Combinatória e Teoria de Códigos Exercises from the notes

Chapter 1

1.1. The following binary word
$01111000000 ? 001110000 ? 00110011001010111000000000 ? 01110$
encodes a date. The encoding method used consisted in writing the date in 6 decimal digits (e.g. 290296 means February 29th, 1996), then converting it to a number in base 2 (e.g. 290296 becomes 1000110110111111000), and enconding the binary number using the rule

$$
\begin{aligned}
\{0,1\}^{2} & \longrightarrow \mathcal{C} \subset\{0,1\}^{6} \\
00 & \longmapsto 000000 \\
01 & \longmapsto 01110 \\
10 & \longmapsto 111000 \\
11 & \longmapsto 110011
\end{aligned}
$$

The received word contains 3 unknown digits (which were deleted) and it may also contain some switched digits.
(a) Find the 3 deleted bits.
(b) How many, and in which positions, are the wrong bits?
(c) Which date is it?
(d) Repeat the problem switching the bits in positions 15 and 16 , counting from the left. ("Switching a bit in position i" means replacing " 1 " by " 0 ", and vice versa, in position i).
1.2. Consider the binary code $\{01101,00011,10110,11000\}$. Using minimum distance decoding, decode the following received words:
(a) 00000;
(b) 01111;
(c) 01101;
(d) 11001 .
1.3. Consider a binary channel with the following error probabilities

$$
P(1 \text { received } \mid 0 \text { sent })=0,3 \quad \text { and } \quad P(0 \text { received } \mid 1 \text { sent })=0,2
$$

For the binary code $\{000,101,111\}$, use maximum likelihood decoding, to decode the received words
(a) 010;
(b) 011;
(c) 001 .
1.4. Prove that, for a symmetric binary channel, with crossover probability $p<\frac{1}{2}$, the minimum distance and maximum likelihood decoding schemes coincide.
1.5. What is the capacity of a code, with minimum distance d, for detecting and correcting errors simultaneously? State a decoding algorithm that corrects t errors and detects s errors and justify that it works.
1.6. Discuss the capacity of a code, with minimum distance d, for correcting erasure errors, and for correcting symbol errors and erasure errors simultaneously. State a decoding algorithm that corrects t symbol errors and a erasure errors and justify that it works.
1.7. (A Binary Hamming Code) We encode a message vector with 4 binary components $m=$ $m_{1} m_{2} m_{3} m_{4}, m_{i} \in\{0,1\}$, as a code word with 7 binary components $c=c_{1} c_{2} c_{3} c_{4} c_{5} c_{6} c_{7}$, $c_{j} \in\{0,1\}$, defined by

$$
c_{3}=m_{1} \quad ; \quad c_{5}=m_{2} \quad ; \quad c_{6}=m_{3} \quad ; \quad c_{7}=m_{4}
$$

and the other components:

$$
\begin{aligned}
& c_{4} \text { is such that } \alpha=c_{4}+c_{5}+c_{6}+c_{7} \text { is even } \\
& c_{2} \text { is such that } \beta=c_{2}+c_{3}+c_{6}+c_{7} \text { is even } \\
& c_{1} \text { is such that } \gamma=c_{1}+c_{3}+c_{5}+c_{7} \text { is even. }
\end{aligned}
$$

Check that with this coding scheme we get a code which corrects an error in any position. If we receive the vector $x=x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7}$, we compute

$$
\left.\begin{array}{rl}
\alpha & =x_{4}+x_{5}+x_{6}+x_{7} \\
\beta & =x_{2}+x_{3}+x_{6}+x_{7} \\
\gamma & =x_{1}+x_{3}+x_{5}+x_{7}
\end{array}\right\} \quad \bmod 2
$$

$\alpha \beta \gamma$ is the binary representation of the j component in which the error occured. If $\alpha \beta \gamma=000$ we assume no error occured.
Study this example carefully.

Chapter 2

2.1. Show that $A_{q}(n, d)<A_{q+1}(n, d)$.
2.2. Verify that the binary codes $C_{1}=\{0000,0011,1100\}$ and $C_{2}=\{0000,0011,1010\}$ have the same parameters but are not equivalent.
2.3. Show that, up to equivalence, there are precisely n binary codes with lenght n containing two words.
2.4. Show that any $(n, q, n)_{q}$-code is equivalent to a repetition code.
2.5. Show that $A_{2}(5,4)=2$ and $A_{2}(8,5)=4$.
2.6. (a) Prove Proposition 2.9, i.e., show that (i) $\mathrm{d}(x, y)=\mathrm{w}(x-y)$ and (ii) $\mathrm{d}(x, y)=\mathrm{w}(x)+\mathrm{w}(y)-$ $2 \mathrm{w}(x \cap y)$, for all $x, y \in \mathbb{Z}_{2}^{n}$.
(b) Give a counter-example to show that, in general, part (ii) of Proposition 2.9 is not true for vectors in $\mathbb{Z}_{3}^{n}, n>1$.
2.7. Using Lemma 2.13, verify that the volume of the balls with radius n in \mathcal{A}_{q}^{n} is q^{n}.
2.8. Show that there is a perfect code C with parameters $(n, M, d)_{q}$ if and only if $A_{q}(n, d)=M$ and equality holds in the Hamming Estimate with $t=\frac{d-1}{2}$.
2.9. Justify the statements in Example 2.22 by solving the following questions:
(a) Verify that a code containing a single word satisfies the equality in the Hamming Estimate.
(b) For $C=\mathcal{A}_{q}^{n}$, compute the packing radius $\rho_{e}(C)$ and the covering radius $\rho_{c}(C)$. Verify that C satisfies the equality in the Hamming Estimate.
(c) Repeat part (b) for the binary repetition codes with odd length.
2.10. Show that, in the definition of a perfect code, it isn't necessary to assume that the minimum distance is odd. That is, show that, if C has even minimum distance, then $\rho_{e}(C)<\rho_{c}(C)$.
2.11. Prove the binary and q-ary Plotkin Estimates:
(a) For a (n, M, d) binary code C with $n<2 d$, show that

$$
M \leq\left\{\begin{array}{ll}
\frac{2 d}{2 d-n} & \text { if } M \text { is even } \\
\frac{2 d}{2 d-n}-1 & \text { if } M \text { is odd }
\end{array} .\right.
$$

(b) For q-ary codes, show that $A_{q}(n, d) \leq \frac{d}{d-\theta n}$, where $d>\theta n$ and $\theta=\frac{q-1}{q}$.
2.12. (a) Given two vectors $u=\left(u_{1}, \ldots, u_{n}\right)$ and $v=\left(v_{1}, \ldots, v_{m}\right)$, we define

$$
(u, v)=\left(u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{m}\right) .
$$

Let C_{1} and C_{2} be binary codes with parameters (n, M_{1}, d_{1}) and (n, M_{2}, d_{2}), respectively. The Plotkin Construction of the codes C_{1} and C_{2} is the code defined by

$$
C_{1} * C_{2}=\left\{(u, u+v): u \in C_{1}, v \in C_{2}\right\} .
$$

Show that the parameters of $C_{1} * C_{2}$ are $\left(2 n, M_{1} M_{2}, d\right)$, where $d=\min \left\{2 d_{1}, d_{2}\right\}$.
(b) The important familly of Reed-Muller binary codes can be obtained as follows:

$$
\left\{\begin{array}{l}
\mathcal{R} \mathcal{M}(0, m)=\{\overrightarrow{0}, \overrightarrow{1}\} \quad \text { the binary repetition code with length } 2^{m} \\
\mathcal{R M}(m, m)=\left(\mathbb{Z}_{2}\right)^{2^{m}} \\
\mathcal{R M}(r, m)=\mathcal{R M}(r, m-1) * \mathcal{R M}(r-1, m-1), \quad 0<r<m
\end{array}\right.
$$

for $r, m \in \mathbb{N}_{0}$, where $C_{1} * C_{2}$ denotes the Plotkin Construction obtained from the codes C_{1} and C_{2}.
Show that the parameters of $R M(r, m)$ are $n=2^{m}, M=2^{\delta(r, m)}$, where $\delta(r, m)=\sum_{i=0}^{r}\binom{m}{i}$, and $d=2^{m-r}$.

