
CONTACT GEOMETRY AND TOPOLOGY

D. MARTÍNEZ TORRES

Two general remarks:
(i) Why ”topology” in the title?: Differential topology studies smooth ma-

nifolds. Manifolds of the same dimension look locally the same, Diff(M) is
very large, properties that can tell two manifolds apart are global. Contact
geometry retains features from differential topology: there are no contact
invariants, the group of isomorphisms of a contact structure is very large
and almost all problems are global.

(ii) Contact geometry is not an isolated branch of geometry: Quite on
the contrary, it has strong links with symplectic geometry, complex geome-
try and CR geometry; ideas, techniques from the latter give hints about
how to proceed in contact geometry. And the other way around, solutions
to problems in contact geometry provide tools essentially in symplectic geo-
metry.

A brief overview of the topics we are going to cover:
(1) Introduction: A bit of history, basic definitions and properties, and basic

examples.
(2) Isotopies, contact transformations and Gray’s stability: The group

of contact transformations, with emphasis on the infinitesimal level.
(3) Symplectic geometry and contact geometry I: Liouville vector fields

and pre-quantum line bundles.
(4) Complex geometry and contact geometry I: Convexity in complex

geometry; Levi form and plurisubharmonic functions.
(5) (Semi)-local normal forms: Darboux’ theorem and neighborhood theo-

rems.
(6) Symplectic cobordisms and contact geometry: Weinstein’s symplec-

tic handles.
(7) Symplectic and complex geometry and contact geometry II: Open

book decompositions.
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1. Introduction

Notation:

• All manifolds, maps,... will be smooth.
• Manifolds will be connected and will have empty boundary unless otherwise

stated (boundaries will be considered only when dealing with fillings and
cobordisms). When the boundary is not open, structures on the manifolds
are assumed to be restriction of structures in the open manifold (up to
diffeomorphism) obtained by adding a small collar.
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2 D. MARTÍNEZ TORRES

Definition 1. A contact structure on a manifold M is given by a field of hy-
perplanes ξ (i.e. a codimension 1 distribution of TM) which is maximally non-
integrable. The pair (M, ξ) is called a contact manifold.

Integralibity: For each x ∈ M there exist a local 1-form α ∈ Ω1(U) so that
ξ = kerα in U and

α ∧ dα = 0⇔ dα|ξ = 0

Maximal non-integrability: For each x ∈ M there exist a local 1-form α ∈
Ω1(U) so that ξ = kerα in U and

dα|ξx has no kernel, (1)

or equivalently the induced map

dα#
|ξx : ξx −→ ξ∗x

u 7−→ dαx(u, ·)

is invertible.

Remark 1. Maximal non-integrability does not depend on the 1-form whose kernel
is ξ. Indeed any other 1-form must be α′ = fα, f never vanishing,

d(fα) = fdα+ df ∧ α,

so

dα′|ξx = d(fα)|ξx = fdα|ξx

Remark 2. Being contact is a local notion, meaning that (i) the definition in-
volves a computation that uses data in a neighborhood of any point and, (ii) it
can be checked on any open cover of the manifold. Complex structures, symplectic
structures are local. Riemannian structures are given by pointwise data (apart from
the smoothness of the tensor).

Remark 3. If (M, ξ) is a contact manifold, it must have odd dimension. If we
fix u1, . . . , ud a basis of ξx, and the corresponding dual basis on ξ∗x, then dα#

|ξx is
represented by an anti-symmetric matrix A. Since detA = detAt, we conclude

detA = det(−At) = (−1)ddetA,

and therefore the result follows.

Following Klein, contact geometry is the study of those quantities/magnitudes,
properties which remain invariant under the group of contact transformations
or contactomorphisms, i.e. those φ ∈ Diff(M) such that φ∗ξ = ξ.

Definition 2. Let (M, ξ) be a 2n+1-dimensional contact manifold. An submani-
fold N ↪→M is called isotropic if

TN ⊂ ξ

If in addition its dimension is n then it is called Legendrian.

The study of isotropic/Legendrian submanifolds of a contact manifold is one
example of the problems dealt with in contact geometry.
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1.1. A bit of history. The main reference is this subsection is [8].
Contact geometry did not appeared as the result of definition 1 being given out

of nowhere and then its properties explored.
The first example of a contact manifold, together with the study of its contact

properties, appeared in the work of Lie in 1872, linked to the geometry of first order
differential equations.

Let us work the O.D.E. case: We seek for a function u(x) such that

F (x, u(x), u̇(x)) = 0, (2)

where F ∈ C∞(R3), R3 with coordinates x, u, p.
If we are to have a solution u(x) then in particular it can be extended to a curve

γ(x) = (x, u(x), p(x)), such that

γ ⊂ {F ≡ 0}

So we would like to know among the curves γ ⊂ {F ≡ 0} which ones are of the
form

γ(x) = (x, u(x), u̇(x))

Notice that the way to detect that is to compute the tangent vector of the curve

γ̇(x) = (1, u̇(x), ṗ(x)) ∈ T(x,u,p)R3

to get the equation

u̇(x) = p(x) in T(x,u,p)R3, (3)

Equation 3 makes sense without any reference to F , therefore it can be written
for any (x, u, p) ∈ R3.

The closure of all directions γ̇(x) solving equation 3 defines a hyperplane

D(x,u,p) ⊂ T(x,u,p)R3

There is a second description: R3 ' “contact elements (on R2)” 3 l(x,u,p) line
through (x, u) with slope p.

Consider the projection

π : R3 → R2

(x, u, p) 7→ (x, u)

We define for each (x, u, p) the hyperplane

ξ(x,u,p) := π−1
∗ (l(x,u,p))

l(x,u,p) = Ker(du− pdx), du− pdx ∈ T ∗(x,u)R
2

therefore
ξ(x,u,p) = Ker(du− pdx), du− pdx ∈ T ∗(x,u,p)R

3

Then ones sees that Ker(du−pdx) are the closure of the solutions of equation 3.
In particular D = ξ is a contact distribution: indeed, d(du − pdx) = −dp ∧ dx.

This is a 2-form on R3 no-where vanishing, therefore it has a 1-dimensional kernel
spanned by ∂/∂u ∈ X(R3). It does not belong to ξ because its projection onto TR2

is the line with infinite slope.
Why is this geometric point of view useful? Because we have a correspondence

between
(1) Curves γ ⊂ {F ≡ 0}, γ tangent to D, so that γ(x) = (x, u(x), p(x)) and
(2) solutions u of 2
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Assume that F t ξ (genericity condition), then the intersection TF ∩ ξ defines
a line field in F tangent to ξ. Its trajectories -when transversal to the projection
onto the x-axis- give rise to (unique) solutions.

