Resumos de AMIII

11 de Dezembro de 2002

1. Revisões de Cálculo Diferencial

1. Se $U \subset \mathbb{R}^n$ é aberto, $\mathbf{f}: U \to \mathbb{R}^m$ uma função (portanto $\mathbf{f} = (f^1, \dots, f^m)$), $\mathbf{x}_0 \in U$ e $\mathbf{v} \in \mathbb{R}^n$, então a *derivada direccional* de \mathbf{f} segundo \mathbf{v} no ponto \mathbf{x}_0 é

$$\partial_{\mathbf{v}} \mathbf{f}(\mathbf{x}_0) = \lim_{t \to 0} \frac{\mathbf{f}(\mathbf{x}_0 + t\mathbf{v}) - \mathbf{f}(\mathbf{x}_0)}{t} = \frac{d}{dt} \mathbf{f}(\mathbf{x}_0 + t\mathbf{v})|_{t=0}$$

(caso o limite exista).

2. A i-ésima derivada parcial de f é

$$\frac{\partial \mathbf{f}}{\partial x^i} \equiv \partial_i \mathbf{f} \equiv \begin{bmatrix} \frac{\partial f^1}{\partial x^i} \\ \dots \\ \frac{\partial f^m}{\partial x^i} \end{bmatrix} \equiv \begin{bmatrix} \partial_i f^1 \\ \dots \\ \partial_i f^n \end{bmatrix} \stackrel{\text{def}}{=} \partial_{\mathbf{e}_i} \mathbf{f}.$$

3. **f** diz-se *diferenciável* em \mathbf{x}_0 se existe uma transformação linear $D\mathbf{f}(\mathbf{x}_0): \mathbb{R}^n \to \mathbb{R}^m$ (representada por uma matriz $m \times n$) tal que

$$\lim_{\mathbf{h}\to\mathbf{0}}\frac{\mathbf{f}(\mathbf{x}_0+\mathbf{h})-\mathbf{f}(\mathbf{x}_0)-D\mathbf{f}(\mathbf{x}_0)\cdot\mathbf{h}}{\|\mathbf{h}\|}=\mathbf{0}.$$

4. Se f é diferenciável em x_0 então

$$\partial_{\mathbf{v}}\mathbf{f}(\mathbf{x}_0) = D_{\mathbf{f}}(\mathbf{x}_0) \cdot \mathbf{v}.$$

Em particular, $D\mathbf{f}$ é representada na base canónica pela matriz Jacobiana

$$D\mathbf{f} = \begin{bmatrix} \frac{\partial f^1}{\partial x^1} & \dots & \frac{\partial f^1}{\partial x^n} \\ \dots & \dots & \dots \\ \frac{\partial f^m}{\partial x^1} & \dots & \frac{\partial f^m}{\partial x^n} \end{bmatrix} = \begin{bmatrix} \partial_1 f^1 & \dots & \partial_n f^1 \\ \dots & \dots & \dots \\ \partial_1 f^m & \dots & \partial_n f^m \end{bmatrix}.$$

5. **f** diz-se de classe C^1 se as derivadas parciais $\frac{\partial f^i}{\partial x^j}$ $(i=1,\ldots,m;j=1,\ldots,n)$ são funções contínuas

1

6. **f** $C^1 \Rightarrow$ **f** diferenciável.

7. Se $\mathbf{f}: U \subset \mathbb{R}^n \to \mathbb{R}^m$ é diferenciável em $\mathbf{x}_0 \in U$, e $\mathbf{g}: V \subset \mathbb{R}^m \to \mathbb{R}^p$ é diferenciável em $\mathbf{f}(\mathbf{x}_0) \in V$, então $\mathbf{g} \circ \mathbf{f}: U \subset \mathbb{R}^n \to \mathbb{R}^p$ é diferenciável em \mathbf{x}_0 e

$$D(\mathbf{g} \circ \mathbf{f})(\mathbf{x}_0) = D\mathbf{g}(\mathbf{f}(\mathbf{x}_0))D\mathbf{f}(\mathbf{x}_0).$$

Em coordenadas (x^1, \ldots, x^n) em \mathbb{R}^n e (y^1, \ldots, y^m) em \mathbb{R}^m , tem-se

$$\frac{\partial g^i}{\partial x^j} = \sum_{k=1}^m \frac{\partial g^i}{\partial y^k} \frac{\partial f^k}{\partial x^j}$$

(regra da cadeia).

8. Derivadas parciais de ordem superior:

$$\frac{\partial^2 f}{\partial x^i \partial x^j} = \frac{\partial}{\partial x^i} \left(\frac{\partial f}{\partial x^j} \right) = \partial_i \partial_j f;$$

f diz-se de classe C^2 se todas as derivadas parciais de segunda ordem são funções contínuas.

9. Lema de Schwarz: $f C^2 \Rightarrow \partial_i \partial_j f = \partial_j \partial_i f$.

2. Função Inversa e Função Implícita

1. O jacobiano da função diferenciável $\mathbf{f}:D\subset\mathbb{R}^n\to\mathbb{R}^n$ é a função

$$J\mathbf{f}(\mathbf{x}) = \det D\mathbf{f}(\mathbf{x}).$$

- 2. Teorema da Função Inversa: Seja $\mathbf{f}:D\subset\mathbb{R}^n\to\mathbb{R}^n$ uma função de classe C^k $(k\geq 1)$ e $\mathbf{x}_0\in D$ tal que $J\mathbf{f}(\mathbf{x}_0)\neq 0$. Então \mathbf{f} é localmente C^k -invertível, i.e.:
 - (i) Existe um conjunto aberto $U \subset D$ contendo \mathbf{x}_0 tal que $\mathbf{f}|_U$ é injectiva;
 - (ii) $V = \mathbf{f}(U)$ é aberto;
 - (iii) $\mathbf{f}^{-1}: V \to U$ é de classe C^k .

Além disso, $D\mathbf{f}^{-1}(\mathbf{f}(\mathbf{x})) = [D\mathbf{f}(\mathbf{x})]^{-1}$ para $\mathbf{x} \in U$.

3. Seja $F \subset \mathbb{R}^n$ um conjunto fechado. Uma função $\mathbf{f}: F \to \mathbb{R}^n$ diz-se uma contracção se $\mathbf{f}(F) \subset F$ e existe c < 1 tal que

$$\|\mathbf{f}(\mathbf{x}_1) - \mathbf{f}(\mathbf{x}_2)\| \le c\|\mathbf{x}_1 - \mathbf{x}_2\|$$

(em particular, f é contínua).

- 4. Seja A um conjunto e $f:A\to A$ uma função. $x\in A$ diz-se um ponto fixo de f se f(x)=x.
- 5. Teorema do ponto fixo: Uma contracção possui um e um só ponto fixo.
- 6. Uma função $\mathbf{f}:D\subset\mathbb{R}^n\to\mathbb{R}^m$ é contínua *sse* a imagem inversa de qualquer aberto é um aberto.
- 7. Teorema da Função Implícita: Seja $\mathbf{F}: D \subset \mathbb{R}^{n+m} \to \mathbb{R}^m$ uma função de classe C^k $(k \geq 1)$ e $(\mathbf{x}_0, \mathbf{y}_0) \in D$ tal que $\mathbf{F}(\mathbf{x}_0, \mathbf{y}_0) = \mathbf{0}$ e $\det \frac{\partial \mathbf{F}}{\partial \mathbf{y}}(\mathbf{x}_0, \mathbf{y}_0) \neq 0$. Então existe uma vizinhança aberta $U \times V \ni (\mathbf{x}_0, \mathbf{y}_0)$ e uma função de classe C^k $\mathbf{f}: U \subset \mathbb{R}^n \to V \subset \mathbb{R}^m$ tais que

$$\{(\mathbf{x}, \mathbf{y}) \in U \times V : \mathbf{F}(\mathbf{x}, \mathbf{y}) = \mathbf{0}\} = \{(\mathbf{x}, \mathbf{y}) \in U \times V : \mathbf{y} = \mathbf{f}(\mathbf{x})\}.$$

8. Nas condições do Teorema da Função Implícita, a matriz Jacobiana de ${\bf f}$ em ${\bf x}_0$ pode ser calculada a partir de

$$\frac{\partial \mathbf{F}}{\partial \mathbf{x}}(\mathbf{x}_0, \mathbf{y}_0) + \frac{\partial \mathbf{F}}{\partial \mathbf{y}}(\mathbf{x}_0, \mathbf{y}_0) \cdot D\mathbf{f}(\mathbf{x}_0) = 0.$$

3. Variedades Diferenciáveis

1. O gráfico de uma função $\mathbf{f}:D\subset\mathbb{R}^m\to\mathbb{R}^{n-m}$ é o conjunto

$$\operatorname{Graf}(\mathbf{f}) = \{(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^n : \mathbf{x} \in D \text{ e } \mathbf{y} = \mathbf{f}(\mathbf{x})\}.$$

2. Um conjunto $M \subset \mathbb{R}^n$ é uma variedade diferenciável de dimensão $m \in \{0, \dots, n\}$ e classe C^k $(k \ge 1)$ se para qualquer ponto $\mathbf{x}_0 \in M$ existe uma vizinhança $U \ni \mathbf{x}_0$ e uma função de classe C^k $\mathbf{f}: D \subset \mathbb{R}^m \to \mathbb{R}^{n-m}$ (D aberto) tais que

$$M \cap U = \operatorname{Graf}(\mathbf{f}) \cap U$$

para alguma ordenação das funções coordenadas de \mathbb{R}^n .