Chapter 3

3.1. (a) Verify that the tables in Examples 3.21 and 3.22 are correct.
(b) Write a (ring) isomorphism between $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ and $\mathbb{F}_{2}[t] /\left\langle t^{2}+t\right\rangle$.
3.2. Find a primitive element in each of the following fields: $\mathbb{F}_{5}, \mathbb{F}_{11}$ and \mathbb{F}_{13}.
3.3. The field \mathbb{F}_{16} :
(a) Show that the polynomial $t^{4}+t+1$ is irreducible in $\mathbb{F}_{2}[t]$.
(b) Define $\mathbb{F}_{16}=\mathbb{F}_{2}[t] /\left\langle t^{4}+t+1\right\rangle$ by identifiying its elements and by sketching the addition and multiplication tables. Find a primitive element in \mathbb{F}_{16}.
Suggestion: in Remark 3.28, use (3.2) to describe the sum and (3.3) to describe the product of two elements. So, instead of writing two 16×16 tables, you only need to write a correspondence between (3.2) and (3.3), identifying a primitive element $\alpha \in \mathbb{F}_{16}$.
3.4. List all irreducible polynomials in $\mathbb{F}_{2}[t]$ with degrees 2,3 and 4.
3.5. Let $I(p, n)$ be the number of irreducible monic polynomials of degree n in $\mathbb{F}_{p}[t]$.
(a) Show that $I(p, 2)=\binom{p}{2}$.
(b) Show that $I(p, 3)=\frac{p\left(p^{2}-1\right)}{3}$.
(c) Study Section 2.2 in the Apendix A for a proof of a formula for $I(p, n)$.
3.6. Let \mathbb{F} be a field with characteristic p, with p a prime number. Show that \mathbb{F} is a vector space over \mathbb{F}_{p}. Conclude that the order of any finite field is a power of a prime number.
3.7. (a) Justify that the polynomials $t^{3}+t+1$ and $t^{3}+t^{2}+1$ are irreducible in $\mathbb{F}_{2}[t]$.
(b) Justify that both quotients $A=\mathbb{F}_{2}[t] /\left\langle t^{3}+t+1\right\rangle$ and $B=\mathbb{F}_{2}[t] /\left\langle t^{3}+t^{2}+1\right\rangle$ are isomorphic to the field \mathbb{F}_{8}, and write an isomorphism $\phi: A \longrightarrow B$.
Sugestion: Let $\alpha \in A$ be a root of $1+t+t^{3}$ and $\beta \in B$ be a root of $1+t^{2}+t^{3}$. Find a relation between α and β or, more precisely, find a root of $1+t^{2}+t^{3}$ in A.
(c) For the description A of \mathbb{F}_{8}, determine a primitive element. Justify that A is a vector space over \mathbb{F}_{2} and write a basis.
3.8. Let V be a vector subspace of \mathbb{F}_{q}^{n}, with dimention $1 \leq k \leq n$.
(a) How many vectors does V contain?
(b) How many distinct bases does V have?
3.9. (a) Determine the number of nonsingular ${ }^{1} n \times n$ square matrices with entries in a finite field \mathbb{F}_{q}.
(b) What is the probability $P(q, n)$ of a $n \times n$ matrix over \mathbb{F}_{q} being nonsingular?
3.10. Consider the vector space \mathbb{F}_{q}^{n} over \mathbb{F}_{q}. Denote by $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ the number of k dimentional subspaces of \mathbb{F}_{q}^{n}.
(a) Show that

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{\left(q^{n}-1\right)\left(q^{n-1}-1\right) \cdots\left(q^{n-k+1}-1\right)}{\left(q^{k}-1\right)\left(q^{k-1}-1\right) \cdots(q-1)} .
$$

(b) Show that

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{q}+q^{k}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{q} .
$$

(c) Justify that

$$
\lim _{q \rightarrow 1}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\binom{n}{k} .
$$

[^0]3.11. (a) Show that $\mathbb{F}_{q^{m}}$ is a vector space over \mathbb{F}_{q}, with the vector sum and product by a scalar defined via the operations in $\mathbb{F}_{q^{m}}$.
(b) Let $f(t) \in \mathbb{F}_{q}[t]$ be an irreducible polynomial in $\mathbb{F}_{q}[t]$, with degree m, and let $\alpha \in \mathbb{F}_{q^{m}}$ be a root of $f(t)$. Show that $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{m-1}\right\}$ is a basis of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q}.
3.12. Let V be a finite dimentional vector space over $\mathbb{F}_{q^{m}}$.
(a) Show that V is also a vector space over \mathbb{F}_{q} and
$$
\operatorname{dim}_{\mathbb{F}_{q}}(V)=m \operatorname{dim}_{\mathbb{F}_{q^{m}}}(V)
$$
where $\operatorname{dim}_{\mathbb{F}}(V)$ denotes the dimention of V as an \mathbb{F}-vector space.
(b) Let $\left\{v_{1}, \ldots, v_{k}\right\}$ be a basis of V over $\mathbb{F}_{q^{m}}$, and $\left\{\alpha_{1}, \ldots \alpha_{m}\right\}$ be a basis of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q}. Show that $\left\{\alpha_{i} v_{j}: i=1, \ldots, m ; j=1, \ldots, k\right\}$ is a basis of V over \mathbb{F}_{q}.
3.13. (a) Prove the Freshman Dream Fromula: $(a+b)^{p}=a^{p}+b^{p}$, for all $a, b \in \mathbb{F}_{q}$, where p is the characteristic of \mathbb{F}_{q}.
(b) Show that $(a+b)^{q^{i}}=a^{q^{i}}+b^{q^{i}}$ for all $a, b \in \mathbb{F}_{q^{m}}$ and $i \in \mathbb{N}$.
(c) Justify that, for all $a \in \mathbb{F}_{q^{m}}, a \in \mathbb{F}_{q} \subset \mathbb{F}_{q^{m}}$ if and only if $a^{q}=a$.
(d) For each $x \in \mathbb{F}_{q^{m}}$, we define its trace by $\operatorname{Tr}(x)=\sum_{i=0}^{m-1} x^{q^{i}}$. Show that $\operatorname{Tr}(x) \in \mathbb{F}_{q}$ for all $x \in \mathbb{F}_{q^{m}}$.
(e) Show that $\operatorname{Tr}: \mathbb{F}_{q^{m}} \longrightarrow \mathbb{F}_{q}, x \longmapsto \operatorname{Tr}(x)$, is a linear map over \mathbb{F}_{q}.
3.14. Consider $\mathbb{F}_{16}=\mathbb{F}_{2}[t] /\left\langle t^{4}+t+1\right\rangle$, i.e., $\mathbb{F}_{16}=\mathbb{F}_{2}[\alpha]$ where $\alpha^{4}=\alpha+1$.
(a) Identify \mathbb{F}_{4} as a subfield of \mathbb{F}_{16}.

Suggestion: you may want to use part (c) of Exercise 3.13.
(b) Find a polynomial $f(t) \in \mathbb{F}_{4}[t]$ such that $\mathbb{F}_{16}=\mathbb{F}_{4}[t] /\langle f(t)\rangle$.
(c) Is \mathbb{F}_{8} a subfield of \mathbb{F}_{16} ? Justify your answer.
3.15. Given two fields $\mathbb{F}_{q^{m}}$ and $\mathbb{F}_{q^{n}}$, with $m>n$, when is $\mathbb{F}_{q^{n}}$ a subfield of $\mathbb{F}_{q^{m}}$?
3.16. Let V and W be vector subspaces of \mathbb{F}_{q}^{n}. Show that the sum $V+W$ (defined by $V+W=$ $\left.\left\{v+w \in \mathbb{F}_{q}^{n}: v \in V, w \in W\right\}\right)$, and the intersectione $V \cap W$ are vector spaces. Show also that the sum $V+W$ is the vector space generated by V and W.
3.17. Let $\langle\cdot, \cdot\rangle_{H}: \mathbb{F}_{q^{2}}^{n} \times \mathbb{F}_{q^{2}}^{n} \longrightarrow \mathbb{F}_{q^{2}}$ be defined by

$$
\langle u, v\rangle_{H}=\sum_{i=1}^{n} u_{i} v_{i}^{q}
$$

where $u=\left(u_{1}, \ldots, u_{n}\right), v=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{F}_{q^{2}}^{n}$. Show that $\langle\cdot, \cdot\rangle_{H}$ is an inner product in $\mathbb{F}_{q^{2}}^{n}$. Remark: $\langle\cdot, \cdot\rangle_{H}$ is the hermitian inner product. The hermitian dual of a linear code C is defined as

$$
C^{\perp_{H}}=\left\{v \in \mathbb{F}_{q^{2}}^{n}:\langle v, c\rangle_{H}=0 \quad \forall c \in C\right\}
$$

3.18. Recall that $\mathbb{F}_{4}=\mathbb{F}_{2}[t] /\left\langle t^{2}+t+1\right\rangle=\left\{0,1, \alpha, \alpha^{2}\right\}$, where α is a root of $t^{2}+t+1 \in \mathbb{F}_{2}[t]$. Show that the following linear codes over \mathbb{F}_{4} are self-dual with respect to the hermitian inner product defined in the previous problem:
(a) $C_{1}=\langle(1,1)\rangle \subset \mathbb{F}_{4}^{2}$,
(b) $C_{2}=\langle(1,0,0,1, \alpha, \alpha),(0,1,0, \alpha, 1, \alpha),(0,0,1, \alpha, \alpha, 1)\rangle \subset \mathbb{F}_{4}^{6}$.

Are these self-dual codes with respect to the euclidean inner product?

Chapter 4

4.1. Let C be a $[n, k]$ linear code over \mathbb{F}_{q}. For each $i \in\{1, \ldots, n\}$, show that either $x_{i}=0$ for all $x=\left(x_{1}, \ldots, x_{n}\right) \in C$, or C contains $\frac{|C|}{q}=q^{k-1}$ words with $x_{i}=a$, for $a \in \mathbb{F}_{q}$ fixed.
4.2. Let C be a binary linear code. Show that either all words in C have even weight, or half of them have even weight and the other half odd weight.
4.3. Let C be a $[n, k, 2 t+1]$ binary code and let $C^{\prime}=\{x \in C: \mathrm{w}(x)$ is even $\}$ be the subcode of C consisting of the even weighted words.
(a) Show that C^{\prime} is a linear code.
(b) Find the dimention of C^{\prime}. Justify carefully your answer.
4.4. Let C be a binary self-dual linear code.
(a) Show that, if the weight of $x, y \in C$ is a multiple of 4 , then the weight of $x+y$ is also a multiple of 4 .
(b) Show that all words in C have weight a multiple of 4 , or half has weight a multiple of 4 and the other half has even weight but not divisible by 4 .
(c) Show that $\overrightarrow{1}=(1, \ldots, 1) \in C$.
(d) If C has length 6 , find the minimum distance $\mathrm{d}(C)$.
4.5. Write a generating matrix, a parity-check matrix, and the parameters $[n, k, d]$ for the smallest linear code over \mathbb{F}_{q} containing the set S, when
(a) $q=3, S=\{110000,011000,001100,000110,000011\} ;$
(b) $q=2, S=\{10101010,11001100,11110000,01100110,00111100\}$.
4.6. Let C be a linear $[N, K, D]$-code over $\mathbb{F}_{q^{m}}$.
(a) The trace code is defined by

