP). Then µ1 = {δu1(t)}t and µ2 = {δu2(t)}t are optimal solutions of (RP). As Φ

is component-wise one to one, the corresponding generalized moments defined by m1(t) = Φ(u1(t))
and m2(t) = Φ(u2(t)) are different optimal solutions of (LP). Hence for λ ∈]0, 1[, we have that
m = λm1 + (1 − λ)m2 is also an optimal solution of the linear problem (LP) and therefore m ∈ L. But
since L = Φ(K) and Φ is strictly convex for some component i, m does not belong to L. A contradiction.
Therefore we must have u1 = u2. �
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3 Proof of Theorem 1.1

In this section we will apply the first part of Theorem 2.1 to the optimal control problem (P). In our case,
Φ is not injective so that we cannot conclude about uniqueness. In fact, some numerical simulations (see
[4]) suggest that the solution of (P) is not unique. We proceed in several steps:

3.1 Step 1: the matrices Q and Q0

We start by paying some attention to the matrices Q and Q0 of the control system, as it is fundamental
to verify the well-posedness character of the state law and condition (11) of Theorem 2.1. We recall the
notation introduced in Section 1 where we have set

x = (x, y, z, φ, θ, ψ, u, v,w, p, q, r) ∈ Ω ⊂ R12,

with Xworld = (x, y, z; φ, θ, ψ) and Vbody = (u, v,w; p, q, r). Using this notation, accordingly to what we
have seen also in Section 1 and using the data in [4] we know that Q is given by

Q =

(
06×6

M−1F(Vbody)

)
where the matrix M is given by

M =

m − ρ
2 L3X′u̇ 0 0 0 mZG −mYG

0 m − ρ
2 L3Y ′v̇ 0 −mZG −

ρ
2 L4Y ′ṗ 0 mXG −

ρ
2 L4Y ′ṙ

0 0 0 m − ρ
2 L3Z′ẇ −mXG −

ρ
2 L4Z′q̇ mYG

0 −mZG −
ρ
2 L4K′v̇ mYG Ix −

ρ
2 L5K′ṗ −Ixy −Ixz −

ρ
2 L5K′ṙ

mZG 0 −mXG −
ρ
2 L4M′ẇ −Ixy Iy −

ρ
2 L5M′q̇ −Iyz

−mYG mXG −
ρ
2 L4Nv̇ 0 −Ixz −

ρ
2 L5N′ṗ −Iyz Iz −

ρ
2 L5N′ṙ


and F = (G, H) , G,H ∈ M6×3, with

G =



0 0 0
0 0 ρ

2 l2(Y ′δr
+ Y ′δrη

(η − 1
C )C)u2

ρ
2 l2(Z′δb

)u2 ρ
2 l2(Z′δs

+ Z′δsη
(η − 1

C )C)u2 0
0 0 ρ

2 l3(K′δr
)u2

ρ
2 l3(M′δb

)u2 ρ
2 l3(M′δs

+ M′δsη
(η − 1

C )C)u2 0
0 0 ρ

2 l3(N′δr
+ N′δrη

(η − 1
C )C)u2


and

H =



ρ
2 l2(X′δbδb

)u2 ρ
2 l2(X′δsδs

)u2 ρ
2 l2(X′δrδr

)u2

0 0
0 0
0 0
0 0
0 0


.

Finally, considering the dimensionless hydrodynamic coefficients in [4, Appendix] gives

Q(x) = u2



06×6
Q11 Q12 Q13 Q14 Q15 Q16
0 0 Q23 0 0 0

Q31 Q32 Q33 Q34 Q35 Q36
0 0 Q43 0 0 0

Q51 Q52 Q53 0 0 0
0 0 Q63 0 0 0
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= (x7)2



06×6
−0.0056307 −0.0056219 0.0002292 −0.0028418 −0.0011310 −0.0037067

0 0 −0.0001291 0 0 0
1.527832 1.4903911 −0.0617573 −0.0001656 −0.0000659 −0.0002160

0 0 0.0001049 0 0 0
−0.0162938 −0.0162684 0.0006631 0 0 0

0 0 −0.0002773 0 0 0


.

We remark that Q, the 12 × 6 matrix of the coefficients interacting with the control, only depends on the
surge velocity. Such particularity allows us to verify condition (11) quite easily, as we will see after.