- 3. Uma variedade de dimensão 0 é simplesmente um conjunto do pontos isolados; uma variedade de dimensão n é simplesmente um conjunto aberto.
- 4. $M \subset \mathbb{R}^n$ é uma variedade diferenciável de dimensão m e classe C^k sse para qualquer ponto $\mathbf{x}_0 \in M$ existe uma vizinhança $U \ni \mathbf{x}_0$ e uma função de classe C^k $\mathbf{F}: U \to \mathbb{R}^{n-m}$ tais que
 - (i) $M \cap U = \{ \mathbf{x} \in U : \mathbf{F}(\mathbf{x}) = \mathbf{0} \};$
 - (ii) rank $D\mathbf{F}(\mathbf{x}) = n m$ (i.e., é máxima) para todo o $\mathbf{x} \in U$.
- 5. Um caminho em \mathbb{R}^n é simplesmente uma função contínua $\mathbf{g}:D\subset\mathbb{R}\to\mathbb{R}^n$.
- 6. Um vector $\mathbf{v} \in \mathbb{R}^n$ diz-se um vector tangente à variedade diferenciável M no ponto \mathbf{x}_0 se existe um caminho diferenciável $\mathbf{g}:]-\varepsilon, \varepsilon[\to M \text{ tal que } \mathbf{g}(0) = \mathbf{x}_0 \text{ e } \frac{d\mathbf{g}}{dt}(0) = \mathbf{v}.$
- 7. Se $M \subset \mathbb{R}^n$ é uma variedade de dimensão m, o conjunto $T_{\mathbf{x}_0}M$ de todos os vectores tangentes a M no ponto $\mathbf{x}_0 \in M$ é um espaço vectorial de dimensão m, dito o espaço tangente a M no ponto \mathbf{x}_0 . O seu complemento ortogonal $T_{\mathbf{x}_0}^{\perp}M$ é um espaço vectorial de dimensão n-m, dito o espaço normal a M no ponto \mathbf{x}_0 .
- 8. Sejam $M \subset \mathbb{R}^n$ uma variedade de dimensão m, $\mathbf{x}_0 \in M$, $U \ni \mathbf{x}_0$ aberto e $\mathbf{F} : U \to \mathbb{R}^{n-m}$ tais que $M \cap U = \{\mathbf{x} \in U : \mathbf{F}(\mathbf{x}) = \mathbf{0}\}$ com $\operatorname{rank} D\mathbf{F}(\mathbf{x}) = n m$ para todo o $\mathbf{x} \in U$. Então

$$T_{\mathbf{x}_0}^{\perp} M = \operatorname{span}\{\nabla F^1(\mathbf{x}_0), \dots, \nabla F^m(\mathbf{x}_0)\}.$$

- 9. Teorema dos Extremos Condicionados: Sejam $f:\mathbb{R}^n \to \mathbb{R}$ uma função diferenciável, $M \subset \mathbb{R}^n$ uma variedade de dimensão m, $\mathbf{x}_0 \in M$, $U \ni \mathbf{x}_0$ aberto e $\mathbf{F}: U \to \mathbb{R}^{n-m}$ tais que $M \cap U = \{\mathbf{x} \in U: \mathbf{F}(\mathbf{x}) = \mathbf{0}\}$ com $\mathrm{rank}\, D\mathbf{F}(\mathbf{x}) = n-m$ para todo o $\mathbf{x} \in U$. Se a restrição de f a M tem um extremo local em $\mathbf{x}_0 \in M$ então $\nabla f(\mathbf{x}_0) \in T_{\mathbf{x}_0}^{\perp} M$.
- 10. Regra dos Multiplicadores de Lagrange: Nas condições do teorema anterior, existem constantes $\lambda_1, \ldots, \lambda_{n-m} \in \mathbb{R}$ (ditas os multiplicadores de Lagrange) tais que

$$\nabla (f + \lambda_1 F^1 + \ldots + \lambda_{n-m} F^{n-m})(\mathbf{x}_0) = \mathbf{0}.$$

4. Integração em \mathbb{R}^n

1. $I\subset\mathbb{R}^n$ é um intervalo se $I=I_1\times\ldots\times I_n$, onde cada I_k é um intervalo de \mathbb{R} . I é limitado/aberto/fechado sse cada I_k é limitado/aberto/fechado. Se I é um intervalo compacto com $I_k=[a_k,b_k]$, o seu volume n-dimensional é

$$V_n(I) = (b_1 - a_1)(b_2 - a_2) \dots (b_n - a_n).$$

Uma partição do intervalo compacto $I\subset\mathbb{R}$ é um conjunto finito $P=P_1\times\ldots\times P_n$, onde cada P_k é uma partição do intervalo $I_k=[a_k,b_k]$ (i.e., P_k é um subconjunto finito de I_k contendo a_k,b_k). Uma partição de I subdivide I num número finito de subintervalos J_α . Uma função $s:I\to\mathbb{R}$ diz-se uma função em escada se existe uma partição P de I tal que s é constante (igual a s_α) no interior de cada subintervalo J_α , sendo o seu integral o número real

$$\int_{I} s = \sum_{\alpha} s_{\alpha} V_{n}(J_{\alpha}).$$

2. Seja $I \subset \mathbb{R}^n$ um intervalo compacto e $f: I \to \mathbb{R}$ uma função *limitada*. O *integral superior* de f em I é o número real

$$\overline{\int_I} f = \inf \left\{ \int_I t : t \text{ \'e em escada e } t(\mathbf{x}) \geq f(\mathbf{x}) \ \ \, \forall \mathbf{x} \in I \right\}.$$

O integral inferior de f em I é o número real

$$\int_I f = \sup \left\{ \int_I s : s \text{ \'e em escada e } s(\mathbf{x}) \leq f(\mathbf{x}) \ \ \, \forall \mathbf{x} \in I \right\}.$$

A função f diz-se integrável à Riemann em I se os seus integrais superior e inferior coincidem, e nesse caso define-se o seu integral como sendo

$$\int_I f = \int_I f = \overline{\int_I} f.$$

As seguintes notações são também utilizadas para o integral de f:

$$\int_{I} f = \int_{I} f dV_{n} = \int_{I} f(\mathbf{x}) dV_{n}(\mathbf{x}) = \int_{I} f\left(x^{1}, \dots, x^{n}\right) dx^{1} \dots dx^{n}.$$

3. O conjunto R(I) de todas as funções integráveis à Riemann no intervalo compacto $I\subset\mathbb{R}^n$ é um espaço vectorial, e a aplicação

$$R(I) \ni f \mapsto \int_{I} f \in \mathbb{R}$$

é linear.

4. Teorema de Fubini: Sejam $A\subset\mathbb{R}^n$ e $B\subset\mathbb{R}^m$ intervalos compactos e $F:A\times B\to\mathbb{R}$ uma função integrável à Riemann. Então

$$\int_{A\times B} f = \int_{A} \left(\underline{\int_{B}} f_{\mathbf{x}} \right) dV_{n}(\mathbf{x}) = \int_{A} \left(\overline{\int_{B}} f_{\mathbf{x}} \right) dV_{n}(\mathbf{x})$$
$$= \int_{B} \left(\underline{\int_{A}} f_{\mathbf{y}} \right) dV_{m}(\mathbf{y}) = \int_{B} \left(\overline{\int_{A}} f_{\mathbf{y}} \right) dV_{m}(\mathbf{y})$$

onde $f_{\mathbf{x}}: B \to \mathbb{R}$ e $f_{\mathbf{y}}: A \to \mathbb{R}$ satisfazem $f_{\mathbf{x}}(\mathbf{y}) = f_{\mathbf{y}}(\mathbf{x}) = f(\mathbf{x}, \mathbf{y})$ e todos os integrais acima existem.

5. Diz-se que $A \subset \mathbb{R}^n$ tem *medida nula* se para todo o $\varepsilon > 0$ existe uma família numerável de intevalos $\{I_k\}_{k \in \mathbb{N}}$ tal que

$$A\subset \bigcup_{k=1}^{+\infty}I_k$$
 e $\sum_{k=1}^{+\infty}V_n(I_k)$

- 6. Propriedades de conjuntos de medida nula:
 - (i) Um subconjunto de um conjunto de medida nula tem medida nula;
 - (ii) A união de uma família numerável de conjuntos de medida nula tem medida nula;
 - (iii) O gráfico de uma função contínua $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ tem medida nula em \mathbb{R}^{m+n} .
- 7. Uma família $\{U_{\alpha}\}$ de subconjuntos de \mathbb{R}^n diz-se uma cobertura de $A \subset \mathbb{R}^n$ se $A \subset \bigcup_{\alpha} U_{\alpha}$. A cobertura diz-se aberta se cada um dos conjuntos $U_{\alpha} \subset \mathbb{R}^n$ é aberto. Uma subcobertura de $\{U_{\alpha}\}$ é uma subfamília de $\{U_{\alpha}\}$ que é ainda uma cobertura de A.
- 8. Teorema de Heine-Borel: $K \subset \mathbb{R}^n$ é compacto sse toda a cobertura aberta de K admite uma subcobertura finita.
- 9. Uma função $\mathbf{f}:D\subset\mathbb{R}^n\to\mathbb{R}^m$ diz-se uniformemente contínua em D se para todo o $\delta>0$ existe $\varepsilon>0$ tal que para todo o $\mathbf{x},\mathbf{y}\in D$ se tem

$$\|\mathbf{x} - \mathbf{y}\| < \varepsilon \Rightarrow \|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{y})\| < \delta.$$

- 10. Teorema de Heine-Cantor: Se $K \subset \mathbb{R}^n$ é compacto e $\mathbf{f}: K \to \mathbb{R}^m$ é contínua então \mathbf{f} é uniformemente contínua em K.
- 11. A oscilação da função limitada $f:D\subset\mathbb{R}^n\to\mathbb{R}$ no conjunto $A\subset D$ é o número real

$$o(f, A) = \sup_{\mathbf{x} \in A} f(\mathbf{x}) - \inf_{\mathbf{x} \in A} f(\mathbf{x}).$$

A oscilação de f no ponto $\mathbf{x} \in D$ é o número real

$$o(f, \mathbf{x}) = \lim_{\delta \to 0^+} o(f, B_{\delta}(\mathbf{x})).$$

A função f é contínua em $\mathbf{x} \in D$ sse $o(f, \mathbf{x}) = 0$.