$$
\operatorname{Tr}(C):=\left\{\left(\operatorname{Tr}\left(x_{1}\right), \ldots, \operatorname{Tr}\left(x_{N}\right)\right):\left(x_{1}, \ldots, x_{N}\right) \in C\right\}
$$

where $\operatorname{Tr}: \mathbb{F}_{q^{m}} \longrightarrow \mathbb{F}_{q}$ is the trace map defined in Exercise 3.13 . Show that $\operatorname{Tr}(C)$ is a q-ary linear code, with length N and dimenstion $k \leq m K$.
(b) The subfield subcode is defined by

$$
\left.C\right|_{\mathbb{F}_{q}}:=C \cap \mathbb{F}_{q}^{N}
$$

Justify that $\left.C\right|_{\mathbb{F}_{q}}$ is a liner code over \mathbb{F}_{q}.
4.7. Consider the linear code $C=\left\langle\left(\alpha, \alpha^{2}, \alpha^{4}, 1, \alpha^{3}, \alpha^{6}, \alpha^{5}\right)\right\rangle$ over $\mathbb{F}_{8}=\mathbb{F}_{2}[\alpha]$, where $\alpha^{3}=1+\alpha$.
(a) Find the parameters of C.
(b) Determine a generating matrix for the trace code $\operatorname{Tr}(C)$ (see Exercise 4.6).
(c) Find the parameters of the dual code $\operatorname{Tr}(C)^{\perp}$.
(d) Is $\operatorname{Tr}(C)$ a self-orthogonal or a self-dual code?
(e) Write a generating matrix for the dual code C^{\perp} and for subfield subcode $\left.\left(C^{\perp}\right)\right|_{\mathbb{F}_{2}}$.
(f) Verify ${ }^{2}$ that $\left.\left(C^{\perp}\right)\right|_{\mathbb{F}_{2}}=\operatorname{Tr}(C)^{\perp}$.
4.8. Let C be a linear code with length $n \geq 4$. Let H be a parity-check matrix for C such that its columns are distinct and have odd weight. Show that $\mathrm{d}(C) \geq 4$.
4.9. Up to linear equivalence, find the number of linear codes over \mathbb{F}_{3} with length n and dimension 1.
4.10. Let C be a linear $[n, k]_{q}$-code, with $k \geq 1$, and let G be a generating matrix show that

$$
\begin{aligned}
\mathbb{F}_{q}^{k} & \longrightarrow \mathbb{F}_{q}^{n} \\
m & \longmapsto G^{T} m
\end{aligned}
$$

is a systematic coding scheme for C if and only if all columns in the identity $k \times k$-matrix are also columns in G.

[^1]4.11. (a) Prove Proposition 4.29: For a q-ary linear code, with lenght n and minimum distance d, show that the vectors $x \in \mathbb{F}_{q}^{n}$ with weight $\mathrm{w}(x) \leq\left\lfloor\frac{d-1}{2}\right\rfloor$ are coset leaders of distinct cosets of this code.
(b) Let C be a perfect code with $\mathrm{d}(C)=2 t+1$. Show that the only coset leaders of C are the ones determined in part (a).
(c) Assuming that the perfect code C in part (b) is binary, let \widehat{C} be the code obtained from C by adding a parity-check digit, i.e.,
$$
\widehat{C}=\left\{\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \in \mathbb{F}_{2}^{n+1}:\left(x_{1}, \ldots, x_{n}\right) \in C, \sum_{i=1}^{n+1} x_{i}=0\right\}
$$

Show that the weight of any coset leader of \widehat{C} is less or equal than $t+1$.
4.12. Consider the linear code over \mathbb{F}_{11} with parity-check matrix

$$
H=\left[\begin{array}{cccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & X \\
1^{2} & 2^{2} & 3^{2} & 4^{2} & 5^{2} & 6^{2} & 7^{2} & 8^{2} & 9^{2} & X^{2}
\end{array}\right]
$$

(a) Find the parameters $[n, k, d]$ of this code.

Suggestion: First show that in any field \mathbb{F}

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
a_{1} & a_{2} & a_{3} \\
a_{1}^{2} & a_{2}^{2} & a_{3}^{2}
\end{array}\right|=\left(a_{3}-a_{1}\right)\left(a_{2}-a_{1}\right)\left(a_{3}-a_{2}\right), \quad \forall a_{1}, a_{2}, a_{3} \in \mathbb{F}
$$

(b) Write a generating matrix for the code.
(c) Describe a decoding algorithm for this code that can correct 1 error and detect 2 errors in any position.
(d) Apply that algorithm to decode the received vectors

$$
x=0204000910 \quad \text { e } \quad y=0120120120
$$

4.13. Solve the analogous problem to the previous one for the linear code over \mathbb{F}_{11} with parity-check matrix

$$
\left[\begin{array}{cccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & X \\
1^{2} & 2^{2} & 3^{2} & 4^{2} & 5^{2} & 6^{2} & 7^{2} & 8^{2} & 9^{2} & X^{2} \\
1^{3} & 2^{3} & 3^{3} & 4^{3} & 5^{3} & 6^{3} & 7^{3} & 8^{3} & 9^{3} & X^{3}
\end{array}\right] .
$$

Decode also the received vector $z=1204000910$.
4.14. Let C be the linear code over \mathbb{F}_{5} with the following parity-check matrix

$$
H=\left[\begin{array}{llllll}
3 & 2 & 1 & 0 & 0 & 2 \\
1 & 0 & 1 & 0 & 3 & 2 \\
0 & 4 & 1 & 4 & 1 & 3
\end{array}\right]
$$

(a) Show that C can correct all error vectors of the form
$a a 0000, \quad 0 a a 000, \quad 00 a a 00,000 a a 0$ and 0000aa,
for $a \in \mathbb{F}_{5} \backslash\{0\}$, and decode the received vectors $y=100011$ and $z=023333$.
(b) Can C be used to correct all double errors?
4.15. Find a $[7, K]$ linear code with the largest possible rate which can correct the following error vectors: $1000000,1000001,1100001,1100011,1110011,1110111$ and 111111.
4.16. Consider a linear code C over $\mathbb{F}_{3}=\{0,1,2\}$ with parity-check matrix

$$
H=\left[\begin{array}{llllll}
2 & 1 & 2 & 1 & 1 & 0 \\
1 & 1 & 2 & 1 & 0 & 1 \\
0 & 1 & 0 & 2 & 0 & 0
\end{array}\right]
$$

(a) Determine the $[n, k, d]$ parameters of C.
(b) Find a generator matrix in standard form for the code C.
(c) What is the capacity of C for correcting erasure errors? Give a detailed justification.
(d) Decode, if possible, the following received words

$$
x=2101 ? ?, \quad y=1 ? ? ? 12 \quad \text { and } \quad z=? ? ? 210 .
$$

4.17. Prove Proposition 4.32. Show also that, for a perfect code, we also have that $\alpha_{i}=0$ for all $i>t$.
4.18. Let C be a binary perfect linear code with length n and let

$$
\widehat{C}=\left\{\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \in \mathbb{F}_{2}^{n+1}:\left(x_{1}, \ldots, x_{n}\right) \in C, \sum_{i=1}^{n+1} x_{i}=0\right\}
$$

be its parity-check extension. For a symmetric binary transmission channel, with crossover probability $0<p<\frac{1}{2}$, show that $P_{\text {corr }}(C)=P_{\text {corr }}(\widehat{C})$.
4.19. (a) Show that the minimum distance of the ISBN code (see Example 4.24) is 2.
(b) How many words in the ISBN code end with the symbol $X \in \mathbb{F}_{11}$?
(c) How many words in the ISBN code end with the symbol $a \in\{0,1, \ldots, 9\} \subset \mathbb{F}_{11}$?
(d) Let C be the linear code over \mathbb{F}_{11} defined in Example 4.36 and let $C^{\prime} \subset C$ be the subcode defined by

$$
C^{\prime}=\left\{x \in C: x_{i} \neq X \quad \forall i=1, \ldots, 10\right\} .
$$

Show that $\left|C^{\prime}\right|=82644629$.
Sugestion: use the Inclusion-Exclusion Principle and Exercise 4.1.