For O.D.E.’s this brings a geometric point of view, but we trade the initial O.D.E.
by another one in F , so the difficulty is the same. Besides, the contact character of
ξ does not enter at all. In any case it is useful when describing global solutions.

For 1st order P.D.E.’s

F (x1, . . . , xn, u(x1, . . . , xn),
∂u

∂x1
(x1, . . . , xn), . . . ,

∂u

∂xn
(x1, . . . , xn)) = 0, (4)

F ∈ C∞(R2n+1), R2n+1 with coordinates x1, . . . , xn, u, p1, . . . , pn

• There is an associated distribution ξ by hyperplanes on R2n+1 so that for
any solution u,

Lu := {(x1, . . . , xn, u(x1, . . . , xn),
∂u

∂x1
(x1, . . . , xn), . . . ,

∂u

∂xn
(x1, . . . , xn))}

is an n-dimensional manifold tangent to ξ.
• The distribution ξ has an alternative description by pulling back the “con-

tact elements in Rn+1” 3 Hx,u,p is the hyperplane through (x, u) not con-
taining ∂/∂u ∈ X(Rn+1). One checks in this way that (i) ξ is given by the
kernel of du−

∑n
i=1 pidxi, (ii) it is a contact distribution and therefore Lu

is a Legendrian submanifold. So we get a correspondence
(1) Legendrians L ⊂ {F ≡ 0}, so that L = (x, u(x), p(x)) and
(2) solutions u of 4

• In order to build the former, if F t ξ then the is a characteristic flow in
F ≡ 0 defined up to scalar, so that any In−1 (i) isotropic submanifold, (i) I
transverse to the characteristic flow, gives rise to a Legendrian submanifold
LI ⊂ F ≡ 0.

• For any Sn−1 ⊂ Rn, and any f : S → R generic, one can associate Is
a unique (n-1)-dimensional isotropic submanifold in F transverse to the
characteristic flow, so that LIs comes from a function u, such that u|S = f .

As a result solving the P.D.E. -under the genericity assumption- reduces to “al-
gebraic operations” (implicit function theorem) plus solving an O.D.E. (and there
is local uniqueness for the initial condition f).

Even more, Lie was interested in transformations φ ∈ Diff(R2n+1) sending so-
lutions of (any) F to solutions of some Fφ. As we will see, those are necessarily
transformations preserving the contact distribution, i.e.

φ∗(du−
n∑
i=1

p1dxi) = f(du−
n∑
i=1

p1dxi),

f a no-where vanishing function.
Research on (global) contact geometry started in the 50’s with

• Homotopic information (Chern),
• Deformations (Gray),
• Examples (Boothby-Wang),
• Exact contact manifolds all whose Reeb trajectories are closed (Reeb).

In the 70’s and early 80’s

• h-principle (Gromov, reducing existence of contact structures on open ma-
nifolds to a homotopic question),

• Surgeries (Lutz and Meckert),
• Examples related to links of isolated singularities (Thomas).
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Late 80’s, explosion, motivated by the renewed interest on symplectic geometry
(contact geometry is the odd dimensional counterpart of symplectic geometry), and
now there are two trends:

(1) Three dimensional contact topology (Eliashberg, Giroux, Honda, Etnyre,...).
(2) Higher dimensional contact topology (Eliahberg, Giroux, Weinstein, Geiges,

Bourgeois, Thomas,...).

Contact geometry also appears in the formulation of themodynamics (late 19th
century) and optics.

1.2. Back to basic notions on contact geometry.

Lemma 1. (M2n+1, ξ) contact iff for each x ∈ M there exist a local 1-form α so
that ξ = kerα and α ∧ dαn(x) 6= 0.

Proof. dα|ξx has no kernel ⇔ dα|ξx 6= 0⇔ α ∧ dαn(x) 6= 0 �

Example 1. On T3 = R/Z3 with coordinates θ1, θ2, θ3 consider

αn := cos(nθ3)dθ1 + sin(nθ3)dθ1, n ∈ Z\{0}

Then

αn ∧ dαn = −ndθ1 ∧ dθ2 ∧ θ3,

So each 1-forms induces a contact structure.

Maximal non-integrability geometrically for (M3, ξ): About x ∈M3 there
exist coordinates x1, x2, x3 so that along vertical lines x1 = c1, x2 = c2 the planes
rotate.

To construct the coordinates

• Pick Σx a (germ of) surface so that Σx t ξ.
• Take local coordinates x1, x2 on Σx, with ∂/∂x2(x) ∈ ξ.
• Take and a local flow φt, t ∈ [0, ε], such that its integral curves are contained

in ξ and are transversal to Dx. To construct the flow pick a plane Πx

transversal to Dx, and extend it locally. The intersection with ξ gives the
desired 1-dimensional distribution.

• Extend x1, x2 using the flow and use the time as third coordinate

Choose a local 1-form

α = f1dx1 + f2dx2 + f3dx3

Then

α′ =
1
f
α = dx1 + gdx2

and lemma 1 implies
∂g

∂x3
6= 0,

so the hyperplanes rotate along the flow lines, all in the same direction.

Exercise 1. Show that by using −g as third coordinate we make the rotation speed
independent of x3, and the contact form beomes the one described by Lie.

Corollary 1. For three dimensional contact structures we have a local normal
form.
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1.2.1. Co-orientability and exact contact structures. Let D a codimension 1 distri-
bution of TM . Then we have the exact sequence of vector bundles

0 −→ D −→ TM −→ TM/D −→ 0

Definition 3. A codimension one distribution D of TM is co-orientable if the
1-dimensional distribution TM/D is trivial, i.e. if it has a no-where vanishing
section V .

Using a metric g on TM we can identify

D⊥ ' TM/D

and co-orientability is equivalent to the existence of a vector field X which is no-
where tangent to D (in particular it never vanishes).

Definition 4. (M, ξ) a contact manifold is co-orientable if ξ is co-orientable.
A co-orientation is a choice of orientation for TM/ξ, i.e. a choice of positive
transverse direction to ξ.

Lemma 2. (M, ξ) is co-orientable iff there exists α ∈ Ω1(M) so that ξ = kerα.
Such an α is called a contact form, and it is defined up to multiplication by a
no-where vanishing function. The pair (M,α) is called an exact contact manifold.

Proof. The metric g gives a map g# : TM → T ∗M , and g#(X) -X perpendicular
to ξ- is a 1-form with the required properties.

Conversely out of α we define X solving

α(X) = 1, X ⊥ ξ
�

So we have:
(M,α) exact ⇒ (M, ξ) co-oriented ⇒ (M, ξ) co-orientable.
Now if (M,α) is an exact contact manifold, then α∧dαn is a volume form. Then

we have

Corollary 2.
• If (M, ξ) is co-orientable then M is orientable and a choice of co-orientation

induces an orientation.
• If (M, ξ) is co-orientable and has dimension 4k+3 then it carries a canoni-

cal orientation by choosing the volume form associated to any contact form
for ξ.

