Exame de Mecânica Geométrica (para praticar)

José Natário

15 de Abril de 2002

- 1. Considere uma partícula de massa m movendo-se sem atrito sobre a superfície do parabolóide $z=\frac{1}{2}\left(x^2+y^2\right)$. Sabendo que o potencial gravitacional é U=mgz,
 - a) Descreva o sistema mecânico $(Q,<,>,\mathcal{F})$ correspondente.
 - b) Prove que não existem movimentos ilimitados.
 - c) Mostre que os círculos

$$\left\{z = \frac{1}{2}\left(x^2 + y^2\right) = \text{constante}\right\}$$

são trajectórias possíveis para a partícula. Calcule a velocidade com que a partícula tem que percorrer cada círculo. (Sugestão: escreva o Lagrangeano do sistema em coordenadas polares (r,θ)).

d) Escreva uma métrica Riemanniana para um aberto U do parabolóide tal que o círculo

$$\left\{ z = \frac{1}{2} \left(x^2 + y^2 \right) = 1 \right\}$$

é uma geodésica dessa métrica.

- 2. Um sistema de coordenadas locais em SO(3) é dado pelos chamados ângulos de Euler, definidos da seguinte forma: um elemento $S \in SO(3)$ é completamente determinado pela imagem $\{\mathbf{e}_1 = S\mathbf{e}_x, \mathbf{e}_2 = S\mathbf{e}_y, \mathbf{e}_3 = S\mathbf{e}_z\}$ da base canónica $\{\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z\}$ de \mathbb{R}^3 . Define-se então o ângulo de Euler θ como sendo o ângulo entre \mathbf{e}_3 e \mathbf{e}_z . A intersecção entre os planos $\mathrm{span}\{\mathbf{e}_x, \mathbf{e}_y\}$ e $\mathrm{span}\{\mathbf{e}_1, \mathbf{e}_2\}$ diz-se a linha nodal; o ângulo de Euler φ é simplesmente o ângulo entre a linha nodal e $\mathbb{R}\mathbf{e}_x$, e o ângulo de Euler ψ é o ângulo entre a linha nodal e $\mathbb{R}\mathbf{e}_1$. Considere um corpo rígido com momentos de inércia I_1, I_2, I_3 e eixos principais de inércia $\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z$ na posição de referência.
 - a) Justifique que a velocidade angular ω do corpo é uma função linear de $(\dot{\theta},\dot{\varphi},\dot{\psi})$.
 - b) Justifique que na decomposição

$$oldsymbol{\omega} = oldsymbol{\omega}_{ heta} + oldsymbol{\omega}_{arphi} + oldsymbol{\omega}_{\psi}$$

da velocidade angular nas componentes proporcionais a $\dot{ heta}, \dot{arphi}, \dot{\psi}$ se tem

$$\boldsymbol{\omega}_{\varphi} = \dot{\varphi} \mathbf{e}_z;$$

$$\boldsymbol{\omega}_{\psi} = \dot{\psi} \mathbf{e}_3.$$

- c) Justifique que se $\psi=0$ então ${m \omega}_{ heta}=\dot{ heta}{f e}_1$
- d) Mostre que se $\varphi = \psi = 0$ então

$$\boldsymbol{\omega} = \dot{\theta} \mathbf{e}_1 + \dot{\varphi} \sin \theta \mathbf{e}_2 + (\dot{\psi} + \dot{\varphi} \cos \theta) \mathbf{e}_3.$$

e) Argumente que se $I_1 = I_2$ a energia cinética

$$K = \frac{1}{2} \left(I_1 (\omega_1)^2 + I_2 (\omega_2)^2 + I_3 (\omega_3)^2 \right)$$

não depende dos valores de φ, ψ . Escreva uma expressão geral para a energia cinética do corpo rígido.

- f) Se o centro de massa se encontra no ponto (0,0,l) para $\theta=0$, a energia potencial do corpo no campo gravitacional constante será $mg\cos\theta$, onde m é a massa total do corpo e g é a aceleração gravitacional. Escreva três primeiros integrais para o movimento do corpo rígido no campo gravitacional constante.
- 3. Durante uma missão de vigilância no planeta dos pérfidos Klingons, a *Enterprise* descobre que estes se preparam para construir um míssil mais rápido que a luz para com ele atacarem o planeta dos benévolos Lmaquianos, situado a 12 anos-luz. Alarmado, o capitão Kirk ordena que a *Enterprise* parta à velocidade máxima ($\frac{12}{13}$ da velocidade da luz) para o planeta ameaçado, ao mesmo tempo que um sinal de rádio é enviado a prevenir os Lmaquianos do ataque iminente. Infelizmente, estas medidas revelam-se infrutíferas: onze anos depois (no referencial de ambos os planetas) os Klingons completam a construção do míssil, que lançam de imediato a uma velocidade de 12 vezes a velocidade da luz. Portanto o aviso, deslocando-se à velocidade da luz, chega em simultâneo com o míssil, doze anos depois do seu envio, e a Enterprise alcança as ruínas do planeta um ano mais tarde.
 - a) Quanto tempo demora a viagem da Enterprise do ponto de vista dos seus tripulantes?
 - b) No referencial dos planetas, usando anos e anos-luz como unidades de tempo e espaço, sejam (0,0) as coordenadas (t,x) do acontecimento em que a $\it Enterprise$ descobre a trama, (11,0) as coordenadas do lançamento do míssil, (12,12) as coordenadas da destruição do planeta dos Lmaquianos e (13,12) as coordenadas da chegada da $\it Enterprise$ às ruínas do planeta. Calcule as coordenadas (t',x') dos mesmos acontecimentos no referencial da $\it Enterprise$.
 - c) Desenhe um diagrama com as trajectórias da Enterprise, dos planetas, do aviso e do míssil no referencial t'Ox' da Enterprise. Descreva o desenrolar dos acontecimentos do ponto de vista dos observadores deste referencial.
- 4. Considere uma solução estacionária da equação de Einstein no vácuo com variedade espacial euclidiana,

$$dl^2 = dx^2 + dy^2 + dz^2.$$

- a) Mostre que tal solução é necessariamente estática, i.e., mostre que $\mathbf{H}=\mathbf{0}$.
- b) Mostre que a equação de Einstein se reduz a

$$\frac{\partial^2 \phi}{\partial x^i \partial x^j} = -\frac{\partial \phi}{\partial x^i} \frac{\partial \phi}{\partial x^j} \quad (i, j = 1, 2, 3).$$

Justifique que se ϕ é analítica então ϕ é completamente determinada pelos valores de ϕ e $d\phi$ num ponto.

c) Mudando de coordenadas podemos assumir que

$$\frac{\partial \phi}{\partial y} = \frac{\partial \phi}{\partial z} = 0$$

num ponto, e portanto em toda a variedade espacial. Resolva a equação de Einstein sob esta hipótese.

d) Mostre que a solução obtida é na verdade uma região aberta do espaçotempo de Minkowski.