Chapter 5

5.1. Prove Lemma 5.4.

5.2. Check the equalities (5.2) in Example 5.5.
5.3. Show that, if C is a linear code, then the code $\bar{C}=C \cup C^{c}$ in Example 5.5 is linear, and find its parameters.
5.4. (a) Let C be a linear $[n, k]_{q}$-code and let C^{\prime} be the contraction of C obtained by puncturing the i-coordinate in the section $C_{i, 0}$, where $i \in\{1, \ldots, n\}$. Show that C^{\prime} is a linear code, find its dimension and write a parity-check matrix for C^{\prime}.
(b) Let $C=E_{n}$ be the binary even weight code with length $n \geq 2$. Justify that the punctured section $C_{i, 1}$ is not a linear code.
5.5. If there is a $[n, k, d]_{q}$ code, show that there is also a $\left.n-r, k-r, d\right]$ code for any $1 \leq r \leq k-1$.
5.6. Given a $[n, k, d]_{q}$ code C,
(a) is there always a $[n+1, k, d+1]_{q}$ code?
(b) is there always a $[n+1, k+1, d]_{q}$ code?
5.7. (a) Let G_{1} and G_{2} be generating matrices for the q-ary linear codes C_{1} and C_{2}, respectively. show that

$$
G=\left[\begin{array}{cc}
G_{1} & 0 \\
0 & G_{2}
\end{array}\right]
$$

is a generating matrix for the sum code $C_{1} \oplus C_{2}$.
(b) Write a parity-check matrix for $C_{1} \oplus C_{2}$ in terms of parity-check matrices H_{1} and H_{2} for C_{1} and C_{2}, respectively.
5.8. Repeat the previous exercise for the Plotkin construction:
(a) If C_{1} and C_{2} are linear codes, show that $C_{1} * C_{2}$ is also linear.
(b) Let G_{1} and G_{2} be generating matrices for the q-ary linear codes C_{1} and C_{2}, respectively, both with length n. Show that

$$
G=\left[\begin{array}{cc}
G_{1} & G_{1} \\
0 & G_{2}
\end{array}\right]
$$

is a generating matrix for $C_{1} * C_{2}$.
(c) If H_{1} and H_{2} are parity-check matrices for C_{1} and C_{2}, respectively, write a parity-check matrix for $C_{1} * C_{2}$ in terms of H_{1} and H_{2}.
5.9. Consider the linear codes C_{1} and C_{2} over \mathbb{F}_{q}, with length n and dimentions $\operatorname{dim}\left(C_{i}\right)=k_{i}$, $i=1,2$, and define

$$
C=\left\{(a+x, b+x, a+b+x): a, b \in C_{1}, x \in C_{2}\right\} .
$$

(a) Show that C is a lienar code with parameters $\left[3 n, 2 k_{1}+k_{2}\right]$.
(b) Write a generating matrix for C in terms of generating matrices G_{1} and G_{2} for C_{1} and C_{2}, respectively.
(c) Write a parity-check matrix for C in terms of parity-check matrices H_{1} and H_{2} for C_{1} and C_{2}, respectively.

Chapter 6

6.1. Let C be the binary Hamming code $\operatorname{Ham}(3,2)$ in Example 6.2. Decode the received vectors $y=1101101$ and $z=1111111$.
6.2. Let C be a $\operatorname{Ham}(5,2)$ code and assume that column j of the parity-check matrix is the binary representation of the integer j. Find the parameters of C and decode the received vector $y=\vec{e}_{1}+\vec{e}_{3}+\vec{e}_{15}+\vec{e}_{20}$, where \vec{e}_{i} is the vector with a 1 in the i-th coordinate and 0 in all the others.
6.3. Write the parameters and a parity-check matrix H for $\operatorname{Ham}(2,5)$. Using your matrix H, decode the received vector $y=3 \vec{e}_{1}+\vec{e}_{3}+2 \vec{e}_{4}$.
6.4. Write the parameters and a parity-check matrix for $\operatorname{Ham}(3,4)$.
6.5. Describe a decoding algorithm for the extended Hamming code $\widehat{\operatorname{Ham}}(r, 2)$ that corrects any simple error and detects double errors simultaneously.
6.6. Let C be the binary code with the following parity-check matrix

$$
H=\left[\begin{array}{llllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

(a) Determine the $[n, k, d]$ parameters of the code C.
(b) Show that C can be used to correct all errors with weight 1 and all errors with weight 2 with a nonzero n-th component. Can this code correct simultaneously all these errors plus a few more with weight 2 ?
(c) Describe a decoding algorithm that corrects all errors mentioned in part (b), and decode the received vector $y=10111011$.
6.7. (a) Show that

$$
\mathcal{R} \mathcal{M}(r, m)^{\perp}=\mathcal{R} \mathcal{M}(m-r-1, m), \forall 0 \leq r<m
$$

(b) Show that $\mathcal{R} \mathcal{M}(1, m)$ contains a unique word of weight 0 , namely the zero word, a unique word of weight 2^{m}, namely the word whose components are all 1 , and $2^{m+1}-2$ words of weight 2^{m-1}.
(c) Show that $\mathcal{R} \mathcal{M}(1, m)$ is equivalent to the dual of an extended binary Hamming code.
(d) Conclude that the words in the dual of a Hamming code of redunduncy r are all equidistant and have weight 2^{r-1}.
6.8. Given a binary code C with parameters (n, M, d), where $d \geq 3$, define

$$
C_{\lambda}=\left\{(x, x+c, \pi(x)+\lambda(c)): x \in \mathbb{F}_{2}^{n}, c \in C\right\}
$$

where $\lambda: C \longrightarrow \mathbb{F}_{2}$ is an arbitrary map and $\pi: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}$ is given by

$$
\pi(x)= \begin{cases}0 & \text { if } \mathrm{w}(x) \text { is even } \\ 1 & \text { if } \mathrm{w}(x) \text { is odd }\end{cases}
$$

(a) Determine the $\left(n^{\prime}, M^{\prime}, d^{\prime}\right)$ parameters of C_{λ}. Justify your answer.
(b) If C is a linear code, show that C_{λ} is a linear code if and only if λ is a linear map.
(c) Assuming that C is a linear code with generating matrix G and that λ is a linear map, write a generating matrix for C_{λ}.
(d) Show that, if C is a perfect code with $\mathrm{d}(C)=3$, then C_{λ} is perfect.
(e) Let $C=\operatorname{Ham}(r, 2)$, with $r \geq 2$, and let λ be the zero map. Is C_{λ} a Hamming code? Justify your answers.
(f) Let $C=\operatorname{Ham}(r, 2)$, with $r \geq 2$, and let λ be the constant map with value $1 \in \mathbb{F}_{2}$. Is C_{λ} a Hamming code? Justify your answer.
(g) Let $C=\vec{e}_{1}+\operatorname{Ham}(r, 2):=\left\{\vec{e}_{1}+c: c \in \operatorname{Ham}(r, 2)\right\}$, where $r \geq 2$ and $\vec{e}_{1}=(1,0, \ldots, 0)$, and let λ be the zero map. Is C_{λ} a Hamming code? Justify your answer.
6.9. Justify that the Hamming codes $\operatorname{Ham}(2, q)$, with redundancy 2, are MDS codes.
6.10. Let $\mathbb{F}_{4}=\left\{0,1, \alpha, \alpha^{2}\right\}$, where α is a root of $1+t+t^{2}$. Let C be a linear code over \mathbb{F}_{4} with generating matrix

$$
G=\left[\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & \alpha & \alpha^{2}
\end{array}\right]
$$

Write a generating matrix for the dual code C^{\perp}. Show that C and C^{\perp} are MDS codes.
6.11. Show that the only binary MDS codes are the trivial ones.
6.12. Let C be a q-ary MDS code with parameters $[n, k]$, where $k<n$.
(a) Show that there is a q-ary MDS code with length n and dimention $n-k$.
(b) Show that there is a q-ary MDS code with length $n-1$ and dimention k.
6.13. In each of the two cases below, show that the linear code C over \mathbb{F}_{q} with parity-check matrix H is MDS, where $\mathbb{F}_{q}=\left\{0, a_{1}, a_{2}, \ldots, a_{q-1}\right\}$ and
(a)

$$
H=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
a_{1} & a_{2} & a_{3} & \cdots & a_{q-1} \\
a_{1}^{2} & a_{2}^{2} & \alpha_{3}^{2} & \cdots & a_{q-1}^{2} \\
\vdots & \vdots & \vdots & & \vdots \\
a_{1}^{r-1} & a_{2}^{r-1} & a_{3}^{r-1} & \cdots & a_{q-1}^{r-1}
\end{array}\right], \quad 1 \leq r \leq q-2 ;
$$

(b)

$$
H=\left[\begin{array}{ccccccc}
1 & 1 & 1 & \cdots & 1 & 1 & 0 \\
a_{1} & a_{2} & a_{3} & \cdots & a_{q-1} & 0 & 0 \\
a_{1}^{2} & a_{2}^{2} & \alpha_{3}^{2} & \cdots & a_{q-1}^{2} & \vdots & \vdots \\
\vdots & \vdots & \vdots & & \vdots & 0 & 0 \\
a_{1}^{r-1} & a_{2}^{r-1} & a_{3}^{r-1} & \cdots & a_{q-1}^{r-1} & 0 & 1
\end{array}\right], \quad 1 \leq r \leq q-1
$$

6.14. Let C be the code over $\mathbb{F}_{4}=\left\{0,1, \alpha, \alpha^{2}\right\}$ (where $\alpha^{2}=1+\alpha$) with parity-check matrix

$$
H=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 0 & 0 \\
1 & \alpha & \alpha^{2} & 0 & 1 & 0 \\
1 & \alpha^{2} & \alpha & 0 & 0 & 1
\end{array}\right]
$$

Show that C is a MDS code.
Try to generalize this example, or justify that it can not be done, to obtain a code over an arbitrary field \mathbb{F}_{q}, with length $q+2$ and redundancy $3 \leq r \leq q-1$.
6.15. Let C be an MDS code with parameters $[n, k, d]_{q}$. Show that
(i) $q^{2}-1$ is the number of code words in C with weight d or $d+1$ with nonzero entries in $d+1$ fixed coordinators;
(ii) $\binom{d+1}{d}(q-1)$ is the number of words with weight d with nonzero entries in $d+1$ fixed coordinators.
Conclude that the number of code words in C with weight $d+1$ is

$$
A_{d+1}=\binom{n}{d+1}\left(\left(q^{2}-1\right)-\binom{d+1}{d}(q-1)\right)
$$

6.16. Find A_{d} and A_{d+1} for a code C with the following parameters:
(a) $[n, n-1,2]_{2}$;
(b) $[n, n-1,2]_{3}$;
(c) $[4,2,3]_{3}$.

Give an example of a code for each of the previous cases.
6.17. (a) Find all MDS $[n, k, d]_{q}$-codos with $d=n$.
(b) If $d<n$, show that thare no MDS $[n, k, d]_{q}$-codes with $d>q$.

Suggestion: use Proposition 6.29.