- 12. Seja $A \subset \mathbb{R}^n$ e $P(\mathbf{x})$ uma proposição dependente de $\mathbf{x} \in A$. Diz-se que $P(\mathbf{x})$ é verdadeira quase em toda a parte (q.t.p.) em A se o conjunto $\{\mathbf{x} \in A : P(\mathbf{x}) \text{ é falsa }\}$ tem medida nula.
- 13. Critério de integrabilidade de Lebesgue: Seja $I \subset \mathbb{R}^n$ um intervalo compacto. Uma função limitada $f: I \to \mathbb{R}$ é integrável à Riemann em I sse é contínua q.t.p. em I.
- 14. Seja $I \subset \mathbb{R}^n$ um intervalo. A função característica do conjunto $A \subset I$ é a função $\chi_A : I \to \mathbb{R}$ definida por

$$\chi_A(\mathbf{x}) = \begin{cases} 1 \text{ se } \mathbf{x} \in A \\ 0 \text{ se } \mathbf{x} \notin A \end{cases}$$

15. Seja $I \subset \mathbb{R}^n$ um intervalo compacto. Um conjunto $A \subset I$ diz-se mensurável à Jordan em I se χ_A é integrável à Riemann em I, e o volume n-dimensional de A é

$$V_n(A) = \int_I \chi_A.$$

Se $f:I\to\mathbb{R}$ é integrável à Riemann em I, define-se

$$\int_{A} f = \int_{I} f \chi_{A}$$

(portanto $V_n(A) = \int_A 1$).

- 16. A família J(I) de todos os subconjuntos do intervalo compacto I que são mensuráveis à Jordan é uma álgebra de conjuntos em I, i.e.,
 - (i) $I \in J(I)$;
 - (ii) $A \in J(I) \Rightarrow I \setminus A \in J(I)$;
 - (iii) $A, B \in J(I) \Rightarrow A \cap B \in J(I)$.
- 17. Um conjunto $A \subset \mathbb{R}^n$ é mensurável à Jordan *sse* é limitado e a sua fronteira tem medida nula.
- 18. O suporte de uma função $\varphi:\mathbb{R}^n \to \mathbb{R}$ é o conjunto

$$\operatorname{supp}(\varphi) = \overline{\varphi^{-1}(\mathbb{R} \setminus \{0\})}.$$

- 19. Teorema da partição da unidade: Seja $A \subset \mathbb{R}^n$ e \mathcal{O} uma cobertura aberta de A. Então existe uma família Φ de funções $\varphi: \mathbb{R}^n \to \mathbb{R}$ de classe C^∞ e suporte compacto com as seguintes propriedades:
 - (i) Para cada $\mathbf{x} \in \mathbb{R}^n$ tem-se $0 \le \varphi(\mathbf{x}) \le 1$;
 - (ii) Para cada $\mathbf{x} \in \mathbb{R}^n$ existe um aberto $U_{\mathbf{x}} \ni \mathbf{x}$ tal que apenas finitas funções $\varphi \in \Phi$ não se anulam em $U_{\mathbf{x}}$;
 - (iii) Para cada $\mathbf{x} \in A$ temos

$$\sum_{\varphi \in \Phi} \varphi(\mathbf{x}) = 1$$

(por (ii) esta soma faz sentido);

- (iv) Para cada $\varphi \in \Phi$ existe um aberto $U \in \mathcal{O}$ tal que $\operatorname{supp}(\varphi) \subset U$.
- (Φ diz-se uma partição da unidade para A subordinada a \mathcal{O}).
- 20. Qualquer partição da unidade para um compacto $A \subset \mathbb{R}^n$ é finita; qualquer partição da unidade para um aberto $A \subset \mathbb{R}^n$ é numerável.
- 21. Uma cobertura aberta $\mathcal O$ do aberto $A\subset\mathbb R^n$ diz-se admissível se $A=\bigcup_{U\in\mathcal O}U.$
- 22. Seja $A\subset\mathbb{R}^n$ aberto, $f:A\to\mathbb{R}$ contínua q.t.p. em A e limitada em cada compacto contido em A. Seja $\mathcal O$ uma cobertura admissível de A e Φ uma partição da unidade para A subordinada a $\mathcal O$. Diz-se que f é integrável em A se a série de termos não negativos

$$\sum_{\varphi \in \Phi} \int_A \varphi |f|$$

converge. Se f é integrável, o seu integral é a soma da série absolutamente convergente

$$\int_A f = \sum_{\varphi \in \Phi} \int_A \varphi f.$$

23. (i) Se Ψ é outra partição da unidade subordinada à cobertura admissível \mathcal{O}' de A, então

$$\sum_{\psi \in \Psi} \int_A \psi |f|$$

também converge e

$$\sum_{\varphi \in \Phi} \int_A \varphi f = \sum_{\psi \in \Psi} \int_A \psi f$$

(i.e., a definição acima não depende da escolha da partição da unidade para A).

- (ii) Se A e f são limitados então f é integrável em A.
- (iii) Se A é mensurável à Jordan e f é limitada então $\int_A f$ determinado de acordo com a definição acima coincide com o valor para $\int_A f$ definido anteriormente (i.e., a definição acima é uma extensão da noção de integral de Riemann num aberto mensurável à Jordan).
- 24. Seja $A \subset \mathbb{R}^n$ aberto. Uma transformação de coordenadas em A é uma função $\mathbf{g}: A \to \mathbb{R}^n$ injectiva, de classe C^1 e tal que $J\mathbf{g}(\mathbf{x}) \neq 0$ para todo o $\mathbf{x} \in A$.
- 25. Teorema de mudança de variáveis: Seja $A \subset \mathbb{R}^n$ aberto, $\mathbf{g}: A \to \mathbb{R}^n$ uma tranformação de coordenadas e $f: \mathbf{g}(A) \to \mathbb{R}$ integrável. Então

$$\int_{\mathbf{g}(A)} f = \int_{A} (f \circ \mathbf{g}) |J\mathbf{g}|.$$

26. Coordenadas polares em \mathbb{R}^2 : São as coordenadas $(r,\theta)\in]0,+\infty[\times]0,2\pi[$ relacionadas com as coordenadas Cartesianas usuais (x,y) mediante a mudança de coordenadas

$$(x, y) = \mathbf{g}(r, \theta) = (r \cos \theta, r \sin \theta).$$

O Jacobiano desta transformação é

$$J\mathbf{g}(r,\theta) = r.$$

27. Coordenadas cilíndricas em \mathbb{R}^3 : São as coordenadas $(r, \theta, z) \in]0, +\infty[\times]0, 2\pi[\times\mathbb{R}$ relacionadas com as coordenadas Cartesianas usuais (x, y, z) mediante a mudança de coordenadas

$$(x, y, z) = \mathbf{g}(r, \theta, z) = (r \cos \theta, r \sin \theta, z).$$

O Jacobiano desta transformação é

$$J\mathbf{g}(r, \theta, z) = r.$$

28. Coordenadas esféricas em \mathbb{R}^3 : São as coordenadas $(r, \theta, \varphi) \in]0, +\infty[\times]0, \pi[\times]0, 2\pi[$ relacionadas com as coordenadas Cartesianas usuais (x, y, z) mediante a mudança de coordenadas

$$(x, y, z) = \mathbf{g}(r, \theta, \varphi) = (r \operatorname{sen} \theta \cos \varphi, r \operatorname{sen} \theta \operatorname{sen} \varphi, r \cos \theta).$$

O Jacobiano desta transformação é

$$J\mathbf{g}(r,\theta,\varphi) = r^2 \sin \theta.$$

- 29. Se A é mensurável à Jordan e é dada uma função densidade de massa $\rho:A\to\mathbb{R}^+$, integrável à Riemann em A, define-se:
 - (i) O volume n-dimensional de A:

$$V = V_n(A) = \int_A 1 dV_n.$$

(ii) A massa de A:

$$M = \int_{A} \rho dV_n$$
.

(iii) A coordenada k do centro de massa de A:

$$x_{CM}^k = \frac{1}{M} \int_A x^k \rho dV_n.$$

(iv) A coordenada k do centróide de A:

$$x_C^k = \frac{1}{V} \int_A x^k dV_n.$$

(v) O momento de inércia de A em relação ao eixo $\mathbb{R}\mathbf{e}_k$:

$$I_k = \int_A \sum_{i \neq k} (x^i)^2 \rho dV_n.$$

30. Regra de Leibnitz: Seja $I\subset\mathbb{R}^n$ um intervalo compacto e $f:I\times]a,b[\to\mathbb{R}$ uma função contínua tal que $\partial_{n+1}f$ existe e é contínua. Então a função $F:]a,b[\to\mathbb{R}$ definida por

$$F(t) = \int_{I} f(\mathbf{x}, t) dV_n(\mathbf{x})$$

 $\acute{\mathrm{e}}$ de classe C^1 e

$$F'(t) = \int_{I} \partial_{n+1} f(\mathbf{x}, t) dV_n(\mathbf{x}).$$

5. Formas diferenciais

1. O dual de \mathbb{R}^n é

$$(\mathbb{R}^n)^* = \{\omega : \mathbb{R}^n \to \mathbb{R} : \omega \text{ \'e linear}\}.$$

Os elementos de $(\mathbb{R}^n)^*$ dizem-se *1-covectores*.

2. $(\mathbb{R}^n)^*$ é um espaço vectorial de dimensão n. Uma base para $(\mathbb{R}^n)^*$ é

$$\{dx^1,\ldots,dx^n\}$$

onde o 1-covector dx^i é definido por

$$dx^{i}\left(v^{1}\mathbf{e}_{1}+\ldots+v^{n}\mathbf{e}_{n}\right)=v^{i},$$

ou seja,

$$dx^{i}\left(\mathbf{e}_{j}\right)=\delta_{ij}=\left\{ egin{array}{l} 1 ext{ se } i=j \\ 0 ext{ se } i
eq j \end{array}
ight.$$

 $(\delta_{ij} \text{ diz-se o } delta \text{ de Kronecker.})$

3. Um k-tensor (covariante) é uma aplicação $T: (\mathbb{R}^n)^k \to \mathbb{R}$ multilinear, i.e., tal que

$$T(\mathbf{v}_1, \dots, \mathbf{v}_i + \mathbf{w}_i, \dots, \mathbf{v}_k) = T(\mathbf{v}_1, \dots, \mathbf{v}_i, \dots, \mathbf{v}_k) + T(\mathbf{v}_1, \dots, \mathbf{w}_i, \dots, \mathbf{v}_k);$$

$$T(\mathbf{v}_1, \dots, \lambda \mathbf{v}_i, \dots, \mathbf{v}_k) = \lambda T(\mathbf{v}_1, \dots, \mathbf{v}_i, \dots, \mathbf{v}_k)$$

 $(\mathbf{v}_1,\ldots,\mathbf{v}_k,\mathbf{w}_1,\ldots,\mathbf{w}_k\in\mathbb{R}^n$, $\lambda\in\mathbb{R}$, $i=1,\ldots,n$). $T^k\left(\mathbb{R}^n\right)$ designa o conjunto de todos os k-tensores em \mathbb{R}^n .