Proof. If α′ = fα then
α′ ∧ dα′n = fn+1α ∧ dαn

�

We prefer to work with co-orientable contact manifolds because 1-forms can be
added, multiplied by a function...so we are to have more tools available. At any rate,
if (M, ξ) is not co-orientable then we can lift the contact structure to a co-orientable
one ξco on the co-orientable double cover M co κ→M .

Indeed, fix a base point x and consider the homomorphism

π1(M,x)→ Z2

sending [c] to 1 if it preserves the orientation and −1 otherwise. This is a homo-
morphism whose kernel is a normal subgroup, since Z2 is abelian. Therefore its
kernel determines up to isomorphism a covering space. We define ξco := κ∗ξ.

Exercise 2. Check that (M co, ξco) is co-orientable.
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Remark 4. The way to proceed in contact geometry is proving results for co-
orientable contact manifolds, and to extend them we seek for equivariant construc-
tions.

1.3. First examples.

Example 2. In R2n+1 with coordinates x1, . . . , x2n+1 we consider the 1-form

αstd = dx2n+1 +
1
2

n∑
j=1

(x2j−1dx2j − x2jdx2j−1), (5)

which is linear in the given coordinates. Another linear contact form is

αstd′ = dx2n+1 +
n∑
j=1

x2j−1dx2j , (6)

Notice that dαstd = dαstd′ .

Exercise 3. Check that αstd, αstd′ are contact forms. More precisely, check that

αstd ∧ dαstd = n!dx1 ∧ · · · ∧ d2n+1

Observe that the contact form in Lie’s example is the pullback of αstd′ by the
linear isomorphism which reverses all odd coordinates but the last one.

Given M , the manifold of contact elements (of M) is defined

Ct(M) := {Hx ⊂ TxM hyperplane, x ∈M}
It is the total space of a fiber bundle

P(T ∗xM) ↪→ Ct(M) π→M

Notice that the fiber bundle

T ∗xM\{0} ↪→ T ∗M\{0} →M

projects onto Ct(M) π→M .
The contact distribution ξ is defined

ξHx := π−1
∗Hx(Hx)

Proposition 1.
(1) (Ct(M), ξ) is a contact manifold.

We use a cover that reduces everything to exercise 3. Take Ul a cover of
M , so that π−1Ul ' Ul × RPm−1. Then take a further cover of projective
space by affine charts to get

Ulj = {H ∈ TxUi |
∂

∂xj
/∈ H}

Coordinates x1, . . . , xm, p1, . . . , p̂j , . . . , pm represent H with slopes p1, . . . , p̂j , . . . , pm:
for i 6= j, the plane Πij spanned by ∂

∂xj
, ∂
∂xi

is transverse to H, therefore
they intersect on a line on Πij spanned by ∂

∂xi
+ pi

∂
∂xj

.
It is clear from this description that the 1-form

α = dxj −
∑
i 6=j

pidxi

has ξ as kernel. By exercise 3 the 1-form is contact.
Each chart is nothing but with the manifold of “contact elements of Rn”

defined by Lie.
(2) If φ ∈ Diff(M), then φ naturally indices a contact transformation on

(Ct(M), ξ).



8 D. MARTÍNEZ TORRES

(3) The contact manifolds Ct(M) are never co-orientable. Indeed, it is enough
to show that the restriction to any fiber of TCt(M)/ξ is not co-orientable.
That is done locally. Take coordinates about x ∈ M . Pick a hyperplane
H ∈ TxM . Next take the geodesic v(θ), θ ∈ [0, 2π] orthogonal to it in Sn−1

(use the Euclidean metric given by the coordinates). At each point it deter-
mines a hyperplane Hθ by taking the one orthogonal to v̇(θ). Therefore, we
get (x,Hθ), θ ∈ [0, π] a loop on the fiber. Then (v̇(θ), 0), θ ∈ [0, π] is trans-
verse to the contact distribution. Since v̇(0) = −v̇(π), the coorientation is
reversed.

Since for m odd the manifolds Ct(Rm) = Rm × RPm−1 are orientable
(actually for any orientable M), we deduce that co-orientability and ori-
entability are not equivalent.

(4) (Ct(M), ξ) is universal for codimension 1 distributions. Indeed, a codimen-
sion one distribution D is equivalent to a section

D : M −→ Ct(M)
x 7−→ Dx

and then
D = D∗ξ

There is an index 2:1 cover from the manifold of oriented contact elements onto
Ct(M)

κ : Ctor(M)→ Ct(M),
endowing the former with a contact structure κ∗ξ.

By definition a fiber of Ctor(M) is S(T ∗xM), the result of identifying half lines in
T ∗xM\{0}.

Proposition 2.
(1) (Ctor(M), κ∗ξ) is the co-orientable double cover (Ct(M), ξ).
(2) A co-oriented distribution is the same a section of Ctor(M) → M . A

distribution D : M → Ct(M) is co-orientable iff it admits a lift to

κ : Ctor(M)→ Ct(M)

There is a second description of the contact structure κ∗ξ:
Fix a metric on g and let Sg(T ∗M) be the unit sphere bundle of T ∗M . Then we

have the maps
Sg(T ∗M) ↪→ T ∗M\{0} → Ctor(M)

and the composition is a diffeomorphism Φ. In T ∗M consider the Liouville 1-form
which in dual coordinates x1, . . . , xn, p1, . . . , pn is

λliouv =
n∑
j=1

pjdxj

Recall that (T ∗M,λliouv) has the universal property for sections of T ∗M (1-forms
on M).

Exercise 4. Check that kerΦ∗λliouv = κ∗ξ, where λliouv ∈ Ω1(T ∗M\{0}).

Example 3. Consider J 1M = T ∗M ⊕ R. In other words

J 1
xM := [f ]1x,

where [f ]1x = 0 if f(x) = 0 and dfx = 0.
Let z denote the coordinate of the R factor, and let λ denote the pullback by

J 1M → T ∗M of the Liouville 1-form. Then

dz − λ
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defines a contact 1-form.

1.4. Almost contact manifolds. What are the obstructions to the existence of
(co-orientable) contact structures on an odd dimensional manifold?

We will study what kind of additional structure we get.

Lemma 3. A contact form α on M gives a reduction of the structural group of
TM to 1⊕Sp(2n), and since the later summand can be reduced to U(n) (by putting
an almost complex structure along ξ compatible with dα), we conclude that the
structural group of a co-orientable contact manifold reduces to 1⊕ U(n).