Chapter 7

7.1. Prove Lemma 7.12: Let $x, y \in \mathbb{F}_{q}^{n}$ and show that
(a) $\mathrm{w}(x-y) \geq \mathrm{w}(x)-\mathrm{w}(y)$;
(b) $\mathrm{d}(x, y)=\mathrm{w}(x)-\mathrm{w}(y)$ if and only if x covers y.
7.2. Consider the vector space $V=\mathbb{F}_{q}^{3}$.
(a) Show that V contains $\frac{q^{3}-1}{q-1}=q^{2}+q+1$ 1-dimentional vector subspaces.
(b) Show that V contains $\frac{q^{3}-1}{q-1}=q^{2}+q+1$ 2-dimentional vector subspaces.
(c) Let \mathcal{P} be the set of 1 -dimentional vector subspaces and let \mathcal{B} be the set of 2 -dimentional vector subspaces. Show that \mathcal{P} (as the set of points) and \mathcal{B} (as the set of blocks), with the relation $P \in \mathcal{P}$ belongs to $B \in \mathcal{B}$ if P is a subspace of B, define a Steiner system $S\left(2, q+1, q^{2}+q+1\right)$.
Remark: Since the number of points and the number of blocks are the same, this Steiner system is called a 2-dimentional projective geometry (or a projective plane) of order q, and it is denoted by $P G(2, q)$ or $P G_{2}(q)$.
7.3. From the extended Golay code G_{24}, construct a Steiner system $S(5,8,24)$.
7.4. (Generalization of the previous exercise.) Let C be a binary perfect code with length n and minimum distance $2 t+1$. Show that there is a Steiner system $S(t+2,2 t+2, n+1$).
7.5. Show that a q-ary Hamming code $\operatorname{Ham}(r, q)$ contains

$$
A_{3}=\frac{q\left(q^{r}-1\right)\left(q^{r-1}-1\right)}{6}
$$

words with weight 3 .
7.6. How many words with weight 7 are there in G_{23} ?
7.7. How many words with weight 5 are there in G_{11} ?
7.8. For any code C, we define weight enumerator polynomial ${ }^{3}$ by

$$
W_{C}(t)=\sum_{i \geq 0} A_{i} t^{i}, \quad \text { where } \quad A_{i}=\#\{x \in C: \mathrm{w}(x)=i\}
$$

If C is a binary code, with length n, show that
(a) $W_{C^{\prime}}(t)=\frac{1}{2}\left(W_{C}(t)+W_{C}(-t)\right)$, where $C^{\prime}=\{x \in C: \mathrm{w}(x)$ is even $\}$;
(b) $W_{\widehat{C}}(t)=\frac{1}{2}\left((1+t) W_{C}(t)+(1-t) W_{C}(-t)\right)$, where \widehat{C} is the parity extension of C.
7.9. Write the wight enumerator polynomial for the code C when
(a) $C=\widehat{\operatorname{Ham}}(3,2)$;
(b) $C=G_{24}$ [suggestion: show that $\overrightarrow{1} \in G_{24}$];
(c) $C=G_{23}$.
7.10. (a) Let $C \subset \mathbb{F}_{2}^{8}$ be a self-dual linear code. Find all possible weight enumerator polynomials for C. Give an example of a self-dual code for each of the polynomials you found. Suggestion: Exercise 4.4.
(b) Show that, if C and C^{\prime} are self-dual binary codes with length 8 and have equal weight enumerator polynomials, then C and C^{\prime} equivalent codes.
7.11. Let p be a prime number and let $\zeta \in \mathbb{C}$ be a primitive p-th root of the identity, i.e., $\zeta^{p}=1$ and $\zeta^{i} \neq 1$ for $1 \leq i \leq p-1$. Given any function $f: \mathbb{F}_{p}^{n} \rightarrow V$, where V is a complex vector space, define $\widehat{f}: \mathbb{F}_{p}^{n} \rightarrow V$ by 4

$$
\widehat{f}(x)=\sum_{y \in \mathbb{F}_{p}^{n}} f(y) \zeta^{x \cdot y}
$$

[^2]where $x \cdot y$ denots the euclidean inner product in \mathbb{F}_{p}^{n}. Let $C \subset \mathbb{F}_{p}^{n}$ be a linear code.
(a) Define $C_{i}(y)=\{x \in C: x \cdot y=i\}$, for $y \in \mathbb{F}_{p}^{n}$ and $i \in \mathbb{F}_{p}$. Show that $C=\cup_{i \in \mathbb{F}_{p}} C_{i}(y)$. Show that $C_{i}(y)$ is a $C_{0}(y)$-class in C if and only if $y \notin C^{\perp}$, that is, show that
$$
\left(\forall i \in \mathbb{F}_{p} \quad \exists c_{i} \in C \quad \text { s.t. } \quad C_{i}(y)=c_{i}+C_{0}(y)\right) \Longleftrightarrow y \notin C^{\perp}
$$
(b) Show that
\[

\sum_{x \in C} \zeta^{x \cdot y}= $$
\begin{cases}|C| & \text { if } y \in C^{\perp} \\ 0 & \text { if } y \notin C^{\perp}\end{cases}
$$
\]

(c) Show that, for $y \in \mathbb{F}_{p}^{n}$,

$$
f(y)=\frac{1}{p^{n}} \sum_{x \in \mathbb{F}_{p}^{n}} \widehat{f}(x) \zeta^{-x \cdot y}
$$

(d) Show that

$$
\sum_{y \in C^{\perp}} f(y)=\frac{1}{|C|} \sum_{x \in C} \widehat{f}(x)
$$

(e) Let $f(y)=t^{\mathrm{w}(y)} \in \mathbb{C}[t]$. Show that, for $x \in \mathbb{F}_{p}^{n}$,

$$
\widehat{f}(x)=(1+(p-1) t)^{n-\mathrm{w}(x)}(1-t)^{\mathrm{w}(x)}
$$

(f) Prove the Mac Williams' Identity ${ }^{5}$ for the weight enumerator polynomial for C and its dual C^{\perp} :

$$
W_{C^{\perp}}(t)=\frac{1}{|C|}(1+(p-1) t)^{n} W_{C}\left(\frac{1-t}{1+(p-1) t}\right)
$$

(g) Write the weight enumerator polynomial for $\operatorname{Ham}(r, p)$.

Suggestion: Recall taht $\operatorname{Ham}(r, p)=S(r, p)^{\perp}$ and write $W_{S(r, p)}(t)$.

[^3]
Chapter 8

8.1. (a) Show that the cyclic shift map $\sigma: \mathbb{F}_{q}^{n} \longrightarrow \mathbb{F}_{q}^{n}$ defined by

$$
\sigma\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)=\left(x_{n}, x_{1}, \ldots, x_{n-1}\right)
$$ is a bijective linear function.

(b) Show that the code C is cyclic if and only if $\sigma^{i}(C)=C$ for all $i \in \mathbb{Z}$.
8.2. (a) Show that $\langle 2, t\rangle$ is not a principal ideal in $\mathbb{Z}[t]$.
(b) Show that $\langle x, y\rangle$ is not a principal ideal in the ring of two variable polynomials ${ }^{6} \mathbb{F}_{q}[x, y]$.
8.3. For a fixed $a \in \mathbb{F}_{q}$, show that the set $I=\left\{f(t) \in \mathbb{F}_{q}[t]: f(a)=0\right\}$ is an ideal in $\mathbb{F}_{q}[t]$. Determine a generator for I.
8.4. The ideals in the following questions are ideals in the ring $R_{n}=\mathbb{F}_{q}[t] /\left\langle t^{n}-1\right\rangle$. Assuming that $g(t) \mid t^{n}-1$ in $\mathbb{F}_{q}[t]$, show that
(a) $\left\langle f_{1}(t)\right\rangle \subset\left\langle f_{2}(t)\right\rangle$ if and only if $f_{2}(t)$ divides $f_{1}(t)$ in R_{n};
(b) $\langle f(t)\rangle=\langle g(t)\rangle$ if and only if there exists $a(t) \in \mathbb{F}_{q}[t]$ such that $f(t) \equiv a(t) g(t)\left(\bmod t^{n}-1\right)$ and $\operatorname{gcd}(a(t), h(t))=1$, where $h(t) g(t)=t^{n}-1$;
8.5. Factor $t^{7}-1$ in $\mathbb{F}_{2}[t]$ and identify all cyclic binary codes with length 7 .
8.6. Classify all cyclic codes with length 4 over \mathbb{F}_{3}. Conclude that the ternary Hamming code $\operatorname{Ham}(2,3)$ is not equivalent to a cyclic code.
8.7. (a) Write $t^{12}-1$ as a product of irreduble polynomials in $\mathbb{F}_{2}[t]$.
(b) How many binary cyclic codes of length 12 are there?
(c) Determine the integers k for wihch there is a binary $[12, k]$ cyclic code.
(d) How many binary $[12,9]$ cyclic codes are there?
(e) Determine all binary self-dual cyclic codes with length 12, write the generator polynomial for those codes.
8.8. Let C be a binary cyclic code with generator polynomial $g(t)$.
(a) Show that, if $t-1$ divides $g(t)$, then all code words have even weight.
(b) Assuming that C has odd length, show that C contains a word with odd weight if and only if the vector $\overrightarrow{1}=(1, \ldots, 1)$ is a code word.
8.9. (a) Determine the generator polynomial and the dimention of the smallest binary cyclic code which contains the word $c=1110010 \in \mathbb{F}_{2}^{7}$.
(b) Write a generating matrix, the check polinomial and the parity-check matrix for the code your code in part (a).
8.10. Determine the generator polynomial and the dimention of the smallest ternary cyclic code which contains the word $c=220211010000 \in \mathbb{F}_{3}^{12}$.
8.11. Let C be a cyclic code, with length n, with generator polynomial $g(t)$. Show that, if $C=\langle f(t)\rangle$, i.e., if $f(t)$ is a generator for the ideal C, then $g(t)=\operatorname{gcd}\left(f(t), t^{n}-1\right)$. In particular, conclude that the generator polynomial of the smallest cyclic code, with length n, containing $f(t)$ is $g(t)=\operatorname{gcd}\left(f(t), t^{n}-1\right)$.
8.12. If $g(t)$ is the generator polynomial of a cyclic code, show that $\langle g(t)\rangle$ and $\langle\bar{g}(t)\rangle$ are equivalent codes. Conclude that the code generated by the check polynomial of a cyclic code C is equivalent to the dual code C^{\perp}.
8.13. Suppose that, in $\mathbb{F}_{2}[t]$,

$$
t^{n}-1=(t-1) g_{1}(t) g_{2}(t)
$$

and that $\left\langle g_{1}(t)\right\rangle$ and $\left\langle g_{2}(t)\right\rangle$ are equivalent codes. Show that:
(a) If $c(t)$ is a code word in $\left\langle g_{1}(t)\right\rangle$ with odd weight w, then
(i) $w^{2} \geq n$;
(ii) If, moreover, $g_{2}(t)=\bar{g}_{1}(t)$, then $w^{2}-w+1 \geq n$.