4. Um k-tensor $\omega \in T^k(\mathbb{R}^n)$ diz-se alternante, ou um k-covector, se

$$\omega\left(\mathbf{v}_{1},\ldots,\mathbf{v}_{i},\ldots,\mathbf{v}_{j},\ldots,\mathbf{v}_{k}\right)=-\omega\left(\mathbf{v}_{1},\ldots,\mathbf{v}_{j},\ldots,\mathbf{v}_{i},\ldots,\mathbf{v}_{k}\right)$$

 $(\mathbf{v}_1, \dots, \mathbf{v}_k \in \mathbb{R}^n, 1 \le i < j \le n)$. $\Lambda^k(\mathbb{R}^n)$ designa o conjunto de todos os k-covectores em \mathbb{R}^n .

- 5. $T^{k}(\mathbb{R}^{n})$ é um espaço vectorial e $\Lambda^{k}(\mathbb{R}^{n})$ é um subespaço vectorial de $T^{k}(\mathbb{R}^{n})$.
- 6. Se $S \in T^k(\mathbb{R}^n)$ e $T \in T^l(\mathbb{R}^n)$, o seu produto tensorial $S \otimes T \in T^{k+l}(\mathbb{R}^n)$ é dado por

$$S \otimes T(\mathbf{v}_1, \dots, \mathbf{v}_k, \mathbf{w}_1, \dots, \mathbf{w}_l) = S(\mathbf{v}_1, \dots, \mathbf{v}_k) T(\mathbf{w}_1, \dots, \mathbf{w}_l)$$

$$(\mathbf{v}_1,\ldots,\mathbf{v}_k,\mathbf{w}_1,\ldots,\mathbf{w}_l\in\mathbb{R}^n).$$

- 7. Propriedades do produto tensorial: Se S,T,U são tensores e $\lambda \in \mathbb{R}$ então
 - (i) $(S+T)\otimes U=S\otimes U+T\otimes U$;
 - (ii) $S \otimes (T + U) = S \otimes T + S \otimes U$;
 - (iii) $(\lambda S) \otimes T = \lambda (S \otimes T) = S \otimes (\lambda T);$
 - (iv) $S \otimes (T \otimes U) = (S \otimes T) \otimes U$;
 - (v) $S \otimes T \neq T \otimes S$ (em geral).
- 8. $\dim (T^{(k)}(\mathbb{R}^n)) = n^k$, e uma base é $\{dx^{i_1} \otimes \ldots \otimes dx^{i_k}\}_{i_1,\ldots,i_k=1}^n$.
- 9. Se $T \in T^k(\mathbb{R}^n)$, define-se

$$Alt(T) (\mathbf{v}_1, \dots, \mathbf{v}_k) = \frac{1}{k!} \sum_{\sigma \in S_k} sgn(\sigma) T (\mathbf{v}_{\sigma(1)}, \dots, \mathbf{v}_{\sigma(k)})$$

- 10. Propriedades de Alt:
 - (i) Se $T \in T^k(R^n)$ então $\mathrm{Alt}(T) \in \Lambda^k(R^n)$;
 - (ii) Alt : $T^{k}\left(R^{n}\right) \rightarrow \Lambda^{k}\left(R^{n}\right)$ é linear;
 - (iii) Se $\omega \in \Lambda^k(R^n)$ então $\mathrm{Alt}(\omega) = \omega$.

(Por outras palavras, Alt : $T^k(R^n) \to \Lambda^k(R^n)$ é uma projecção).

11. Se ω é um k-covector e η é um l-covector, o seu produto exterior é o (k+l)-covector

$$\omega \wedge \eta = \frac{(k+l)!}{k!l!} \operatorname{Alt}(\omega \otimes \eta).$$

- 12. Propriedades do produto exterior:
 - (i) $\omega \wedge (\alpha + \beta) = \omega \wedge \alpha + \omega \wedge \beta$;
 - (ii) $\omega \wedge (c\eta) = c(\omega \wedge \eta) \text{ com } c \in \mathbb{R};$
 - (iii) $\omega \wedge \eta = (-1)^{kl} \eta \wedge \omega$ para $\omega \in \Lambda^k(\mathbb{R}^n), \eta \in \Lambda^l(\mathbb{R}^n)$;

(iv)
$$\omega \wedge (\alpha \wedge \beta) = (\omega \wedge \alpha) \wedge \beta$$
.

13.
$$dx^{i_1} \wedge \ldots \wedge dx^{i_k}(\mathbf{v}_1, \ldots, \mathbf{v}_k) = \det \begin{bmatrix} dx^{i_1}(\mathbf{v}_1) & \ldots & dx^{i_1}(\mathbf{v}_k) \\ \vdots & \vdots & \ddots & \vdots \\ dx^{i_k}(\mathbf{v}_1) & \ldots & dx^{i_k}(\mathbf{v}_k) \end{bmatrix}$$

14.
$$\dim \Lambda^k\left(R^n\right) = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$
, e uma base é $\left\{dx^{i_1} \wedge \ldots \wedge dx^{i_k}\right\}_{1 \leq i_1 < \ldots < i_k \leq n}$.

- 15. Uma forma diferencial de grau k e classe C^q no aberto $U \subset R^n$ é uma função $\omega: U \to \Lambda^k(R^n)$ de classe C^q (i.e., $\omega(\mathbf{x}) \in \Lambda^k(R^n)$ para todo o $\mathbf{x} \in U$). O conjunto das formas-k de classe C^∞ em $U \subset R^n$ designa-se por $\Omega^k(U)$.
- 16. Se $U \subset \mathbb{R}^n, V \subset \mathbb{R}^m$ são abertos, $\mathbf{f}: U \to V$ é C^{∞} e $\omega \in \Omega^k(V)$ então o *pull-back* de ω por \mathbf{f} é a forma-k $\mathbf{f}^*\omega \in \Omega^k(U)$ definida por

$$\mathbf{f}^*\omega(\mathbf{x})(\mathbf{v}_1,\ldots,\mathbf{v}_k) = \omega(\mathbf{f}(\mathbf{x}))(D\mathbf{f}(\mathbf{x})\mathbf{v}_1,\ldots,D\mathbf{f}(\mathbf{x})\mathbf{v}_k)$$

para $\mathbf{v}_1, \dots, \mathbf{v}_k \in \mathbb{R}^n$.

- 17. Propriedades do pull-back:
 - (i) $\mathbf{f}^*(\omega + \eta) = \mathbf{f}^*\omega + \mathbf{f}^*\eta$;
 - (ii) $\mathbf{f}^*(\omega \wedge \eta) = \mathbf{f}^*\omega \wedge \mathbf{f}^*\eta$;
 - (iii) $\mathbf{f}^*\mathbf{g}^*\omega = (\mathbf{g} \circ \mathbf{f})^*(\omega)$.
- 18. Se $U \subset \mathbb{R}^n$ é aberto e $\omega \in \Omega^k(U)$,

$$\omega = \sum_{1 \le i_1 \le \dots \le i_k \le n} \omega_{i_1 \dots i_k}(\mathbf{x}) dx^{i_1} \wedge \dots \wedge dx^{i_k},$$

a sua derivada exterior $d\omega \in \Omega^{k+1}\left(U\right)$ é dada por

$$d\omega = \sum_{1 \le i_1 < \dots < i_k \le n} \sum_{i=1}^n \partial_i \, \omega_{i_1 \dots i_k}(\mathbf{x}) dx^i \wedge dx^{i_1} \wedge \dots \wedge dx^{i_k}.$$

- 19. Propriedades da derivada exterior:
 - (i) $d(\omega + \eta) = d\omega + d\eta$;
 - (ii) $d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta$, onde $\omega \in \Omega^k(\mathbb{R}^n)$;
 - (iii) $d(d\omega) = 0$ (abreviadamente, $d^2 = 0$);
 - (iv) $d(\mathbf{f}^*\omega) = \mathbf{f}^*(d\omega)$.
- 20. Por definição, $\Lambda^0\left(\mathbb{R}^n\right)=\mathbb{R}$, e portanto as formas-0 num aberto $U\subset\mathbb{R}^n$ são as funções $g:U\to\mathbb{R}$ de classe C^∞ . Se $g\in\Omega^0(U)$, $\omega\in\Omega^k(U)$ e $\mathbf{f}:V\subset\mathbb{R}^m\to U$ é de classe C^∞ ,
 - (i) $g \wedge \omega = g\omega$;
 - (ii) $\mathbf{f}^* g = g \circ \mathbf{f}$;
 - (iii) $dg = \frac{\partial g}{\partial x^1} dx^1 + \ldots + \frac{\partial g}{\partial x^n} dx^n$.

(em particular, $d(x^i) = dx^i$, o que justifica esta notação).

- 21. Se $U \subset \mathbb{R}^n$ é aberto, $\omega \in \Omega^k(U)$ diz-se fechada se $d\omega = 0$, e exacta se existe uma forma $\alpha \in \Omega^{k-1}(U)$ tal que $\omega = d\alpha$ (α diz-se então um potencial para ω).
- 22. ω exacta $\Rightarrow \omega$ fechada.
- 23. $A \subset \mathbb{R}^n$ diz-se *em estrela* se existe um ponto $\mathbf{x}_0 \in A$ (dito o *centro*) tal que $[\mathbf{x}_0, \mathbf{x}] \subset A$ para todo o $\mathbf{x} \in A$, onde

$$[\mathbf{x}_0, \mathbf{x}] = {\mathbf{x}_0 + t(\mathbf{x} - \mathbf{x}_0) : t \in [0, 1]}$$

designa o segmento de recta de extremos x_0 e x.

24. Lema de Poincaré: Seja $\omega \in \Omega^k(U)$, onde $U \subset \mathbb{R}^n$ é aberto. Se U é em estrela e ω é fechada, então ω é exacta.