As for Q0, it is given by

Q0 =

(
T (φ, θ, ψ)Vbody

M−1F0(Vbody, φ, θ, ψ)

)
∈ R12.

where T is the transformation matrix in the kinematic equations

(Xworld)′ = T (φ, θ, ψ)Vbody

defined by

T =

J1 (φ, θ, ψ) 03×3

03×3 J2 (φ, θ, ψ)


with

J1 (φ, θ, ψ) =

cosψ cos θ − sinψ cos θ + cosψ sin θ sin φ sinψ sin φ + cosψ cos φ sin θ
sinψ cos θ cosψ cos φ + sin φ sin θ sinψ − cosψ sin φ + sin θ sinψ cos φ
− sin θ cos θ sin φ cos θ cos φ


and

J2 (φ, θ, ψ) =

1 sin φ tan θ cos φ tan θ
0 cos φ − sin φ

sin φ/ cos θ cos φ/ cos θ

 .
Concerning F0, it is defined in [4] through the ordinary differential system of six equations

MV ′body = F0(Vbody, φ, θ, ψ) + F(Vbody)Φ(u)

so that it corresponds to the terms independent of the controls. To obtain Q0 we write F0 with the data
given in [4] and multiply it by M−1, just as we have done for Q. Using the state notation

x = (x j), F̄0(x) = ((F̄0) j) = M−1F0(x), 1 ≤ j ≤ 6,

we obtain

(F̄0)1 = 0.21 sin x4 cos x5 +5.593x12 |x12|−10.68x2
12−7.234x11x12 +2.905x10x12−0.93x8x12−0.11x7x12

−19.65x11 |x11|+ 5.658x2
11 + 0.015x10x11 − 1.809x9x11 + 0.61x7x11 + 7.252x10 |x10| − 0.4x2

10 + 0.14x9x10

−2.477x8x10 + 0.21x7x10 − 0.0085
√

x2
9 + x2

8 |x9| − 0.0022x7 |x9| − 0.0056x8

√
x2

9 + x2
8 + 0.0074x2

9

−0.015x8x9 − 0.022x7x9 + 0.012x8 |x8| + 0.22x2
8 + 0.013x7x8 − 0.0012x2

7 − 0.014x7 + 0.2
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(F̄0)2 = 0.032 sin x4 cos x5 + 4.918x12 |x12| − 1.028x11x12 − 0.21x7x12 + 0.064x10x11 + 1.101x10 |x10|

+0.41x9x10 − 0.0073x7x10 − 0.023x8

√
x2

9 + x2
8 − 0.061x8x9 + 0.0017x8 |x8|

−0.01x7x8 + 2.4985 × 10−7x2
7 − 5.6213 × 10−5x7 + 0.0012

(F̄0)3 = −0.43 sin x5−57.56 sin x4 cos x5−1508.x12 |x12|+5212.x2
12+1951.x11x12+98.94x10x12+884.9x8x12

+30.0x7x12 + 5149.x11 |x11| + 108.1x2
11 − 4.058x10x11 − 0.047x9x11 − 166.7x7x11 − 1956.x10 |x10|

+107.8x2
10 − 38.2x9x10 + 667.5x8x10 − 57.7x7x10 + 2.215

√
x2

9 + x2
8 |x9| + 0.59x7 |x9| + 1.501x8

√
x2

9 + x2
8

+4.2833×10−4x2
9+3.913x8x9+6.062x7x9−3.109x8 |x8|−54.46x2

8−3.376x7x8+0.088x2
7+0.099x7−2.205

(F̄0)4 = −0.098 sin x4 cos x5 − 2.562x12 |x12|+ 3.317x11x12 + 0.051x7x12 − 0.0069x10x11 − 3.325x10 |x10|

−0.065x9x10 − 0.098x7x10 + 0.0025x8

√
x2

9 + x2
8 + 0.0066x8x9 − 0.0053x8 |x8| − 0.0057x7x8

−7.5427 × 10−7x2
7 + 1.697 × 10−4x7 − 0.0038

(F̄0)5 = 0.62 sin x4 cos x5+16.2x12 |x12|−56.57x2
12−20.96x11x12−9.622x8x12−0.32x7x12−56.86x11 |x11|

−1.157x2
11 + 0.044x10x11 + 1.76x7x11 + 21.01x10 |x10| − 1.157x2

10 + 0.41x9x10 − 7.167x8x10 + 0.62x7x10

−0.025
√

x2
9 + x2

8 |x9| − 0.0064x7 |x9| − 0.016x8

√
x2

9 + x2
8 − 0.042x8x9 − 0.065x7x9 + 0.033x8 |x8|

+0.59x2
8 + 0.036x7x8 − 9.4993 × 10−4x2

7 − 0.0011x7 + 0.024

(F̄0)6 = 0.0037 sin x4 cos x5+2.308x12 |x12|−0.12x11x12−0.079x7x12−1.91x10x11+0.12x10 |x10|+0.0063x9x10