[^4](b) If n is an odd prime number, $g_{2}(t)=\bar{g}_{1}(t)$ and $c(t)$ is a code word in $\left\langle g_{1}(t)\right\rangle$ with even weight w, then
(i) $w \equiv 0(\bmod 4)$;
(ii) $n \neq 7 \Rightarrow w \neq 4$.
(c) Show that the binary cyclic code with length 23 generated by the polynomial $g(t)=1+$ $t^{2}+t^{4}+t^{5}+t^{6}+t^{10}+t^{11}$ is a perfect code $[23,12,7]-$ the binary Golay Code.
8.14. (a) Let $g(t)$ be the generator polynomial of a binary Hamming code $\operatorname{Ham}(r, 2)$, with $r \geq 3$. Show that the parameter of $C=\langle(t-1) g(t)\rangle$ are $\left[2^{r}-1,2^{r}-r-2,4\right]$. Suggestion: apply exercise 8.8.
(b) Show that the code C can be used to correct all adjacent double errors.
(c) (Generalization of the previous part.) Let $C=\langle(t+1) f(t)\rangle$ be a binary cyclic code with length n, where $f(t) \mid t^{n}-1$, but $f(t) \nmid t^{k}-1$, for $1 \leq k \leq n-1$. Show that C corrects all simple errors and also the adjacent double errors.
8.15. Consider binary cyclic code with length $n=15$ generated by the polynomial
$$
g(t)=1+t^{4}+t^{6}+t^{7}+t^{8}
$$
(a) Justify that $g(t)$ is indeed the generator polynomial of this code.
(b) Write a generator matrix, the check polynomial and a parity-check matrix for this code.

(c) Write a generator matrix in the form $G=\left[\begin{array}{ll}R & I\end{array}\right]$ for this code and the corresponding parity-check matrix.
Suggestion: use equation (8.5) (and Theorem 8.37) to determine the rows of R.
(d) Use systematic coding to encode the message vector $m=1001001$.
(e) Given that this code has minimum distance $d(C)=5$, decode the received vectors

$$
y=000101011110000 \quad \text { and } \quad z=011001001001111
$$

8.16. (a) Verify that $g(t)=2+t^{2}+2 t^{3}+t^{4}+t^{5}$ divides $t^{11}-1$ in $\mathbb{F}_{3}[t]$.
(b) Let C be the ternary cyclic code generated by $g(t)$. Knowing that it is a $[11,6,5]_{3}$ code, use the Error Trapping Algorithm to decode the received vector $y=20121020112$.
(c) What is the proportion of errors with weight 2 which are corrected by this algorithm?
8.17. Consider again the binary cyclic with length $n=15$ with generator polynomial $g(t)=1+t^{4}+$ $t^{6}+t^{7}+t^{8}$ as in Exercise 8.15.
(a) Verify that, althougth this is a code with minimum distance 5 , it corrects up to burst 3-errors.
(b) Decode the received vector $y=100000110111110$ using the Burst-Error Trapping Algorithm.
8.18. (a) Let C be a cyclic $[n, k, d]_{q}$-code qith generator polynomial $g(t)$. Since C is also a linear code, the number of linearly independent columns in a parity-check matrix guarantees that syndrome decoding, for C, corrects all erasure errors up to $d-1$ symbols. Using now the cyclic property of the code and the Error Trapping Algorithm, what type of erasure errors can C correct? Consider not only the number of deleted symbols but also its distribution in the received word.
(b) Considere again the binary cyclic code with length $n=15$ and with generator polynomial $g(t)=1+t^{4}+t^{6}+t^{7}+t^{8}$ as in Exercise 8.15. The minimum distance of this code is $d=5$. Decode, if possible, the following received vectors

$$
y=000 ? ? ? ? ? ? ? 111000 \quad \text { and } \quad z=? 0101 ? 0101 ? 0000
$$

8.19. Let C be the cyclic code over \mathbb{F}_{5} with length 15 and with the following generator polynomial

$$
g(t)=1+3 t+t^{2}+2 t^{3}+t^{4}+3 t^{5}+t^{6} \in \mathbb{F}_{5}[t]
$$

(a) How many cyclic codes, over \mathbb{F}_{5}, with length 15 and with the same dimension as C are there? Write the generator polynomial for those codes.
(b) Given that C corrects all l-burst errors with $l \leq 3$, decode the received vector

$$
y=042201213100000 \in \mathbb{F}_{5}^{15},
$$

using the Burst Error Trapping Algorithm.
(c) Given that only erasure errors occured, correct, if possible, the following received vectors

$$
z=? 20 ? 04031000000 \quad \text { and } \quad w=0000 ? 0000 ? 0000 ?
$$

Suggestion: check that the syndrome of $S\left(t^{10}\right)=4 t^{5}+4$ is t^{10}.
8.20. Show that the interleaved code of degree $s, C^{(s)}$, is equivalent to the sum code $C \oplus \cdots \oplus C$ of s copies of C. Conclude that $\mathrm{d}\left(C^{(s)}\right)=\mathrm{d}(C)$.
8.21. Finish the proof of Theorem 8.57 (a): Let C be a q-ary linear code and let $x^{(s)}$ and $y^{(s)}$ be the vectors obtained by interleaving $x_{1}, \ldots, x_{s} \in C$ and $y_{1}, \ldots, y_{s} \in C$, respectively. Show that
(i) $x^{(s)}+y^{(s)}$ is the result of interleaving the vectors $x_{1}+y_{1}, \ldots, x_{s}+y_{s}$;
(ii) $a x^{(s)}$ is the result of interleaving the vectors $a x_{1}, \ldots, a x_{s}$, where $a \in \mathbb{F}_{q}$.
8.22. Let $C=\operatorname{Ham}(3,2)$ be the binary Hamming code with redundancy 3 and generator polynomial $g(t)=1+t+t^{3}$.
(a) Find the parameters $[n, k, d]$ of $C^{(3)}$.
(b) Find the generator polynomial and the parity-check polynomial of $C^{(3)}$.
(c) Show that $C^{(3)}$ corrects all m-burst errors with $m \leq 3$, but it does not correct all 4-burst errors.
(d) Using the Burst Error Trapping Algorithm, decode the following received vector

$$
y(t)=t+t^{3}+t^{4}+t^{9}+t^{13} .
$$

8.23. A q-ary cyclic code, with length n, is called degenerate if there is $r \in \mathbb{N}$ such that r divides n and each code word is of the form $c=c^{\prime} c^{\prime} \cdots c^{\prime}$ with $c^{\prime} \in \mathbb{F}_{q}^{r}$, i.e., each code word consists of n / r identical copies of a sequence c^{\prime} with length r.
(a) Show that the interleaved code $C^{(s)}$ of a repetition code C is degenerate.
(b) Show that the generator polynomial of a degenerate cyclic code with lenth n is of the form

$$
g(t)=a(t)\left(1+t^{r}+t^{2 r}+\cdots+t^{n-r}\right) .
$$

(c) Show that a cyclic code with lenght n and check polymonial $h(t)$ is degenerate if and only if there is $r \in \mathbb{N}$ such that r divides n and $h(t)$ divides $t^{r}-1$.
8.24. Let C be the binary linear code with the following parity-check matrix

$$
H=\left[\begin{array}{llllllllll}
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0
\end{array}\right] .
$$

(a) Find the minimum distance $\mathrm{d}(C)$, and determine the code capacity for detecting and correcting random errors.
(b) Show that C detects all m-burst errors with $m \leq 3$.