6. Integrais de Formas Diferenciais

- 1. Seja $M\subset\mathbb{R}^n$ uma variedade de dimensão $m,\ \mathbf{x}\in M$ e $U\ni\mathbf{x}$ uma vizinhança aberta; $\mathbf{g}:V\subset\mathbb{R}^m\to M\cap U$ diz-se uma parametrização de classe C^q de $M\cap U$ se é uma bijecção de classe C^q com $\mathbf{g}^{-1}:M\cap U\to V$ contínua e $\mathrm{rank}\,D\mathbf{g}(\mathbf{t})=m$ para todo o $\mathbf{t}\in V$.
- 2. $M \subset \mathbb{R}^n$ é uma variedade de dimensão m e classe C^q sse para todo o $\mathbf{x} \in M$ existe uma vizinhança aberta $U \ni \mathbf{x}$ e uma parametrização $\mathbf{g} : V \subset \mathbb{R}^m \to M \cap U$ de classe C^q . Além disso, as colunas de $D\mathbf{g}(\mathbf{t})$ formam uma base para $T_{\mathbf{g}(\mathbf{t})}M$.
- 3. Se $g: V \subset \mathbb{R}^m \to M \cap U$ é uma parametrização, a função contínua $g^{-1}: M \cap U \to V$ diz-se uma carta local, e o seu domínio $M \cap U$ a respectiva vizinhança de coordenadas.
- 4. Sejam $\mathbf{g}: V \subset \mathbb{R}^m \to M \cap U$ e $\mathbf{h}: W \subset \mathbb{R}^m \to M \cap O$ duas parametrizações tais que $M \cap U \cap O \neq \varnothing$, e $\varphi: M \cap U \to V$ e $\psi: M \cap O \to W$ as respectivas cartas locais. Então a mudança de carta local $\psi \circ \mathbf{g}: \varphi(M \cap U \cap O) \to \psi(M \cap U \cap O)$ é de classe C^q e $J(\psi \circ \mathbf{g})(\mathbf{t}) \neq 0$ para todo o $\mathbf{t} \in \varphi(M \cap U \cap O)$.
- 5. Diz-se que uma variedade-m $M \subset \mathbb{R}^n$ é orientável se existe $\mu \in \Omega^m(\mathbb{R}^n)$ tal que $\mathbf{g}^*\mu(\mathbf{t}) \neq 0$ para todo o $\mathbf{t} \in V$ e toda a parametrização $\mathbf{g} : V \subset \mathbb{R}^m \to M \cap U$. Diz-se então que:
 - (i) μ induz uma *orientação* em M;
 - (ii) $\mathbf{g} \in compativel \operatorname{com} \mathbf{a} \operatorname{orienta} \tilde{\mathbf{g}} = \int dt^1 \wedge \ldots \wedge dt^m \operatorname{com} f > 0$;
 - (iii) $\mu, \nu \in \Omega^m(\mathbb{R}^n)$ induzem a mesma orientação se são compatíveis com as mesmas parametrizações (portanto uma variedade orientável possui exactamente duas orientações).
- 6. Dado um vector

$$\mathbf{v} = v^1 \mathbf{e}_1 + \ldots + v^n \mathbf{e}_n \in \mathbb{R}^n$$

definimos o covector-1

$$\omega_{\mathbf{v}} = v^1 dx^1 + \ldots + v^n dx^n$$

e o covector-(n-1)

$$\Omega_{\mathbf{v}} = v^1 dx^2 \wedge \ldots \wedge dx^n - \ldots + (-1)^{n-1} v^n dx^1 \wedge \ldots \wedge dx^{n-1}.$$

7. (i) Qualquer variedade-1 $M \subset \mathbb{R}^n$ é orientável: se $\mathbf{t}: M \to \mathbb{R}^n$ é um vector tangente unitário contínuo, $\omega_{\mathbf{t}}$ induz uma orientação em M. Uma parametrização \mathbf{g} é compatível com esta orientação *sse*

$$\mathbf{t} \cdot \frac{d\mathbf{g}}{dt} > 0.$$

(ii) Se $M \subset \mathbb{R}^n$ é uma variedade-(n-1) com vector normal unitário $\mathbf{n}: M \to \mathbb{R}^n$ contínuo, então M é orientável, já que $\Omega_{\mathbf{n}}$ induz uma orientação em M. Uma parametrização g é compatível com esta orientação sse

$$\mathbf{n} \cdot (\partial_1 \mathbf{g} \times \ldots \times \partial_{n-1} \mathbf{g}) > 0.$$

8. Seja $M \subset \mathbb{R}^n$ uma variedade-m orientável com a orientação induzida por $\mu \in \Omega^m(\mathbb{R}^n)$, e seja $\omega \in \Omega^m(\mathbb{R}^n)$. Seja $\mathbf{g}: V \subset \mathbb{R}^m \to M \cap U$ uma parametrização, e $f, h: V \to \mathbb{R}$ tais que $\mathbf{g}^*\omega = fdt^1 \wedge \ldots \wedge dt^m$, $\mathbf{g}^*\mu = hdt^1 \wedge \ldots \wedge dt^m$. Se f é integrável em V, define-se

$$\int_{M \cap U^{\mu}} \omega = \operatorname{sgn}(h) \int_{V} f dV_{m}(\mathbf{t}).$$

Definimos ainda

$$\int_{M \cap U} |\omega| = \int_{V} |f| dV_m(\mathbf{t}).$$

Se $\mathcal O$ é uma cobertura aberta de M tal que $M\cap U$ é uma vizinhança de coordenadas para todo o $U\in \mathcal O$ e Φ é uma partição da unidade subordinada a $\mathcal O$, e se a série

$$\sum_{\varphi \in \Phi} \int_{M \cap U_{\varphi}} |\varphi \omega|$$

converge (onde U_{φ} designa uma aberto tal que $\operatorname{supp} \varphi \subset U_{\varphi}$), definimos

$$\int_{M^{\mu}} = \sum_{\varphi \in \Phi} \int_{M \cap U_{\varphi}^{\mu}} \varphi \omega.$$

9. Se $U \subset \mathbb{R}^n$ é aberto e $f: U \to \mathbb{R}$ é integrável, então

$$\int_{U^+} f dx^1 \wedge \ldots \wedge dx^n = \int_{U} f dV_n$$

onde + é a orientação induzida em U por $dx^1 \wedge \ldots \wedge dx^n$. Por essa razão, $dV_n = dx^1 \wedge \ldots \wedge dx^n$ diz-se o elemento de volume em \mathbb{R}^n . Se $\mathbf{g}: V \subset \mathbb{R}^m \to M \cap U$ é uma parametrização compatível com a orientação induzida em $M \cap U$ por $\mu \in \Omega^m(\mathbb{R}^n)$, então

$$\int_{M\cap U^{\mu}}\omega=\int_{V^{+}}\mathbf{g}^{*}\omega.$$

10. $dV_m \in \Omega^m(\mathbb{R}^n \text{ diz-se um } elemento \ de \ volume \ para a variedade-} m \ M \subset \mathbb{R}^n \ \text{se}$

$$|dV_m(\mathbf{x})(\mathbf{v}_1,\ldots,\mathbf{v}_m)| = V_m(\mathbf{v}_1,\ldots,\mathbf{v}_m) = \det(g_{ij})$$

para quaisquer $\mathbf{v}_1,\dots,\mathbf{v}_m\in T_{\mathbf{x}}M$ e $\mathbf{x}\in M$, onde g é a matriz $m\times m$ dada por $g_{ij}=\mathbf{v}_i\cdot\mathbf{v}_j$.

11. Qualquer variedade-m orientável $M \subset \mathbb{R}^n$ possui um elemento de volume $dV_m \in \Omega^m(\mathbb{R}^n)$, e este induz uma orientação em M. Se $\mathbf{g}: V \subset \mathbb{R}^m \to M \cap U$ é uma parametrização compatível com a orientação induzida por dV_m , então

$$\mathbf{g}^* dV_m = \sqrt{\det(g_{ij})} dt^1 \wedge \ldots \wedge dt^m = \sqrt{\det(D\mathbf{g}^t D\mathbf{g})} dt^1 \wedge \ldots \wedge dt^m$$

onde a matriz $m \times m$ g é dada por

$$g_{ij} = \partial_i \mathbf{g} \cdot \partial_j \mathbf{g}$$
.

12. (i) Se M é uma variedade-1 e ${\bf g}$ é uma parametrização compatível com o elemento de volume dV_1 , então

$$\mathbf{g}^* dV_1 = \left\| \frac{d\mathbf{g}}{dt} \right\| dt.$$

(ii) Se M é uma variedade-(n-1) orientável e ${\bf g}$ é uma parametrização compatível com o elemento de volume dV_{n-1} , então

$$\mathbf{g}^* dV_{n-1} = \|\partial_1 \mathbf{g} \times \ldots \times \partial_{n-1} \mathbf{g}\| dt^1 \wedge \ldots \wedge dt^{n-1}.$$

13. Se $f:\mathbb{R}^n \to \mathbb{R}$ é um campo escalar e $M \subset \mathbb{R}^n$ é uma variedade-m orientável, define-se

$$\int_{M} f = \int_{M^{+}} f dV_{m},$$

onde + é a orientação induzida em M por dV_m .

- 14. Se $M \subset \mathbb{R}^n$ é uma variedade de dimensão m orientável e é dada uma função densidade de massa por unidade de volume m-dimensional $\sigma : \mathbb{R}^n \to [0, +\infty[$, define-se:
 - i. O *volume* m-dimensional de M:

$$V = V_m(M) = \int_M dV_m.$$

ii. A massa de M:

$$M = \int_{M} \sigma dV_{m}.$$

iii. A coordenada k do centro de massa de M:

$$x_{CM}^k = \frac{1}{M} \int_M x^k \sigma dV_m.$$

iv. A coordenada k do centróide de M:

$$x_C^k = \frac{1}{V} \int_M x^k dV_m.$$

v. O momento de inércia de M em relação a um determinado eixo:

$$I = \int_{M} d^{2}\sigma dV_{m},$$

onde $d(\mathbf{x})$ é a distância do ponto \mathbf{x} ao eixo.