−0.0073x7x10 − 0.0043 |x8|

√
x2

9 + x2
8 − 3.2111 × 10−4x8

√
x2

9 + x2
8 − 0.071x8x9 + 1.9811 × 10−4x8 |x8|

−0.0042x7x8 + 2.8285 × 10−8x2
7 − 6.3637 × 10−6x7 + 1.412 × 10−4

Notice that in fact F̄0 does not depend on (x1, x2, x3), but for simplicity we will still consider Q0 as
a vector function from R12 to R12 which is described by

Q0(x) =



J1(x4, x5, x6) 03×3

03×3 J2(x4, x5, x6)




x7
x8
x9
x10
x11
x12


F̄0(x)


where J1, J2 and F̄0 are as above.

9



3.2 Step 2: local existence and uniqueness of solutions for the state law

Let us now show that it is possible to find a time interval I = [0,T ] for which the initial value problem

(IVP)
{

x′ (t) = Q (x (t)) Φ (u (t)) + Q0 (x (t)) , 0 < t < T
x (0) = x0 ∈ Ω

is well posed in the sense that for every control function u ∈ L∞ (0,T ; K) there is a unique solution. We
start by recalling the classical theory on this subject and therefore we rewrite (IVP) in the standard way{

x′ (t) = f (t, x (t)) , 0 < t < T
x (0) = x0 ∈ Ω ⊂ RN ,

(12)

with f : I ×Ω→ RN , N = 12 in our case. A (Carathéodory) solution of (12) is an absolutely continuous
function

x : (0,T1)→ Ω, with T1 ≤ T,

such that for all t ∈ (0,T1)

x (t) = x0 +

∫ t

0
f (s, x (s)) ds.

The solution x : (0,T1) → Ω is said to be maximal if for another solution x : (0,T2) → Ω of (12) the
two following conditions hold:

(i) T2 ≤ T1, and

(ii) x (t) = x (t) for all 0 ≤ t ≤ T2.

As is well-known (see for instance [15, Appendix C]), if f satisfies conditions (H1)-(H4) below, then
we can ensure the existence and uniqueness of a maximal solution for (12).

(H1) For each x ∈ Ω, the function f (·, x) : I → RN is measurable,

(H2) for each t ∈ I, the function f (t, ·) : Ω→ RN is continuous,

(H3) f is locally Lipschitz on x, that is, for each x0 ∈ Ω there are a real number ρ > 0 and a locally
integrable function

α : I → R+

such that the ball Bρ
(
x0

)
of radius ρ centered at x0 is contained in Ω and

‖f (t, x) − f (t, y)‖ ≤ α (t) ‖x − y‖

for each t ∈ I and x, y ∈ Bρ
(
x0

)
, and

(H4) f is locally integrable on t, that is, for each x0 ∈ Ω there exists a locally integrable function
β : I → R+ such that ∥∥∥∥f

(
t, x0

)∥∥∥∥ ≤ β (t) a. e. t ∈ I.

Our next task is to check that (H1)-(H4) hold in our particular case. For any u ∈ L∞(R; K), since the
control variable u appears in linear and quadratic form, it is clear that the function

f (t, x) = Q (x) Φ (u (t)) + Q0 (x) (13)

is measurable with respect to t for each fixed x ∈ Ω. In addition, looking at the particular form of (13),
it is clear that for each t, the function x → f (t, x) is continuous. With respect to conditions (H3) and
(H4), again the form in which the controls appear let us conclude that (H4) is satisfied. As for the local
Lipschitz condition (H3), since f = ( f1, · · · , f12) is a vector function, we should check that condition
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for each component. Due to the constraints (2) and taking into account that the first six components
of f only include the transformation matrix between body and world references frames, we have that
f1, · · · , f6 ∈ C∞ (Ω) and therefore they are locally Lipschitz with respect to x. As for the remaining
f7, · · · , f11, we notice that these components include by one side, polynomial terms, terms in the form

of absolute value, terms with the structure of
√

x2
j + x2

k , where x = (x1, · · · , x12) , all of them locally
Lipschitz, and products of locally Lipschitz functions, also locally Lipschitz, by the other.

Therefore we may state that for each x0 ∈ Ω and u ∈ L∞ (R; K) there exists a maximal time T
(
x0,u

)
and a unique maximal solution of (IVP) defined on

[
0, T

(
x0,u

)]
. In fact, looking at the proof of the

mentioned existence result (see [15]), we can see that T
(
x0,u

)
depends on both α(t) = α(u(t)) and

β(t) = β(u(t)) in the sense that ∫ t

0
α(τ) dτ < 1 ∀t ∈ [0,T (x0,u)]

and ∫ t

0
ρα(τ) + β(τ) dτ < ρ ∀t ∈ [0,T (x0,u)].