Proof. Recall that for a given manifold M , a smooth structure gives rise to P the
principal Gl(m,R)-bundle of frames of the tangent bundle, the fiber over x ∈ M
being the frames of TxM . It is the principal bundle associated to TM . A reduction
to a subgroup H < Gl(m,R) amounts to a choice of trivializations so the the
transition functions take values of H.

Recall as well that a reduction is a monomorphism from a principal H bundle into
P . This is seen to be equivalent to a section of the G associated bundle P ×GG/H
with classes gH, and right G-action

g ∗ g′H = g−1g′H

Therefore, one can speak of reductions being homotopic (as sections of the afore-
mentioned associated bundle).

The 1-form α, together with a metric say, gives the splitting TM = R ⊕ ξ
(where the trivialization is such that α(X) = 1). Thus we obtain a reduction to
1⊕Gl(2n,R) (where 1 = SO(1)).

The contact form endows ξ with a symplectic vector bundle structure (ξ, dα); in
appropriate trivializations each fiber becomes (R2n, dαstd), and therefore we get a
reduction to 1⊕ Sp(2n,R).

An almost complex structure on a vector bundle E with fiber R2n is an isomor-
phism J : E → E so that J2 = −Id. On appropriate trivializations fibers become
(R2n, i) = Cn, so we get a reduction from Gl(2n,R) to Gl(n,C).

An almost complex structure J compatible with (ξ, dα) is one such that

dα(J ·, J ·) = dα(·, ·), dα(·, J ·) > 0,

and suitable trivializations locally identify fibers with (R2n, dαstd, i). Since

Gl(n,C) ∩ Sp(2n,R) = U(n,C),

the existence of the c.a.c.s. is equivalent to the sought for reduction.
Compatible almost complex structures always exist: indeed there is a retraction

r : Sp(2n,R)→ U(n,C)

given by shrinking the non-unitary factor in polar decomposition. Therefore, the
inclusion U(n,C) ↪→ Sp(2n,R) is a homotopy equivalence, so by the long exact
sequence the homogeneous space Sp(2n,R)/U(n,C) is contractible.

Obstruction theory tells us that if a fiber bundle has contractible fiber then it
always has a global section, and all such sections are homotopic (actually we only
need vanishing of the homotopy up to m-1 (m for the homotopy result), where m
is the dimension of the base. �

Once we have a (compatible) almost complex structure J on ξ, we can define its
total Chern class

c(ξ; J) ∈ H∗(M ; Z)

Since space of c.a.c.s. is contractible the total Chern class is independent of J .
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Definition 5. An odd dimensional manifold M with a reduction of the structural
group of TM to 1⊕ U(n) is called almost contact.

Being almost contact is the only known obstruction for a manifold to be contact.
Moreover, the main conjecture in contact geometry asserts:

Conjecture 1. Every almost contact manifold is (exact) contact, and the reduction
given by the almost contact structure is homotopic to the one given by the contact
structure.

Theorem 1 (Gromov). The conjecture holds true for open manifolds [9] (or see
the more readable [4]).

2. Isotopies, contactomorphisms and Gray’s stability

Given a manifold M with at least a co-oriented contact structure, we want to
have a better understanding of the set of co-oriented contact structures Cco(M). Of
course, we want to introduce and study the relevant question for the corresponding
topological space.

Notice
Cco(M) ⊂ Γ(M,Ctor(M)) ⊂ C∞(M,Ctco(M))

For the latter we have the Cr topologies, r ∈ N ∪ ∞. We will not distinguish
between weak and strong, for at some point all manifolds will be compact.

We will endow Cco(M) and Γ(M,Ctor(M)) with the topology induced by the
C1-topology on C∞(M,Ctco(M)), and call it the C1-topology.

We claim:

Lemma 4. Cco(M) is an open subset of Γ(M,Ctor(M)) (for the C1-topology).

Proof. It can be seen that to preserve the contact condition exactly C1-control on
the distribution is needed. But as usual working with 1-form is more convenient.
Consider the sets Ω1

cont(M) ⊂ Ω1
nw(M) of contact and no-where vanishing 1-forms

respectively. Again, we make them into topological spaces by putting the topology
coming from the C1-topology on C∞(M,T ∗M).

Then we have the commutative diagram

Ω1
cont(M) ker−−−−→ Cco(M)y y

Ω1
nw(M) ker−−−−→ Γ(M,Ctor(M))

where the horizontal arrows are surjective.
We claim that the lower row is a continuous open map for the C1-topologies (go

to charts to check this).
Therefore, the C1-topology on Γ(M,Ctor(M)) is the quotient topology, meaning

that many topological problems for the latter can be lifted to equivalent problems
on Ω1

nw(M).
In particular one checks easily that Ω1

cont(M) is open, since the contact condition

α ∧ dαn 6= 0

involves exactly C1-information on α. Thus ker(Ω1
cont(M)) = Cco(M) is an open

subset. �

We want to understand the path connected components

Cco(M)i, i ∈ I
of Cco(M).
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Definition 6. We say that ξ, ξ′ ∈ Cco(M) are contact homotopic if there exist
ξt ∈ Γ(M,Ctor(M)) a

homotopy so that ξ0 = ξ, ξ1 = ξ′.

Observe that a homotopy between ξ, ξ′ can be deformed to be smooth (by approx-
imation results), so in particular it becomes a continuous path in the C1-topology.

Some homotopies come from “deformations” of M , i.e. from isotopies, and hence
they should not be taken into account.

Definition 7. We say that ξ, ξ′ ∈ Cco(M) are contact isotopic if there exist
φ ∈ Diff0(M) such that ξ′ = φ∗ξ. This is equivalent to saying that φt, t ∈ [0, 1] a
path of diffeomorphisms starting at the identity so that

φ∗ξ = ξ′

In particular contact isotopic forms are contact homotopic.
For contact forms the above condition becomes

φ∗α′ = fα,

where f is strictly positive.

In other words, on Cco(M) we have the action of Diff0(M). Notice that for
ξ ∈ Cco(M) the stabilizer of the action is

Stbξ = Cont(M, ξ) ∩Diff0(M)

And we want to study the orbit space Cco(M)/ ∼.

Theorem 2 (Gray). Let M be compact and Cco(M)i 6= ∅, then

Cco(M)i/ ∼= {point}
In other words, the Diff0(M)-orbit of ξ is all Cco(M)i, i.e. if ξ, ξ′ ∈ Cco(M) can
be joined by a continuous path in Cco(M), then there exist φ ∈ Diff0(M) such
that ξ′ = φ∗ξ (so they are the same contact structure up to a “global change of
coordinates” coming from a global deformation).