15. Se $M \subset \mathbb{R}^n$ é uma variedade-1, $\mathbf{g}:]a,b[\to \mathbb{R}^n$ uma parametrização e $\mathbf{F}:\mathbb{R}^n \to \mathbb{R}^n$ um campo vectorial C^∞ ,

$$\int_{M^+} \omega_{\mathbf{F}} = \int_a^b \mathbf{F}(\mathbf{g}(t)) \cdot \frac{d\mathbf{g}}{dt}(t) dt = \int_M \mathbf{F} \cdot \boldsymbol{\tau} \, dV_1,$$

onde + é a orientação de M compatível com \mathbf{g} e

$$m{ au}(t) = rac{rac{d\mathbf{g}}{dt}(t)}{\left\|rac{d\mathbf{g}}{dt}(t)
ight\|}$$

é o vector tangente unitário correspondente a esta orientação. Este integral diz-se o integral de linha de ${\bf F}$ ao longo de M na direcção determinada por ${m au}$; no caso em que ${\bf F}$ é uma força, tem a interpretação física do trabalho realizado por ${\bf F}$ sobre uma partícula que percorre M nesta direcção.

16. Se $M \subset \mathbb{R}^n$ é uma variedade-(n-1) (hipersuperfície) orientável, $\mathbf{g}: V \subset \mathbb{R}^{n-1} \to \mathbb{R}^n$ uma parametrização e $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$ um campo vectorial C^{∞} ,

$$\int_{M^+} \Omega_{\mathbf{F}} = \int_{V} \mathbf{F} \cdot (\partial_1 \mathbf{g} \times \ldots \times \partial_{n-1} \mathbf{g}) dt^1 \ldots dt^{n-1} = \int_{M} \mathbf{F} \cdot \mathbf{n} dV_{n-1},$$

onde + é a orientação de M compatível com ${\bf g}$ e

$$\mathbf{n} = \frac{\partial_1 \mathbf{g} \times \ldots \times \partial_{n-1} \mathbf{g}}{\|\partial_1 \mathbf{g} \times \ldots \times \partial_{n-1} \mathbf{g}\|}$$

é o vector normal unitário correspondente a esta orientação. Este integral diz-se o fluxo de ${\bf F}$ através de M na direcção determinada por ${\bf n}$; no caso em que ${\bf F}=\rho{\bf v}$, onde ρ e ${\bf v}$ são a densidade e velocidade de um fluido, tem a interpretação física da massa de fluido que atravessa M por unidade de tempo nesta direcção.

17. $M \subset \mathbb{R}^n$ diz-se uma $variedade\ com\ bordo\ de\ dimensão\ m\ (e\ classe\ C^q)$ se $M=\dot{M}\cup\partial M$, onde \dot{M} é uma variedade de dimensão m (e classe C^q), ∂M é uma variedade de dimensão m-1 (e classe C^q), dita o $bordo\ de\ M$, e para todo o $\mathbf{x}\in\partial M$ existe um aberto $U\ni\mathbf{x}$ e uma aplicação contínua com inversa contínua $\mathbf{g}:V\cap\{\mathbf{t}\in\mathbb{R}^m:t^1\le 0\}\to M\cap U$ cuja restrição a $V\cap\{\mathbf{t}\in\mathbb{R}^m:t^1<0\}$ é uma parametrização de $\dot{M}\cap U$ e cuja restrição a $V\cap\{\mathbf{t}\in\mathbb{R}^m:t^1=0\}$ é uma parametrização de $\partial M\cap U$. M diz-se orientável se \dot{M} é orientável, e se $\omega\in\Omega^m(\mathbb{R}^n)$ define-se

$$\int_{M^{\mu}} \omega = \int_{\dot{M}^{\mu}} \omega$$

(para uma dada orientação determinada por $\mu \in \Omega^m(\mathbb{R}^n)$). Se M é orientável, ∂M é sempre orientável: se $\mathbf{g}: V \cap \{\mathbf{t} \in \mathbb{R}^m: t^1 \leq 0\} \to M \cap U$ é compatível com μ , $\mathbf{h}: W \subset \mathbb{R}^{m-1} \to \partial M \cap U$ dada por $\mathbf{h}(u^1, \dots, u^{m-1}) = \mathbf{g}(0, u^1, \dots, u^{m-1})$ é compatível com a orientação induzida por μ em ∂M .

18. Teorema de Stokes (Teorema Fundamental do Cálculo): Se $M \subset \mathbb{R}^n$ é uma variedade com bordo compacta orientável de dimensão m e $\omega \in \Omega^{m-1}(\mathbb{R}^n)$ então

$$\int_{M^{\mu}} d\omega = \oint_{\partial M^{\nu}} \omega,$$

onde ν é a orientação induzida em ∂M pela orientação μ de M.

19. Se M é uma variedade (sem bordo) compacta orientável de dimensão m e $\omega \in \Omega^{m-1}(\mathbb{R}^n)$ então

$$\oint_M d\omega = 0$$

(∮ significa apenas que a região de integração é uma variedade compacta).

20. Se $f:\mathbb{R}^n o \mathbb{R}$ é um campo escalar de classe C^1 , tem-se

$$df = \omega_{\nabla f}$$
.

21. Notação: Se $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$ é um campo vectorial e M é uma variedade de dimensão 1 com parametrização $\mathbf{g}:]a,b[\to \mathbb{R}^n$ (compatível com a orientação + de M), é habitual escrever

$$\int_{M} \mathbf{F} \cdot d\mathbf{g} = \int_{M^{+}} \omega_{\mathbf{F}} = \int_{a}^{b} \mathbf{F}(\mathbf{g}(t)) \cdot \frac{d\mathbf{g}}{dt}(t) dt.$$

22. Teorema Fundamental do Cálculo para Integrais de Linha: Se $f: \mathbb{R}^n \to \mathbb{R}$ é um campo escalar de classe C^1 e M é uma variedade de dimensão 1 com bordo parametrizada por $\mathbf{g}: [a,b] \to \mathbb{R}^n$, com $\mathbf{g}(a) = \mathbf{a}$ e $\mathbf{g}(b) = \mathbf{b}$, então

$$\int_{M} \nabla f \cdot d\mathbf{g} = f(\mathbf{b}) - f(\mathbf{a}).$$

23. Se $\mathbf{F}:\mathbb{R}^n \to \mathbb{R}^n$ é um campo vectorial de classe C^1 , a sua divergência é o campo escalar contínuo

$$\nabla \cdot \mathbf{F} = \frac{\partial F^1}{\partial x^1} + \ldots + \frac{\partial F^n}{\partial x^n}.$$

Tem-se

$$d\Omega_{\mathbf{F}} = (\nabla \cdot \mathbf{F}) dV_n.$$

24. Teorema da Divergência: Se $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$ é um campo vectorial de classe C^1 e M é uma variedade com bordo de dimensão n então

$$\int_{M} \nabla \cdot \mathbf{F} \, dV_{n} = \oint_{\partial M} \mathbf{F} \cdot \mathbf{n} \, dV_{n-1},$$

onde n é a normal unitária exterior.

25. Teorema de Green: É apenas o Teorema de Stokes para variedades-2 com bordo $M \subset \mathbb{R}^2$:

$$\int_{\partial M^{\nu}} P dx + Q dy = \int_{M} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \wedge dy,$$

onde ν corresponde a percorrer ∂M mantendo M à esquerda do vector tangente.

7. Cálculo Vectorial em \mathbb{R}^3

1. Se $\mathbf{F}: \mathbb{R}^3 \to \mathbb{R}^3$ é um campo vectorial de classe C^1 , o seu *rotacional* é o campo vectorial

$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F^1 & F^2 & F^3 \end{vmatrix} = \left(\frac{\partial F^3}{\partial y} - \frac{\partial F^2}{\partial z}, \frac{\partial F^1}{\partial z} - \frac{\partial F^3}{\partial x}, \frac{\partial F^2}{\partial x} - \frac{\partial F^1}{\partial y} \right).$$

2. Teorema de Stokes para Campos Vectoriais: Se $\mathbf{F}:\mathbb{R}^3\to\mathbb{R}^3$ é um campo vectorial de classe C^1 e M é uma superfície com bordo, então

$$\int_{M} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dV_2 = \oint_{\partial M} \mathbf{F} \cdot \mathbf{dg},$$

onde ∂M deve ser percorrido no sentido tal que o produto externo do vector tangente ao bordo pela normal unitária \mathbf{n} aponte *para fora* da superfície.

3. Regra da Mão Direita: Uma maneira simples de recordar a relação entre as orientações da superfície e do seu bordo no Teorema de Stokes é a seguinte: desenhando um pequeno quadrado na superfície tal que um dos seus lados é um pedaço do bordo, a orientação correcta do bordo é a que induz a circulação ao longo dos lados do quadrado que fornece a normal unitária n por aplicação da regra da mão direita (fechando a mão direita no sentido da circulação no quadrado, o polegar aponta na direcção da normal).