Since Φ is continuous on the compact set K and taking into account the particular structure of matrices
Q and Q0, we can choose α(t) and β(t) such that (H1)-(H4) are satisfied simultaneously to all u ∈
L∞(R+; K) and consequently we can choose T (uniformly in u) such that problem (IVP) has a unique
solution in I = [0,T ], with T = T (x0), for every u ∈ L∞(I; K).

Remark 3.1. It is not difficult to convince ourselves that for some suitable inputs u, the corresponding
solution x of the state law is not defined for all t > 0 because of the constraints (2). That is, we can not
expect to have a global solution for all admissible u. Moreover, in a real situation we also must impose
some constraints on the state variables (x, y, z) due to the finite dimension of ocean. These restrictions,
which are specially important in a situation in which the submarine is moving in littoral waters, may let
the solution x blow-up in finite time.

3.3 Step 3: checking condition (11) in Theorem 2.1

We need to describe for every x ∈ R12 (and corresponding pair (c(x),Q(x))) the set

N(c(x),Q(x)) =
{
v ∈ R6 : Q(x)v = 0, c(x) · v ≤ 0

}
,

and check that such set is contained in
N(K,Φ) ={

v = (v1, · · · , v6) ∈ R6 : for each u ∈ K, either ∇Ψ(Φ(u))v = 0 or there is i with ∇Ψi(Φ(u))v > 0
}
,

where Q is like described in the beginning of this section, where the data from [4] were used.
Let us first find the solution of Qv = 0. If the surge velocity u = x7 is zero, then the solution is R6.

Assuming that x7 , 0 we have
v3 = 0
v6 = − 1

Q16
(Q11v1 + Q12v2 + Q14v4 + Q15v5)

v6 = − 1
Q36

(Q31v1 + Q32v2 + Q34v4 + Q35v5)

v2 = −
Q51
Q52

v1.

Thus 
· · ·

1
Q16

(Q11 −
Q51
Q52

Q12)v1 +
Q14
Q16

v4 +
Q15
Q16

v5 =
1

Q36
(Q31 −

Q51
Q52

Q32)v1 +
Q34
Q36

v4 +
Q35
Q36

v5

· · ·
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but
Q14

Q16
= 0.7666667 =

Q34

Q36

and
Q15

Q16
= 0.3051282 =

Q35

Q36

so that 
· · ·

(Q11 −
Q51
Q52

Q12)v1 = (Q31 −
Q51
Q52

Q32)v1

· · ·

.

Since
Q11 −

Q51

Q52
Q12 = 0 , 0.0348637 = Q31 −

Q51

Q52
Q32,

we have

Qv = 0⇔



v1 = 0
v2 = 0
v3 = 0
v6 = − 1

Q16
(Q14v4 + Q15v5) =

− 1
Q36

(Q34v4 + Q35v5).

Before completing the characterization ofN(c,Q) notice that the function Ψ used in describingN(K,Φ)
is given by

Ψ(m) = (m2
1 − m4,m2

2 − m5,m2
3 − m6), m = (m1, · · · ,m6) ,

so that Ψ is obviously C1 and convex. Moreover,

∇Ψ(m) = [2diag(m1,m2,m3),−I3].

Hence, for v such that Qv = 0 the vector ∇Ψ(m) · v is in fact

2 diag[m1,m2,m3]

v1
v2
v3

 − I3

v4
v5
v6


= −

v4
v5
v6

 .
This means that for a vector v (in the manifold Qv = 0) to belong to N(K,Φ), it must satisfy

v4 = v5 = v6 = 0

or else one of those three components must be negative.
As a consequence, condition (11) can only hold if the vectors in N(c,Q) have one of the last three

components strictly negative or either all null. But as we have seen, for the case where the surge velocity
u = x7 , 0 we have

v6 = −
1

Q16
(Q14v4 + Q15v5) = −

1
Q36

(Q34v4 + Q35v5).

Hence, if both v4 and v5 are positive or null, we have v6 necessarily negative or also null. If the surge
velocity x7 is zero then the matrix Q(x) is null and therefore

c(x) = (0, 0, 0, 1, 1, 1)
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so that
c · v ≤ 0⇔

v4 + v5 + v6 ≤ 0

which implies that either v4 = v5 = v6 = 0 or at least one of them must be negative. Consequently

N(c,Q) ⊂ N(K,Φ),

and applying Theorem 2.1 the proof is complete.
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