Corollary 3. If M is compact co-oriented contact structures (resp. exact contact
forms) are stable, i.e. about any such structure there exist an open neighborhood
(in the C1-topology) so that any other co-oriented distribution (resp. no-where
vanishing 1-form) in the neighborhood can be conjugated to the original one.

Proof. Given ξ ∈ Cco(M) take α ∈ Ω1
cont(M) with ξ = kerα.

We claim that there exist Nα ⊂ Ω1
nw(M) a small open neighborhood of α made

of contact forms. If so, ker(Nα) solves the problem.
To prove the claim choose Nα so that for any α′ ∈ Nα the convex combination

(1 − t)α′ + tα is by contact forms. This is always possible. Then α′ is contact
isotopic to α, and by the previous theorem contact isotopic. �

2.1. Contact Hamiltonians. Let fix a contact 1-form α for (M, ξ), M compact.
We will see that Cont(M, ξ) is an (infinite dimensional) “Lie group”, in the same

sense as Diff(M) is a “Lie group”.
In a Lie group G with Lie algebra g, left multiplication gives a 1 to 1 correspon-

dence between
• geodesics on g with velocity v (i.e. v ∈ g) and
• curves exp(tv) through origin with speed v which are left invariant.

The latter is the integral curve of the left invariant vector field V with V (e) = v.
Equivalently,

exp(·v) : R→ G

is the unique homomorphism integrating t 7→ tv ∈ g.
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We know vector fields are the “Lie algebra” of Diff(M) in the same sense. Given
X ∈ X(M), we get a homomorphism t 7→ φXt determined by

d

dt
φt(x) = X(φt(x))

In a Lie group, left multiplication further identifies
• curves on g and
• curves c(t) through origin

We also have an identification between 1-parameter families of vector fields and
maps

R→ Diff(M)
sending 0 to the identity.

The identification can be given by the equation formula
d

dt
φt(x) = Xt(φt(x)) (7)

More conceptually, a 1-parameter family of vector fields Xt is identified with the
vector field

X̂ := Xt +
∂

∂t
∈ X(M × R)

Hence it can be identified with a flow ΨX̂
t in M × R, which together with the

projection gives rise to φt.
We want to find out conditions which identify vector fields giving rise to contac-

tomorphisms. If we have a path φt in Cont(M, ξ), φ0 = Id, then we have

φ∗tα = ftα,

and infinitesimally

φ∗tLXtα =
d

dt
φ∗tα =

d

dt
ftα =

d

dt
ft

1
ft
φ∗tα = φ∗thtα,

with ht = d
dtft

1
ft
◦ φ−1

t .
So we are led to

Proposition 3. Xt integrates into a 1-parameter family of contactomorphisms iff

LXtα = htα (8)

Exercise 5. Finish the proof of proposition 3 showing that if LXtα = htα, then
the flow satisfies

φ∗tα = eφ
∗
thtα

Definition 8. A vector field X ∈ X(M) is contact (for (M, ξ)) if LXα = hα,
h ∈ C∞(M).

From proposition 3 we deduce

Proposition 4. Contact vector fields are those whose flow preserves ξ.

Exercise 6. Show that contact vector fields are closed under the Lie bracket, so
they form a “Lie subalgebra” of X(M).

Recall that if α is a contact form dα is non-degenerate on the hyperplanes ξx.
Since TxM is odd dimensional, dα must have a kernel, which in light of the maximal
non-degeneracy of ξ has to be 1-dimensional.

Definition 9. The Reeb vector field R is the unique vector field determined by the
conditions

iRα = 1, iRdα = 0
In other words is a no-where vanishing vector field on kerdα suitably normalized.
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Notice that
(1) the flow of R preserves the contact form:

LRα = diRα+ iRα = 0,

so in particular the Reeb vector field is contact.
(2) A change in the contact form to α′ = fα changes the Reeb vector field.

Therefore, each no-where vanishing function f produces a contact vector field X
so that

iXα =
1
f

More generally if we decompose X ∈ X(M),

X = −hR+ Z, Z ∈ Γ(ξ)

The contact condition is LXα = gα can be expanded

−dh+ iZdα = gα (9)

If in equation 9 h is given, there exist only one solution with

g = −iRdh , iZdα = dh|ξ

Proposition 5.
(1) There is a 1 to 1 correspondence between C∞(M) and contact vector fields.

The correspondence sends each vector field to its contact Hamiltonian.
It is linear, homeomorphism w.r.t C∞-topology and support preserving.

(2) There exists no contact vector field everywhere tangent to ξ.
(3) A contact vector field is Reeb for some rescaled form iff it is everywhere

transversal to ξ.

Exercise 7. Proof proposition 5. Show also that using proposition we can identify
paths in Cont(M, ξ) with paths in C∞(M).

Remark 5. Point 1 in proposition 5 and exercise 7 are extremely useful to extend
isotopies of contact transformations defined in domains of contact manifolds (for
example in tubular neighborhoods of compact submanifolds), also keeping control of
the support of the isotopy.

Remark 6. Exercise 6 together with proposition 5 implies that the contact form
can be used to endow C∞(M) with a local Lie algebra structure in the sense of
Kirillov, that is a map of sheaves

C∞(M)× C∞(M)→ C∞(M)

which does not increase support, is anti-symmetric and satisfies Jacobi identity
[11, 12].

Remark 7. Reeb vector fields/positive functions define a positive cone. They give
rise to a notion of positive path of contact transformation [5]: These are paths
associated to 1-parameter families of positive functions. Existence of a partial order
on the universal cover of (M, ξ) -equivalent to the absence of non-trivial positive
loops- is related to squeezing questions [5, 6] (i.e., whether certain regions of a
contact manifold can be contact isotoped into others).

It is worth observing that point 2 in proposition 5 implies that one cannot find a
1-parameter group of contact transformations everywhere tangent to ξ. Therefore,
if we want to understand the action of Diff0(M) on contact structures up to con-
tactomorphism, it is reasonable to work infinitesimally with vector fields tangent
to ξ.
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Proof of Gray’s stability theorem. The proof uses Moser’s method along ξt. Indeed,
let αt a 1-parameter family of contact forms. Let’s assume

φ∗tαt = ftα0 (10)

for an isotopy associated to Xt tangent to ξt. If this were the case, then differenti-
ating 10 we get

φ∗t (iXtdαt +
d

dt
αt) =

d

dt
ftα0 =

d

dt
ft

1
ft
φ∗tαt = φ∗thtαt (11)

Clearly,

iXtdαt +
d

dt
αt = htαt (12)

has a unique solution along ξt for any ht. Obviously, for a unique

ht := d/dtαt(Rt)

the previous solution gives an equality of 1-forms. �

Exercise 8. Show that if two non-co-oriented contact structures are contact ho-
motopic, then they are contact isotopic.