4. Se $f:\mathbb{R}^3 \to \mathbb{R}$ é um campo escalar de classe C^2 , então

$$\nabla \times (\nabla f) = \mathbf{0}.$$

5. Se $\mathbf{F}: \mathbb{R}^3 \to \mathbb{R}^3$ é um campo vectorial de classe C^2 , então

$$\nabla \cdot (\nabla \times \mathbf{F}) = 0.$$

- 6. Lema de Poincaré para Campos Vectoriais: Se $\mathbf{F}:U\subset\mathbb{R}^3\to\mathbb{R}^3$ é um campo vectorial de classe C^1 e U é um conjunto em estrela então:
 - (i) $\nabla \times \mathbf{F} = \mathbf{0} \Rightarrow \mathbf{F} = \nabla f$ para algum campo escalar $f: U \to \mathbb{R}$ (dito um *potencial escalar* para \mathbf{F});
 - (ii) $\nabla \cdot \mathbf{F} = 0 \Rightarrow \mathbf{F} = \nabla \times \mathbf{A}$ para algum campo vectorial $\mathbf{A} : U \to \mathbb{R}^3$ (dito um *potencial vector* para \mathbf{F}).
- 7. Dicionário Formas/Campos em \mathbb{R}^3 :
 - (i) Produtos:

$$\omega_{f\mathbf{F}} = f\omega_{\mathbf{F}};$$

$$\Omega_{\mathbf{F}\times\mathbf{G}} = \omega_{\mathbf{F}} \wedge \omega_{\mathbf{G}};$$

$$(\mathbf{F}\cdot\mathbf{G})dV_3 = \Omega_{\mathbf{F}} \wedge \omega_{\mathbf{G}} = \omega_{\mathbf{F}} \wedge \Omega_{\mathbf{G}}.$$

(ii) Derivadas:

$$\omega_{\nabla f} = df;$$

$$\Omega_{\nabla \times \mathbf{F}} = d\omega_{\mathbf{F}};$$

$$(\nabla \cdot \mathbf{F})dV_3 = d\Omega_{\mathbf{F}}.$$

(iii) Integrais:

$$\begin{split} &\int_{M} \mathbf{F} \cdot d\mathbf{g} = \int_{M} \omega_{\mathbf{F}}; \\ &\int_{M} \mathbf{F} \cdot \mathbf{n} \, dV_{2} = \int_{M} \Omega_{\mathbf{F}}; \end{split}$$

(iv) Teoremas Sobre Derivadas de Produtos:

$$d(fg) = fdg + gdf \Leftrightarrow \nabla(fg) = f\nabla g + g\nabla f;$$

$$d(f\omega_{\mathbf{F}}) = df \wedge \omega_{\mathbf{F}} + fd\omega_{\mathbf{F}} \Leftrightarrow \nabla \times (f\mathbf{F}) = (\nabla f) \times \mathbf{F} + f(\nabla \times \mathbf{F});$$

$$d(\omega_{\mathbf{F}} \wedge \omega_{\mathbf{G}}) = d\omega_{\mathbf{F}} \wedge \omega_{\mathbf{G}} - \omega_{\mathbf{F}} \wedge d\omega_{\mathbf{G}} \Leftrightarrow \nabla \cdot (\mathbf{F} \times \mathbf{G}) = (\nabla \times \mathbf{F}) \cdot \mathbf{G} - \mathbf{F} \cdot (\nabla \times \mathbf{G}).$$

(v) Teoremas Sobre Derivadas:

$$\nabla \times (\nabla f) = \mathbf{0} \Leftrightarrow d(df) = 0;$$

$$\nabla \cdot (\nabla \times \mathbf{F}) = 0 \Leftrightarrow d(d\omega_{\mathbf{F}}) = 0.$$

(vi) Teoremas Sobre Integrais:

$$\int_{M} (\nabla f) \cdot d\mathbf{g} = f(\mathbf{b}) - f(\mathbf{a}) \Leftrightarrow \int_{M} df = f(\mathbf{b}) - f(\mathbf{a});$$

$$\iint_{M} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dV_{2} = \oint_{\partial M} \mathbf{F} \cdot \mathbf{dg} \Leftrightarrow \int_{M} d\omega_{\mathbf{F}} = \oint_{\partial M} \omega_{\mathbf{F}};$$

$$\iiint_{M} (\nabla \cdot \mathbf{F}) \, dV_{3} = \oiint_{\partial M} \mathbf{F} \cdot \mathbf{n} \, dV_{2} \Leftrightarrow \int_{M} d\Omega_{\mathbf{F}} = \oint_{\partial M} \Omega_{\mathbf{F}}.$$

8. Se $U, V \subset \mathbb{R}^n$ são abertos e $\mathbf{g}: V \to U$ é uma mudança de coordenadas,

$$(x^1, \dots, x^n) = \mathbf{g}(t^1, \dots, t^n) \Leftrightarrow (t^1, \dots, t^n) = \mathbf{g}^{-1}(x^1, \dots, x^n),$$

vê-se que (t^1,\ldots,t^n) podem ser vistas como funções definidas em U. Tem-se

(i) $\{\partial_1 \mathbf{g}, \dots, \partial_n \mathbf{g}\}$ é uma base para \mathbb{R}^n ;

(ii)
$$dt^{i}(\partial_{j}\mathbf{g}) = \delta_{ij} = \begin{cases} 1 \text{ se } i = j \\ 0 \text{ se } i \neq j \end{cases}$$
;

(iii) $\{dt^1,\ldots,dt^n\}$ é uma base para $(\mathbb{R}^n)^*$, dita a base dual de $\{\partial_1\mathbf{g},\ldots,\partial_n\mathbf{g}\}$;

(iv)
$$\omega_{\partial_i \mathbf{g}} = \sum_{j=1}^n g_{ij} dt^j$$
, onde $g_{ij} = \partial_i \mathbf{g} \cdot \partial_j \mathbf{g}$.

9. Coordenadas Cilíndricas em \mathbb{R}^3 : Tem-se

$$(g_{ij}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

e portanto $\{\partial_r \mathbf{g}, \partial_\theta \mathbf{g}, \partial_z \mathbf{g}\}$ é uma base ortogonal correspondendo às formas $\{dr, r^2 d\theta, dz\}$. A respectiva base ortonormal satisfaz

$$\mathbf{e}_r = \partial_r \mathbf{g} \sim dr \sim \mathbf{e}_\theta \times \mathbf{e}_z \sim rd\theta \wedge dz;$$

$$\mathbf{e}_\theta = \frac{1}{r} \partial_\theta \mathbf{g} \sim rd\theta \sim \mathbf{e}_z \times \mathbf{e}_r \sim dz \wedge dr;$$

$$\mathbf{e}_z = \partial_z \mathbf{g} \sim dz \sim \mathbf{e}_r \times \mathbf{e}_\theta \sim rdr \wedge d\theta$$

(onde escrevemos $\mathbf{F} \sim \omega_{\mathbf{F}} \sim \Omega_{\mathbf{F}}$). Tem-se ainda

$$dV_3 = rdr \wedge d\theta \wedge dz$$
.

10. Coordenadas Esféricas em \mathbb{R}^3 : Tem-se

$$(g_{ij}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & r^2 \operatorname{sen}^2 \theta \end{pmatrix}$$

e portanto $\{\partial_r \mathbf{g}, \partial_\theta \mathbf{g}, \partial_\varphi \mathbf{g}\}$ é uma base ortogonal correspondendo às formas $\{dr, r^2 d\theta, r^2 \sin^2\theta d\varphi\}$. A respectiva base ortonormal satisfaz

$$\mathbf{e}_{r} = \partial_{r}\mathbf{g} \sim dr \sim \mathbf{e}_{\theta} \times \mathbf{e}_{\varphi} \sim r^{2} \operatorname{sen} \theta d\theta \wedge d\varphi;$$

$$\mathbf{e}_{\theta} = \frac{1}{r} \partial_{\theta}\mathbf{g} \sim r d\theta \sim \mathbf{e}_{\varphi} \times \mathbf{e}_{r} \sim r \operatorname{sen} \theta d\varphi \wedge dr;$$

$$\mathbf{e}_{\varphi} = \frac{1}{r \operatorname{sen} \theta} \partial_{\varphi}\mathbf{g} \sim r \operatorname{sen} \theta d\varphi \sim \mathbf{e}_{r} \times \mathbf{e}_{\theta} \sim r dr \wedge d\theta.$$

Tem-se ainda

$$dV_3 = r^2 \sin \theta dr \wedge d\theta \wedge d\varphi.$$

8. Homotopia

- 1. Seja $D \subset \mathbb{R}^n$ aberto. Um campo vectorial $\mathbf{F}: D \to \mathbb{R}^n$ diz-se um campo gradiente (ou conservativo) se existe uma função $f: D \to \mathbb{R}$ (dita um potencial para \mathbf{F}) tal que $\mathbf{F} = \nabla f$. Diz-se que o campo \mathbf{F} é fechado se $\omega_{\mathbf{F}}$ é fechada (portanto \mathbf{F} gradiente $\Rightarrow \mathbf{F}$ fechado).
- 2. Seja $D \subset \mathbb{R}^n$ um aberto conexo por arcos e $\omega \in \Omega^1(D)$. Então ω é exacta sse

$$\oint_C \omega = 0$$

para toda a variedade-1 compacta (i.e., curva fechada) $C \subset D$.

- 3. Seja $D \subset \mathbb{R}^n$ um conjunto não vazio. Diz-se que dois caminhos fechados $\alpha, \beta: [a,b] \to D$ são caminhos (livremente) homotópicos em D se existe uma função contínua $\mathbf{H}: [a,b] \times [0,1] \to D$ (dita uma homotopia) tal que $\mathbf{H}(s,0) = \alpha(s)$ e $\mathbf{H}(s,1) = \beta(s)$ para todo o $s \in [a,b]$ e $\mathbf{H}(a,t) = \mathbf{H}(b,t)$ para todo o $t \in [0,1]$. Quando a homotopia é de classe C^q os caminhos dizem-se C^q -homotópicos.
- 4. Seja $D\subset\mathbb{R}^n$ um aberto conexo por arcos, $\pmb{\alpha},\pmb{\beta}:[a,b]\to D$ caminhos C^1 -homotópicos e $\omega\in\Omega^1(D)$ uma forma fechada. Então

$$\oint_{\alpha([a,b])} \omega = \oint_{\beta([a,b])} \omega.$$

- 5. Diz-se que $D \subset \mathbb{R}^n$ é simplesmente conexo se D é conexo por arcos e qualquer caminho fechado $\alpha:[a,b] \to D$ é homotópico em D a um caminho constante.
- 6. Seja $D \subset \mathbb{R}^n$ um aberto simplesmente conexo e $\omega \in \Omega^1(D)$. Então ω é exacta sse ω é fechada.
- 7. Seja $D \subset \mathbb{R}^n$ um aberto conexo por arcos e $\omega \in \Omega^m(D)$. Então ω é exacta sse

$$\oint_M \omega = 0$$

para toda a variedade-m compacta $M \subset D$.

8. Seja $D\subset\mathbb{R}^n$ um aberto conexo por arcos tal que toda a variedade-m compacta $M\subset D$ é o bordo de uma variedade-(m+1) com bordo compacta $N\subset D$. Então $\omega\in\Omega^m(D)$ é exacta sse ω é fechada.

9. Integral de Lebesgue

1. Uma álgebra de conjuntos \mathcal{A} em $X \subset \mathbb{R}^n$ diz-se uma σ -álgebra se

$$A_1, A_2, \ldots \in \mathcal{A} \Rightarrow \bigcup_{k=1}^{+\infty} A_k \in \mathcal{A}.$$

2. A medida exterior de $A \subset \mathbb{R}^n$ é

$$\overline{V}_n(A) = \inf \left\{ \sum_{k=1}^{+\infty} V_n(I_k) : I_k \text{ intervalo, } A \subset \bigcup_{k=1}^{+\infty} I_k \right\}$$

(pode ser $+\infty$). Note-se que $\overline{V}_n(A)=0$ sse A tem medida nula.