Remark: In this exercise, we consider only m-burst errors in the "strict sense", i.e., vectors in the form $(0, \ldots, 0,1, *, \ldots, *, 1,0, \ldots, 0)$ where all nonzero coordenates have indices between $i \geq 1$ and $i+m-1 \leq n$.
(c) Let C^{\prime} be the punctured code, in the last coordinate, of the dual code C^{\perp}. Show that C^{\prime} is a degenerate cyclic code, and determine its generator polynomial.
8.25. Determine all degenerate, cyclic and binary codes with length 9 , writing the generator polynomials and the corresponding r-sequences.
8.26. Consider the linear code $A=\left\langle\left(1, \alpha^{2}, 0\right),(\alpha, 0,1)\right\rangle$ over $\mathbb{F}_{4}=\mathbb{F}_{2}[\alpha]$, where $\alpha^{2}=1+\alpha$, and the binary linear code $B=\langle 1010,0101\rangle$. Let A^{*} be the concatenation of A and B with respect to the linear function $\phi: \mathbb{F}_{4} \longrightarrow \mathbb{F}_{2}^{4}$ defined by $\phi(1)=1010$ and $\phi(\alpha)=1111$.
(a) Write a basis for the code A^{*}.
(b) Find the parameters $[n, k, d]$ for the code A^{*}.
8.27. Let $C=\left\langle\left(0, \alpha, \alpha^{2}, 1\right),(1,1,1,1)\right\rangle \subset \mathbb{F}_{4}^{4}$, where $\mathbb{F}_{4}=\mathbb{F}_{2}[\alpha]$ with $\alpha^{2}=1+\alpha$.
(a) Find a generating matrix and the parameters for the concatenation code $C^{*}=\phi^{*}(C)$, where $\phi: \mathbb{F}_{4} \longrightarrow \mathbb{F}_{2}^{2}$ is the linear map over \mathbb{F}_{2} defined by $\phi(1)=10$ and $\phi(\alpha)=01$.
(b) Justify that the code C^{*} is equivalent to $\widehat{\operatorname{Ham}}(3,2)^{\perp}$.
8.28. Let $\mathbb{F}_{8}=\mathbb{F}_{2}[\alpha]$, where α is a root of $1+t^{2}+t^{3} \in \mathbb{F}_{2}[t]$, and consider the linear code over \mathbb{F}_{8}

$$
A=\left\langle\left(\alpha+1, \alpha^{2}+1,1\right)\right\rangle
$$

(a) Consider the map $\phi: \mathbb{F}_{8} \rightarrow \mathbb{F}_{2}^{3}$ defined by $\phi\left(a_{1}+a_{2} \alpha+a_{3} \alpha^{2}\right)=\left(a_{1}, a_{2}, a_{3}\right)$, where $a_{1}, a_{2}, a_{3} \in$ \mathbb{F}_{2}. What are the parameters of $A^{*} \phi^{*}(A) ?$
(b) Consider the map $\psi: \mathbb{F}_{8} \rightarrow \mathbb{F}_{2}^{4}$ defined by $\phi\left(a_{1}+a_{2} \alpha+a_{3} \alpha^{2}\right)=\left(a_{1}, a_{2}, a_{3}, a_{1}+a_{2}+a_{3}\right)$, where $a_{1}, a_{2}, a_{3} \in \mathbb{F}_{2}$. What are the parameters of $A^{\prime}=\psi^{*}(A)$? Suggestion: A^{\prime} is the concatenation of A with a binary code B; identify B.
(c) What can you conclude about the capacity of A^{*} e de A^{\prime} for correcting randon and/or burst errors?
8.29. Let C be the repetition code with length n over $\mathbb{F}_{q^{m}}$ and let C^{*} be the concatenation of C with the q-ary trivial code $\left(\mathbb{F}_{q}\right)^{m}$. Show that C^{*} is a cyclic q-ary code and find its parameters [$N, K, D]$.

Chapter 9

9.1. Write a generator matrix and a parity-check matrix for a Reed-Solomon code $[6,4]$, and determine its minimum distance.
9.2. Determine the generator polynomial of a Reed-Solomon over \mathbb{F}_{16} with dimention 11. Write a parity-check matrix for that code.
9.3. Show that the dual of a Reed-Solomon code is a Reed-Solomon code.
9.4. Let C be the Reed-Solomon code over \mathbb{F}_{8} with generator polynomial $g(t)=(t-\alpha)\left(t-\alpha^{2}\right)\left(t-\alpha^{3}\right)$, where $\alpha \in \mathbb{F}_{8}$ is a root of $1+t+t^{3}$.
(a) Justify that α is a primitive element in \mathbb{F}_{8}.
(b) Find the parameters of C.
(c) Find the parameters of the dual code C^{\perp}.
(d) Find the parameters of the extended code \widehat{C}.
(e) Find the parameters of the concatenation code $C^{*}=\phi^{*}(C)$, where $\phi: \mathbb{F}_{8} \rightarrow \mathbb{F}_{2}^{3}$ is the linear map defined by $\phi(1)=100, \phi(\alpha)=010$ and $\phi\left(\alpha^{2}\right)=101$.
9.5. Consider the Reed-Solomon code C over \mathbb{F}_{8} with the following generator polynomial:

$$
g(t)=(t-\alpha)\left(t-\alpha^{2}\right)\left(t-\alpha^{3}\right)\left(t-\alpha^{4}\right)=\alpha^{3}+\alpha t+t^{2}+\alpha^{3} t^{3}+t^{4}
$$

where we identify \mathbb{F}_{8} with the quotient $\mathbb{F}_{2}[t] /\left\langle 1+t+t^{3}\right\rangle$, and $\alpha \in \mathbb{F}_{8}$ is a root of $1+t+t^{3}$.
(a) Find the parameters $[n, k, d]$ of C.
(b) Apply the Error Trapping Algorithm to decode the following received vectors

$$
y=\left(0,1,0, \alpha^{2}, 0,0,0\right) \quad \text { and } \quad z=\left(0, \alpha^{3}, 0,1, \alpha^{3}, 1,1\right)
$$

(c) Let $\phi: \mathbb{F}_{8} \rightarrow \mathbb{F}_{2}^{3}$ be a linear isomorphism over \mathbb{F}_{2}. What can you say about the capacity of the concatenation code $C^{*}=\phi^{*}(C)$ for correcting burst errors?
9.6. Consider the linear code over \mathbb{F}_{11} with gerating matrix

$$
G=\left[\begin{array}{llllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & X
\end{array}\right]
$$

(a) Show that this code is equivalent to a cyclic code C.
(b) Determine the generator polymonial and conclude that C is a Reed-Solomon code.
9.7. (Generalization of the previous exercise.) Let C be a $[q-1, k]$ code, over \mathbb{F}_{q}, with generator matrix

$$
G=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & \cdots & 1 \\
1 & \alpha & \alpha^{2} & \alpha^{3} & \cdots & \alpha^{q-2} \\
1 & \alpha^{2} & \alpha^{4} & \alpha^{6} & \cdots & \alpha^{2(q-2)} \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
1 & \alpha^{k-1} & \alpha^{2(k-1)} & \alpha^{3(k-1)} & \cdots & \alpha^{(q-2)(k-1)}
\end{array}\right]
$$

where α is a primitive element in \mathbb{F}_{q} and $1 \leq k \leq q-2$.
(a) Show that C is a cyclic code.
(b) Determine the generator polynomial and conclude that C is a Reed-Solomon code.
9.8. Let $C \subset \mathbb{F}_{5}^{4}$ be the cyclic code with generator polynomial $g(t)=(t-2)(t-4)$.
(a) Justify that C is a Reed-Solomon code and find its parameters.
(b) Find the parameters and a generating matrix for the extension \widehat{C}.
(c) Let \widetilde{C} be a cyclic code with length 5 and dimension 2 . Write a generating matrix for \widetilde{C} and show that this code is linearly equivalent to \widehat{C}.
(d) Conclude that any nonzero cyclic code with length 5 over \mathbb{F}_{5} is MDS.
9.9. Recall that a linear code C is self-orthogonal if $C \subset C^{\perp}$. Determine the generator polynomial of all self-orthogonal Reed-Solomon codes over \mathbb{F}_{16}. Which of these codes are self-dual?

Appendix A

A.1. Prove the Inclusion-Exclusion Principle by induction on the number of the sets $E_{i}, 1 \leq i \leq r$.
A.2. How many integers between 1 and 1000 are not divisible by 2,3 or 5 , but are divisible by 7 ?
A.3. How many permutations of $\{a, b, c, \ldots, x, y, z\}$ do not contain the words sim, riso, mal and cabe?
A.4. How many integer solutions to $x_{1}+x_{2}+x_{3}+x_{4}=21$ are there if:
(a) $x_{i} \geq 0, i=1,2,3,4$;
(b) $0 \leq x_{i} \leq 8, i=1,2,3,4$;
(c) $0 \leq x_{1} \leq 5,0 \leq x_{2} \leq 6,3 \leq x_{3} \leq 8,4 \leq x_{4} \leq 9$.
A.5. Determine the number of monic polynomials of degree n in $\mathbb{F}_{q}[t]$ without roots in \mathbb{F}_{q}, where \mathbb{F}_{q} is a field with q elements.
A.6. (a) How many integers n between 1 and 15000 satisfy $\operatorname{gcd}(n, 15000)=1$?
(b) How many integers n between 1 and 15000 have a common prime divisor with 15000 ?
A.7. Compute $\phi(n)$ and $\mu(n)$ for: (i) 51, (ii) 82 , (iii) 200, (iv) 420 and (v) 21000.
A.8. Find all positive integers $n \in \mathbb{N}$ such that
(a) $\phi(n)$ is odd;
(b) $\phi(n)$ is a power of 2 ;
(c) $\phi(n)$ is a multiple of 4 .
A.9. Show that $\phi\left(n^{m}\right)=n^{m-1} \phi(n)$, for $n, m \in \mathbb{N}$.
A.10. Prove the following properties of the Euler function:
(i) if p is prime, then $\phi(p)=p-1$ and $\phi\left(p^{k}\right)=p^{k}-p^{k-1}$;
(ii) if $n=a b$ with $\operatorname{gcd}(a, b)=1$, then $\phi(n)=\phi(a) \phi(b)$.