Hint: Work in the co-orientable double cover and make sure an equivariant cons-
truction is available.

3. Contact geometry and symplectic geometry I.

Recall that a symplectic form Ω ∈ Ω2(Y ) is such that
(1) Ω has no kernel.
(2) dΩ = 0.

Definition 10. Let (M,α) a contact manifold. Then its symplectization is the
manifold M × (−∞,∞) with symplectic form Ω = d(etα), where t is the coordinate
of the real line.

To recover the contact structure we use the more general result.

Definition 11. Let (M,Ω) be a symplectic manifold. A Liouville vector field X
is a vector field such that

LXΩ = Ω

Proposition 6. Let (Y,Ω) be a symplectic manifold, X a Liouville vector field and
H a hypersurface such that H t X. Then α := iXΩ|H is a contact form.

Proof. Since restriction (pullback) commutes with exterior derivative we have

dα = diXΩ|H = LXΩ|H = Ω|H
So we have to prove that Ω|kerα is symplectic. Since Ω is symplectic, we know

that AnnΩ(X) is a hyperplane containing X; more precisely

AnnΩ(X) = 〈X〉 ⊕ kerα

The kernel of Ω|AnnΩ(X) is spanned by X, so the symplectic form descends to the
quotient

(AnnΩ(X)/X,Ω) ' (kerα, dα)
�

Observe that by definition in the symplectization of (M,α) the vector field ∂/∂t
is Liouville. A simple computation shows that for the hypersurface t = 0 we have

i ∂
∂t

Ω|t=0 = α

More generally we conclude
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Corollary 4. For any f ∈ C∞(M) the hypersurface t = f(x) inherits a contact
structure. If M is compact all such structures are contact diffeomorphic.

Proof. By proposition 6 any such hypersurface is contact. Given any such two
hypersurfaces H1, H2 defined by f1, f2, take the convex combination

ft = (1− t)f1 + tf2

Then each Ht inherits a contact form αt. Now the restriction of the projection
p1 : Ht → H1 gives a diffeomorphism, producing α′t = p2∗αt ∈ Ω1

cont(H1). By
Gray’s theorem kerp1∗α2 is contact isotopic to kerα1. �

Remark 8. One might think that contact topology reduces to symplectic geometry
techniques invariant under the Liouville vector field ∂/∂t. This is not true because
the symplectization is a non-compact symplectic manifold, for which not many tech-
niques from symplectic topology are available. Therefore, contact geometry must
develop its own techniques, often inspired in ideas from symplectic geometry (see
for example the proof of Gray’s stability theorem).

Definition 12. A contact structure on M is called strongly symplectically fill-
able when it is obtained as in proposition 6 with M = ∂Y and X defined in a
neighborhood of ∂X, i.e. when M is the strong convex boundary of (Y,Ω, X).

Exercise 9. Let S2n−1 = ∂B2n(1) ⊂ R2n, with coordinates x1, . . . , x2n. Consider
the standard constant symplectic form

ωstd =
n∑
j=1

dx2j−1 ∧ dx2j

The radial vector field

X =
2n∑
i=j

xj
∂

∂xj

is Liouville. Since it is transversal to S2n−1, the latter inherits a contact form
which is

iXωstd|TS2n−1 = (
n∑
j=1

x2j−1dx2j − x2jdx2j−1)|TS2n−1

The corresponding co-oriented contact structure is the so called standard contact
structure ξstd which is also strongly fillable by definition (and any ellipsoid will
inherit a contact structure contact isotopic to the one on the sphere).

3.1. Boothby-Wang examples. It is well know that there is a 1 to 1 correpon-
dence between isomorphism classes of complex line bundles over M , and H2(M ; Z),
the map given by

(L→M) 7→ c1(L)
The correspondence can be refined as follows: there is no loss of generality

in considering isomorphism classes of complex line bundles with hermitian metric
(L, h = 〈·, ·〉) (so we reduce the structural group from Gl(C, 1) = C∗ to U(1) = S1).
For these, one can consider the sphere bundle

S(L) := {l ∈ L | 〈l, l〉 = 1} ⊂ L,
which is a principal S1-bundle.

Any line bundle admits a connection ∇. One can look at a connection in
equivalent ways:

(1) A splitting TL = T vL⊕H so that λ∗H = H, λ ∈ C∗ (in particular it must
be tangent to the zero section).
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(2) An operator
∇ : Ω1(M)⊗ Γ(L)→ Γ(L)

subject to the Leibniz rule

∇fs = dfs+ f∇s
so that one can make sense of differentiating sections of L

Notice that the first description is equivalent to giving

A ∈ Ω1(L\{0},C = Lie(C∗))C∗ ,

and so that along vertical directions describes the action of C.
To go from 1 to 2 we just notice that given s ∈ Γ(L), we can split

Dus(x) = Dus(x)v +Dus(x)h, Dus(x)v ∈ T vs(x)L, Dus(x)h ∈ Hs(x)

In particular, if ∇s(x) = 0, then Hs(x) = Ts(x).
If s ∈ Γ(U) is no-where vanishing, then

∇s/s ∈ Ω1(U ; C)

Moreover, we can always choose it compatible with the hermitian metric. Using
the second point of view it means

d〈s, t〉 = 〈∇s, t〉+ 〈s,∇t〉, s, t ∈ Γ(L) (13)

We claim that for a hermitian connection is tangent to S(L): notice that if
h(s, s) = 1 then equation 13 implies

∇s/s+∇s/s = 0,
or equivalently

∇s/s ∈ Ω1(U ; iR)
At each x, take f ∈ C∞(U) so that

∇s/s(x) + idf(x) = 0 , f(x) = 0

Leibniz’s rule imply that eifs is tangent to H(x), and this proves the claim.
The curvature of a hermitian connection F∇ belongs to Ω2(M ; iR). It can be

computed locally using a non-vanishing section as

d∇s/s ∈ Ω2(U ; iR)

Indeed, if t = fs, f no-where vanishing,

∇(fs)
fs

=
df

f
+
∇s
s

= d ln f +
∇s
s
,

and therefore

d
∇(fs)
fs

= d
∇(s)
s

The curvature is a closed form and such that[
− 1

2πi
F∇

]
= c1(L) ∈ H2(M ; Z)⊗ R

The previous procedure can be reversed, so we get

Theorem 3 (Weil). Any a ∈ Ω2(M) such that da = 0 and [a] ∈ H2(M ; Z),
determines a hermitian complex line bundle with compatible conection (L, 〈·, ·〉,∇)
so that

− 1
2πi

F∇ = a,

the connection being unique up to the addition of idf , f ∈ C∞(M).
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Notice that the connection∇ restricted to S(L) is given by −iA|S(L) ∈ Ω1(S(L)),
an S1-invariant 1-form so that A(R) = 1, where R is the generator of the S1-action
(with period 2π).