3. A diferença simétrica entre dois conjuntos A e B é

$$A \triangle B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B).$$

4. Um conjunto $A \subset \mathbb{R}^n$ diz-se mensurável com medida finita se para todo o $\varepsilon > 0$ existem intervalos limitados I_1, \ldots, I_N tais que

$$\overline{V}_n\left(A \bigtriangleup \bigcup_{k=1}^N I_k\right) < \varepsilon.$$

Diz-se que $A \subset \mathbb{R}^n$ é mensurável (à Lebesgue) se $A \cap [-L, L]^n$ é mensurável com medida finita para todo o L > 0. A família dos subconjuntos mensuráveis de \mathbb{R}^n designa-se por \mathcal{M} . A função $V_n : \mathcal{M} \to [0, +\infty]$ definida por $V_n(A) = \overline{V}_n(A)$ diz-se a medida de Lebesgue.

- 5. (i) \mathcal{M} é uma σ -álgebra;
 - (ii) $V_n: \mathcal{M} \to [0, +\infty]$ é σ -aditiva, i.e., se $A_1, A_2, \ldots \in \mathcal{M}$ e $A_i \cap A_j = \emptyset$ para $i \neq j$ então

$$V_n(\bigcup_{k=1}^{+\infty} A_k) = \sum_{k=1}^{+\infty} V_n(A_k);$$

- (iii) A tem medida nula $\Rightarrow A \in \mathcal{M}$;
- (iv) A aberto $\Rightarrow A \in \mathcal{M}$ (logo A fechado $\Rightarrow A \in \mathcal{M}$).
- 6. Uma função $f: \mathbb{R}^n \to \mathbb{R}$ diz-se mensurável se $f^{-1}(I) \in \mathcal{M}$ para qualquer intervalo $I \subset \mathbb{R}$.
- 7. (i) f contínua $\Rightarrow f$ mensurável;
 - (ii) f, g mensuráveis e $F: \mathbb{R}^2 \to \mathbb{R}$ contínua $\Rightarrow F \circ (f, g)$ mensurável (e.g., f + g, fg);
 - (iii) f_1, f_2, \ldots mensuráveis tais que existe $f(\mathbf{x}) = \lim_{k \to +\infty} f_k(\mathbf{x}) \Rightarrow f$ mensurável.
- 8. A função $s:\mathbb{R}^n \to \mathbb{R}$ diz-se *simples* se existem conjuntos disjuntos $A_1,\ldots,A_n \subset \mathbb{R}^n$ e números reais $c_1,\ldots,c_n \in \mathbb{R}$ tais que

$$s = \sum_{i=1}^{N} c_i \chi_{A_i}.$$

Se $c_i \neq c_j$ para $i \neq j$, a função s é mensurável $sse\ A_1, \ldots, A_N \in \mathcal{M}$.

9. Se $s: \mathbb{R}^n \to [0, +\infty[$ é simples e mensurável,

$$s = \sum_{i=1}^{N} c_i \chi_{A_i} \quad (c_i \in \mathbb{R}^+, A_i \in \mathcal{M}),$$

define-se o seu integral como sendo

$$\int_{\mathbb{R}^n} s dV_n = \sum_{i=1}^N c_i V(A_i)$$

(pode ser $+\infty$).

10. Se $f:\mathbb{R}^n \to [0,+\infty[$ é mensurável, define-se

$$\int_{\mathbb{R}^n} f dV_n = \sup \left\{ \int_{\mathbb{R}^n} s dV_n : 0 \le s \le f \text{ \'e simples e mensur\'avel } \right\}$$

(pode ser $+\infty$). Se

$$\int_{\mathbb{R}^n} f dV_n < +\infty$$

a função f diz-se integrável (à Lebesgue).

11. Dada uma função $f:\mathbb{R}^n \to \mathbb{R}$, definem-se $f^+,f^-:\mathbb{R}^n \to \mathbb{R}$ através de

$$f^{+}(\mathbf{x}) = \begin{cases} f(\mathbf{x}) & \text{se } f(\mathbf{x}) \ge 0 \\ 0 & \text{se } f(\mathbf{x}) \le 0 \end{cases}, \quad f^{-}(\mathbf{x}) = \begin{cases} 0 & \text{se } f(\mathbf{x}) \ge 0 \\ -f(\mathbf{x}) & \text{se } f(\mathbf{x}) \le 0 \end{cases}$$

Tem-se $f^+, f^- \ge 0, f = f^+ - f^-, |f| = f^+ + f^-,$ e f é mensurável $sse\ f^+, f^-$ são mensuráveis.

12. Uma função mensurável $f: \mathbb{R}^n \to \mathbb{R}$ diz-se *integrável* se f^+, f^- são integráveis. Nesse caso, define-se

$$\int_{\mathbb{D}^n} f dV_n = \int_{\mathbb{D}^n} f^+ dV_n - \int_{\mathbb{D}^n} f^- dV_n.$$

13. Se $A \in \mathcal{M}$, f diz-se integrável em A se $f\chi_A$ é integrável, caso em que se define

$$\int_{A} f dV_n = \int_{\mathbb{R}^n} f \chi_A dV_n.$$

O conjunto das funções integráveis em A designa-se por $L^1(A)$.

- 14. Seja $A \in \mathcal{M}$. Então
 - (i) Se $f:A\to\mathbb{R}$ é mensurável e limitada e $V_n(A)<+\infty$ então $f\in L^1(A)$;
 - (ii) Se $f,g\in L^1(A)$ e $f\leq g$ então

$$\int_{\Lambda} f dV_n \le \int_{\Lambda} g dV_n.$$

(iii) Se $V_n(A) = 0$ então $\int_A f dV_n = 0$.

(iv) Se $a,b\in\mathbb{R}$ e f,g $L^1(A)$ então $af+bg\in L^1(A)$ e

$$\int_{A} (af + bg)dV_{n} = a \int_{A} f dV_{n} + b \int_{A} g dV_{n}.$$

(v) $f \in L^1(A)$ sse $|f| \in L^1(A)$, e

$$\left| \int_A f dV_n \right| \le \int_A |f| dV_n.$$

15. Seja I um intervalo compacto. Se $f:I\subset\mathbb{R}^n\to\mathbb{R}$ é integrável à Riemann então $f\in L^1(I)$ e

$$\int_{I} f dV_{n}$$

é igual para ambas as definições.

16. σ -aditividade do integral: Sejam $A_1,A_2,\ldots\in\mathcal{M}$ com $A_i\cap A_j=\varnothing$ se $i\neq j$, $A=\bigcup_{k=1}^{+\infty}A_k$ e $f\geq 0$ mensurável. Então

$$\int_{A} f dV_{n} = \sum_{k=1}^{+\infty} \int_{A_{k}} f dV_{n}.$$

17. Sejam $A_1,A_2,\ldots\in\mathcal{M}$ com $A_1\subset A_2\subset\ldots$, $A=\bigcup_{k=1}^{+\infty}A_k$ e $f\geq 0$ mensurável. Então

$$\int_{A} f dV_n = \lim_{k \to +\infty} \int_{A_k} f dV_n.$$

- 18. $\frac{1}{x^{\alpha}} \in L^1([1, +\infty[) \text{ sse } \alpha > 1.$
- 19. $e^{-x^2} \in L^1(\mathbb{R}) \ e^{-x^2} dx = \sqrt{\pi}.$
- 20. $\frac{1}{x^{\alpha}} \in L^1(]0,1])$ sse $\alpha < 1$.
- 21. Teorema da Convergência Monótona de Levi: Seja $A \in \mathcal{M}$ e $\{f_k\}_{k \in \mathbb{N}}$ uma sucessão de funções mensuráveis em A tais que

$$0 \le f_1(\mathbf{x}) \le f_2(\mathbf{x}) \le \dots$$

para todo o $\mathbf{x} \in A$. Se existe $f: A \to \mathbb{R}$ tal que

$$\lim_{k \to +\infty} f_k(\mathbf{x}) = f(\mathbf{x})$$

para todo o $\mathbf{x} \in A$ então

$$\int_{A} f dV_n = \lim_{k \to +\infty} \int_{A} f_k dV_n$$

(pode ser $+\infty$).

22. Teorema da Convergência Dominada de Lebesgue: Seja $A \in \mathcal{M}$ e $\{f_k\}_{k \in \mathbb{N}}$ uma sucessão de funções mensuráveis em A. Se existe $f: A \to \mathbb{R}$ tal que

$$\lim_{k \to +\infty} f_k(\mathbf{x}) = f(\mathbf{x})$$

para todo o $\mathbf{x} \in A$ existe $g \in L^1(A)$ tal que

$$|f_k(\mathbf{x})| \le g(\mathbf{x})$$

para todo o $\mathbf{x} \in A$ e $k \in \mathbb{N}$ então $f \in L^1(A)$ e

$$\int_{A} f dV_n = \lim_{k \to +\infty} \int_{A} f_k dV_n.$$

23. Regra de Leibniz: Seja $A \subset \mathbb{R}^n$ mensurável e $f: A \times \mathbb{R} \to \mathbb{R}$ tal que $f(\mathbf{x},y)$ é integrável em \mathbf{x} para todo o $y \in \mathbb{R}$ e diferenciável em y para todo o $\mathbf{x} \in A$. Se existe $g \in L^1(A)$ tal que

$$\left| \frac{\partial f}{\partial y}(\mathbf{x}, y) \right| \le g(\mathbf{x})$$

para $\mathbf{x} \in A$ e y numa vizinhança de $y_0 \in \mathbb{R}$ então a função $F : \mathbb{R} \to \mathbb{R}$ dada por

$$F(y) = \int_{A} f(\mathbf{x}, y) dV_n(\mathbf{x})$$

é diferenciável em y_0 e

$$F'(y_0) = \int_{\Lambda} \frac{\partial f}{\partial y}(\mathbf{x}, y_0) dV_n(\mathbf{x}).$$