And use them to show that

$$
\phi(n)=n-\sum_{i=1}^{r} \frac{n}{p_{i}}+\sum_{1 \leq i<j \leq r} \frac{n}{p_{i} p_{j}}+\cdots+(-1)^{r} \frac{n}{p_{1} \cdots p_{r}}=n \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right)
$$

where $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}$, with p_{1}, \ldots, p_{r} distinct prime numbers and $e_{i} \geq 1$.
A.11. Write the power series for $\frac{1}{1-a x}, a \neq 0$, that is, compute the inverse of $1-a x$ in the ring $\mathbb{Z}[[x]]$ (or in $\mathbb{R}[[x]]$).
A.12. Use formal derivatives and induction to show that

$$
\frac{1}{(1-x)^{k}}=\sum_{n=0}^{\infty}\binom{k-1+n}{n} x^{n}, \quad \text { for all } k \in \mathbb{N}
$$

A.13. A die is rolled 12 times. What is the probability that the sum is 30 ?
A.14. Zé wants to buy n blue, red or white marbles (the shop has a large stock in each color). In how many ways can Zé choose n marbles so that he buys an even number in blue?
A.15. Ana, Bernardo, Carla and David organized a barbeque and bought 12 steaks and 16 sardines. In how many ways can they share the steaks and sardines if:
(a) Each of them gets at least a steak and two sardines.
(b) Bernardo gets at least a steak and three sardines, and each of the other friends gets at least two steaks but no more than five sardines.
A.16. Let $f_{0}(x)$ be the generating function for the sequence $1,1,1, \ldots$ and, for $k \geq 1$, let $f_{k}(x)$ be the generating function for $0^{k}, 1^{k}, 2^{k}, 3^{k}, \ldots$. We have already shown that $f_{0}(x)=\frac{1}{1-x}$. Now show that

$$
f_{k}(x)=x\left(f_{k-1}(x)\right)^{\prime} \quad \text { for } k \geq 1
$$

Write the functions f_{1}, f_{2} and f_{3} explicitly.
A.17. Show that $\log \left(\frac{1}{1-x}\right)=\sum_{n=1}^{\infty} \frac{x^{n}}{n}$.
A.18. Using generating functions, solve the following recurrence relation:

$$
\left\{\begin{array}{l}
a_{0}=1 \\
a_{1}=2, \\
a_{n}=2 a_{n-2}, \quad n \geq 2
\end{array}\right.
$$

A.19. Using generating function, find the general term of the Fibonacci sequence

$$
\left\{\begin{array}{l}
a_{0}=a_{1}=1, \\
a_{n}=a_{n-1}+a_{n-2}, \quad \text { for } n \geq 2
\end{array}\right.
$$

A.20. Let d_{n} be the determinant of the following $n \times n(n \geq 1)$ matrix

$$
A_{n}=\left[\begin{array}{ccccccc}
2 & -1 & 0 & 0 & \cdots & 0 & 0 \\
-1 & 2 & -1 & 0 & & & 0 \\
0 & -1 & 2 & \ddots & \ddots & & \vdots \\
0 & 0 & \ddots & \ddots & \ddots & 0 & 0 \\
\vdots & & \ddots & \ddots & 2 & -1 & 0 \\
0 & & & 0 & -1 & 2 & -1 \\
0 & 0 & \cdots & 0 & 0 & -1 & 2
\end{array}\right]
$$

Find a recurrence relation for d_{n} and solve it.
A.21. Repeat the previous exercise for the matrix obtained from A_{n}
(a) replacing 2 by 3 , and -1 by $\sqrt{2}$;
(b) replacing 2 by 0 and keeping the -1 entries.
A.22. Find a recurrence relation for $s_{n}=\sum_{i=0}^{n} i^{2}$ and solve it.
A.23. An order k homogeneous linear recurrence relation with constant coeficients is of the form

$$
c_{0} a_{n}+c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}=0 \quad(n \geq k),
$$

where $c_{0}, c_{1}, \ldots, c_{k} \in \mathbb{R}$ are constants, and $c_{0} \neq 0$. The characteristic polynomial of the recurrence relation is defined by

$$
p(x)=c_{0} x^{k}+c_{1} x^{k-1}+\cdots+c_{k-1} x+c_{k} \in \mathbb{R}[x],
$$

and its roots are called characteristic roots. Assume that $c_{k} \neq 0$, i.e., 0 is not a characteristic root.
(a) Show that the general solution of a first order recurrence relation is $a_{n}=a_{0} r^{n}, n \geq 0$, where $r=-\frac{c_{1}}{c_{0}}$, i.e., r is the root of the associated characteristic polynomial.
(b) Study the homogeneous quadratic (of second order) case by proving the following statements:
(i) If the characteristic roots r_{1} and r_{2} are real and distinct, then the general solution is

$$
a_{n}=A\left(r_{1}\right)^{n}+B\left(r_{2}\right)^{n}
$$

where $A, B \in \mathbb{R}$ are constants, i.e., $\left(r_{1}\right)^{n}$ and $\left(r_{2}\right)^{n}$ are two linearly independent solutions.
(ii) If there is only one characteristic root $r \in \mathbb{R}$ (of multiplicity 2), then the general solution is

$$
a_{n}=A r^{n}+B n r^{n},
$$

where $A, B \in \mathbb{R}$ are constants.
(iii) If there are two complex roots $r_{1}, r_{2} \in \mathbb{C}$, then r_{1} and r_{2} are complex conjugates and the general solution is

$$
a_{n}=A\left(r_{1}\right)^{n}+B\left(r_{2}\right)^{n},
$$

where $A, B \in \mathbb{C}$ are constants (as in the real case). Show also that, if $a_{0}, a_{1} \in \mathbb{R}$, then A and B are complex conjugates and $a_{n} \in \mathbb{R}$, for all $n \geq 0$.
[Sugestion: recall that any $z \in \mathbb{C} \backslash\{0\}$ can be written as $z=\rho(\cos (\theta)+i \operatorname{sen}(\theta))$ and $\left.(\cos (\theta)+i \operatorname{sen}(\theta))^{n}=\cos (n \theta)+i \operatorname{sen}(n \theta).\right]$
(c) Generalize part (b) for relations of order k :
(i) Show that, if $r \in \mathbb{R}$ is a characteristic root with multiplicity m, then it contributes with

$$
a_{n}^{(r)}=A_{0} r^{n}+A_{1} n r^{n}+A_{2} n^{2} r^{n}+\cdots+A_{m-1} n^{m-1} r^{n},
$$

for the general solution, where $A_{0}, A_{1}, \ldots, A_{m-1} \in \mathbb{R}$ are constants.
(ii) If $r \in \mathbb{C}$ is a complex characteristic root with multiplicity m, what is the contribution of r and of its conjugate \bar{r} to the general solution?
A.24. Using the previous exercise, solve the following recurrence relations:
(a) $a_{n}=2 a_{n-1}+3 a_{n-2}, n \geq 2$, and $a_{0}=3, a_{1}=5$;
(b) $4 a_{n}-4 a_{n-1}+a_{n-2}=0, n \geq 2$, and $a_{0}=5, a_{1}=4$;
(c) $a_{n}-2 a_{n-1}+2 a_{n-2}=0, n \geq 2$, and $a_{0}=a_{1}=4$;
(d) $a_{n}=a_{n-1}+5 a_{n-2}+3 a_{n-3}, n \geq 3$, and $a_{0}=a_{1}=3, a_{2}=7$.
A.25. Show that the expression (A.9) obtained for $I(q, n)$ is always positive, that is, show that for $q \geq 2$ and $n \geq 1$, we have

$$
\sum_{d \mid n} \mu\left(\frac{n}{d}\right) q^{d}>0 .
$$

(We don't need the existence of a finite field with q elements.)

Appendix B

B.1. Determine the q-cyclotomic classes modulo n in the following cases:
(a) $q=2, n=9$;
(b) $q=3, n=13$.
B.2. Given $n \in \mathbb{N}$ such that $\operatorname{gcd}(n, q)=1$, show that there exists $m \in \mathbb{N}$ such that $n \mid q^{m}-1$.
B.3. Find the irreducible polymonial factorization of $t^{n}-1$ in the following cases:
(a) $t^{q-1}-1$ in $\mathbb{F}_{q}[t]$;
(b) $t^{q}-1$ in $\mathbb{F}_{q}[t]$;
(c) $t^{8}-1$ in $\mathbb{F}_{3}[t]$;
(d) $t^{13}-1$ in $\mathbb{F}_{3}[t]$.
B.4. Show that $t^{q^{n}-1}-1$ divides $t^{q^{m}-1}-1$ in $\mathbb{F}_{q}[t]$ if and only if $n \mid m$. Suggestion: Solve fisrt Exercise 3.15.
B.5. (a) Determine the 9-cyclotomic classes modulo 10.
(b) Find the number of cyclic codes over \mathbb{F}_{9}, with length 10 and dimension 7.

[^0]: ${ }^{1}$ Recall that a square matrix A, with entries in any field, is non singular, or invertible, if and only if $\operatorname{det}(A) \neq 0$ if and only if its columns (or rows) are linearly independent.

[^1]: ${ }^{2}$ This relation between the trace code and the subfield subcode is valid for any linear code C over $\mathbb{F}_{q^{m}}$, it is the Delsarte's Theorem.

[^2]: ${ }^{3}$ Note that the polynomial $W_{C}(t)$ is just the generating function of the sequence $\left\{A_{i}\right\}_{i \in \mathbb{N}_{0}}$
 ${ }^{4}$ In this exercise, we identify a class in $\mathbb{F}_{p}=\mathbb{Z}_{p}$ with the corresponding representative between 0 and $p-1$.

[^3]: ${ }^{5}$ The MacWilliams' Identity holds for any fieald \mathbb{F}_{q}, with q not necessary a prime numeber. See S. Roman's book for a proof in the general case. R. Hill does only the proof for the binary case.

[^4]: ${ }^{6}$ This holds in $\mathbb{K}[x, y]$, with \mathbb{K} any field.