One has

−idA = −ip∗F∇, (14)
where p is the projection S(L)→M .

Exercise 10. Prove equation 14.
Hint: Trivialize S(L) by a (unitary) section s. Then

S(L) = U × R/2πZ

and H is the kernel of i∇s/s− dz, where z is the coordinate on R.

Theorem 4 (Boothby-Wang). A is a contact form if and only if the curvature is
a symplectic form.

Corollary 5. Each symplectic manifold has an associated exact contact structure
on its pre-quantum line. Two such exact forms differ by the action of the gauge
group. The Reeb vector field is the generator of the S1-action.

Example 4. Since (T ∗M,−dλliouv) is an exact symplectic manifold, the Chern
class of the pre-quantum line bundle is trivial and hence the pre-quantum line bundle
is

S1 × T ∗M
We can work on the covering R × T ∗M . There we need to put a connection

invariant under the R-action by translations, and whose differential is p∗− dλliouv.
Clearly we can choose

dz − p∗λliouv

Notice that we recover the exact contact manifold

(J 1M,dz − p∗λliouv)

Example 5. The standard contact structure on S2n+1 comes from the Boothby-
Wang construction, where the base manifold is CPn.

Indeed, consider the projection

Cn+1\{0} → CPn

The tautological complex line bundle O(−1) has fiber

O(−1)[v] = Cv = π−1(v) ∪ {0}

Recall that we can restrict ourselves to O(−1)\{0}
But notice

O(−1)\{0} ' \{0}
On Cn+1 we use the standard hermitian metric

〈v, w〉 = vw̄

which we restrict to each line through the origin, so we get a hermitian metric on
the tautological line bundle. Next the connection is given by the distribution

Hv = Cv⊥

It is clear that H is invariant under the C∗-action (notice that the S1-action is
by unitary transformations).

We next prove that it is hermitian: For local sections s, t : U ⊂ Cn → Cn+1 we
have
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〈ds, t〉 = 〈∇s, t〉
Since

d〈s, t〉 = 〈ds, t〉+ 〈s, dt〉
the result follows.

Notice that the 1-form defining H is given by

Av =
1
〈v, v〉

〈·, v〉

When restricted to the sphere becomes

Av = 〈·, v〉

In coordinates x1, y1, . . . , xn+1, yn+1 one easily checks

−iA|TS2n+1 = (
n+1∑
j=1

(x2j1dx2j − x2jdx2j−1))|TS2n+1

Since we know that in the r.h.s. we have a contact form, we also conclude that
− i

2F∇ is a symplectic form on CPn+1, the so called Fubini-Study symplectic
form.

3.2. More on sphere bundles: Assume that (Y, dα) is an exact symplectic ma-
nifold. Then by Cartan’s formula the unique vector field solving the equation

iXdα = α

is Liouville.
Let (Y, α) as above be (T ∗M,−dλliouv). In dual coordinates x1, . . . , xn, p1, . . . , pn,

the vector field is

X =
n∑
j=1

pj
∂

∂pj

By proposition 6 for any hypersurface transverse to X the restriction of α is
a contact form. In particular this is the case of the sphere bundle of T ∗M w.r.t.
any metric. Since any two metrics can be joined by a path, by Gray’s stability we
give another proof about the contact structures on different sphere bundles being
contactomorphic (for compact base).

Exercise 11. On S(T ∗M), for a fixed Riemannian metric g, we can consider the
dual of the geodesic flow. One possible definition is that it is the flow associated
to the following vector field X ∈ X(T ∗M): On a point (x, p), it lifts the vector on
TxM dual (w.r.t g) to p. The lift is given by the dual of Levi-Civita connection
on T ∗M . The dual geodesic flow preserves the dual metric induced on T ∗M , in
particular it is tangent to S(T ∗M). Show that this flow is by contactomorphisms,
and its the contact hamiltonian is

h(x, p) = −|p|2

Hint: For (x, p) ∈ S(T ∗M) ∼= Ctor(M), show that the projection π∗X(x, p) is
orthogonal to the contact element (hyperplane on TxM). Parallel transport along
a geodesic of v ∈ TxM can be performed as follows: take a curve representing it
and parallel translate the velocity of the geodesic. Then push the curve uing the
geodesic flow, to get a curve whose derivative is the parallel transport. Deduce from
this and the previous fact that φXt∗ preserves the contact distribution. Therefore X
integrates into a Hamiltonian isotopy. To compute the contact Hamiltonian, just
evaluate λliouv on X.
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4. Contact geometry and complex geometry I

Let (Y, J) be a complex manifold and H ⊂ Y a hypersurface. The hypersurface
inherits a CR structure (of hypersurface type), the distribution ξ being TH∩JTH.

We would like to know when ξ is of contact type. Let us suppose that ξ is
co-orientable and TM/ξ has been triviallized. That is, we have a global section V
that we use to construct the isomorphism

Φ: TM/ξ −→ R := M × R

ux 7−→ (x,
ux
Vx

)

In CR geometry the is a way of measuring the “convexity in the complex sense”
of ξ.

The Levi form is the bilinear form defined

L : ξ × ξ −→ TM/ξ ∼= R
(U, V ) 7−→ [U, JV ]/ ∼ (15)

Exercise 12. Show that L is a tensor, and that it is symmetric. For the latter,
use the vanishing of the Nihenjuis tensor which is equivalent to

[JU, JV ] = [U, V ] + J [JU, V ] + J [U, JV ], (16)

Definition 13. H is called strictly/strongly pseudoconvex (resp. pseudoconcave)
if the Levi form is strictly positive (resp. negative).

The hypersurface H (being its normal bundle orientable) can be defined as the
zero set of a function ρ : Y → R which has no singular points at H.

To any such function we can associate the (1, 1) real valued 2-form

−ddcρ, (17)

where dc := d ◦ J ,

dc : C∞(M) d−→ Ω1(M) J∗−→ Ω1(M)

Notice that dcρ|H is a (real valued) 1-form whose kernel is ξ.
To explain what a (1, 1) form is, just notice that the above complex also works

for complex valued functions and forms.
Any (almost) complex structure gives a splitting

T ∗YC = T ∗1,0Y + T ∗0,1Y

into complex linear and anti-complex linear part. So we get

Ω(Y ; C) = Ω1,0(Y,C)⊕ Ω0,1(Y ; C),

and therefore

Ωr(Y ; C) =
r∑
p+q

Ωp,q(Y ; C)

Using the previous splitting one defines

∂ := π1,0 ◦ d, ∂̄ := π0,1 ◦ d (18)

Equivalently,

∂ :=
d− idJ

2
, ∂̄ :=

d+ idJ

2
,

with d = ∂ + ∂̄
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Since a function f is holomorphic iff its derivative is complex linear, we can write
it equivalently as

∂̄f = 0
In complex coordinates zj = xj + iyj one defines

dzj := dxj + idyj , dz̄j = dxj − idyj
and checks that (dzj)z=1,...,n (resp. (dz̄j)z=1,...,n gives a basis of complex linear
(resp. anti-complex linear) 1-forms.

