Análise Matemática IV $1^{\underline{0}}$ semestre de 2001/2002

Exercício-teste 7

Resolva o seguinte problema de valor inicial:

$$\begin{cases} \dot{y} = \frac{e^t}{(1+e^t)y} \\ y(0) = -\sqrt{\ln 4}. \end{cases}$$

A equação $\dot{y}=\frac{e^t}{(1+e^t)\,y}$ é uma equação separável e pode ser escrita para $y\neq 0$ na forma

$$y\dot{y} = \frac{e^t}{1 + e^t}.$$

Integrando ambos os lados obtém-se

$$\frac{(y(t))^2}{2} = \ln(1 + e^t) + C,$$

pelo que as soluções satisfazem a equação

$$(y(t))^2 = \ln(1 + e^t)^2 + 2C.$$

Como além disso $y(0) = -\sqrt{\ln 4},$ a solução do PVI obtém-se com C=0 e é dada por

$$y: \mathbb{R} \longmapsto \mathbb{R}^- \text{ tal que } y(t) = -\sqrt{\ln(1+e^t)^2}.$$