Also notice that

∂f =
n∑
j=1

∂f

∂zj
dzj , ∂̄f =

n∑
j=1

∂f

∂z̄j
dz̄j

where
∂

∂zj
=

1
2

(
∂

∂xj
− i ∂

∂yj

)
,
∂

∂z̄j
=

1
2

(
∂

∂xj
+ i

∂

∂yj

)
Then one checks

∂2 = ∂̄2 = 0
In particular from d2 = 0 we also conclude

∂∂̄ + ∂̄∂ = 0

Remark 9. As we mentioned, the splitting of complex linear forms and the de-
finition of the operators ∂, ∂̄ as in equation 18. A foundational result in almost
complex geometry is

Theorem 5 (Newlander-Nirenberg). Given (Y, J) an almost complex manifold,
then the following assertion are equivalent-

(1) The almost complex structure is integrable, meaning that about any point
there exists complex coordinates.

(2) ∂2 = 0 or ∂̄2 = 0.
(3) The Nijenhuis tensor (equation 16) is vanishing.

Observe that dc = −i(∂̄ − ∂) and therefore another definition of 17 is

−ddc = 2i∂∂̄ (19)

and thus it follows that −ddcρ is of type (1, 1).
If γ ∈ Ω1,1(M ; C), then

γ(J ·, J ·) = γ(·, ·)
Indeed, it is enough to check it for the elements of a basis and

dzj ◦ J ∧ dz̄l ◦ J = −i2dzj ∧ dz̄l
So we can define a symmetric and hermitian form by the formulas

g(u, v) := −ddcρ(u, Jv), h =: g − iddcρ

Exercise 13. The 1-form dcρ|H defines ξ and co-orients it by the declaring w ∈
TxH to be positive if dcρ(w) > 0. Prove that

L(u, v) = fg(u, v), (20)

where f is a strictly positive function

Proposition 7. (H, ξ) is contact iff the Levi form is non-degenerate. Moreover it
is strongly psedoconvex iff J is a compatible almost complex structure for d(dcρ)|ξ.

Proof. The signature of the Levi form coincides with that of g, so the hypothesis
implies that d(dcρ)|ξ is symplectic. �
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4.1. Strong convexity and plurisubharmonic functions.

Definition 14. Let Z ⊂ Rm a domain. A function f ∈ C∞(Z) is strictly convex
if f|[a,b] is strictly convex for any [a, b] ⊂ V .

Remark 10. Convexity of a function is not a Riemannian concept, but an affine
one. In particular the concept makes sense in affine manifolds (given by charts with
transition functions given by a translation followed by an affine transformation).

Notice as well that convexity of a function is given by the positivity of the degree
2 operator d

dt

2
in segments, or globally by the Hessian Hessf .

Recall that for a domain Z ⊂ Rn, we say that ∂Z is strictly convex if for a
defining function ρ,

Hessf|∂Z
is strictly positive (this is the same as saying that the second fundamental form of
∂Z w.r.t. the Euclidean metric is strictly positive).

Strict convexity is equivalent to segments with boundary in ∂V having interior
in the interior of Z. For domains in affine manifolds, this is true at least for small
enough segments (about each point in the boundary).

In complex geometry one may think of holomorphic disks D ↪→ Y as being
substitutes of affine segments.

Even more, up to scaling we have a substitute for d
dt

2
on disks. Indeed, take

z a complex coordinate, and use the Laplacian ∆ w.r.t. the Euclidean metric. A
holomorphic change of coordinates induces a conformal change in the metric, and
hence just rescales the Laplacian, not affecting its signature.

Exercise 14. Show that if x′(x, y), y′(x, y) is a holomorphic change of coordinates,
then

∆f(x′(x, y), y′(x, y)) = ∆f(x′, y′)Jac(x′, y′)

Definition 15. A function f ∈ C∞(D) is strictly subharmonic if ∆f > 0.
A function f ∈ C∞(Y ) is strictly plurisubharmonic if its restriction to any

holomorphic disk is strictly subharmonic.

Definition 16. Given f ∈ C∞(Y ), the complex Hessian HessCf is the symmetric
to form associates to i∂̄∂f .

Notice that

i∂̄∂f(
∂

∂x
,
∂

∂x
) =

1
2

(
∂2f

∂x2
+
∂2f

∂y2

)
=

1
2

∆f

Corollary 6. A function f is strictly plurisubharmonic iff at every point the com-
plex Hessian is strictly definite positive, or in other words the (1, 1) form 2i∂̄∂f is
symplectic and J is a c.a.c.s. for it.

Corollary 7. A hypersurface H is strictly pseudoconvex if for any defining function
its complex Hessian is strictly positive along TH ∩ JTH.

Remark 11. Strict convexity imply that small enough holomorphic disks whose
boundary hits H, stay in one side.

Definition 17. A domain Z ⊂ (Y, J) is strictly pseudoconvex if any defining
function is strictly pseudoconvex at all points of the boundary along the complex
tangencies.

Lemma 5. If Z ⊂ (Y, J) has a defining function ρ for the boundary which is strictly
plurisubharmonic (along all directions), then the g-gradient of ρ is Liouville for the
symplectic form −ddcρ
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Exercise 15. Prove lemma 5.

So domains whose boundary is defined by a function which is s.p.s.h. in a
neighborhood of the boundaryare a (weak) “integrable analog” of strongly convex
symplectic domains. On the one hand the symplectic form is only defined near the
boundary.

Definition 18. A complex manifold (Y, J) is Stein iff there exist ρ : Y → [b,∞)
a s.p.s.h. exhaustion function.

It is of finite type or with conical end if ρ is Morse with only a finite number of
critical points.

A Stein domain is any domain of the form ρ−1([b, r]), r regular value.

Exercise 16. Show that there is no loss of generality in assuming ρ to be Morse.

Clearly, a Stein domain is the “integrable analog” of strongly convex symplectic
domain for which the Liouville vector field is globally defined and it is gradientlike
(also called Weinstein manifolds). See [3] for different notions of convexity.

Example 6. Strictly pseudoconvex hypersurfaces, and in particular boundaries of
Stein domains are examples of contact manifolds.

Remark 12. One has the following source of Stein domains; consider (Y, J, g)
a closed Kahler manifold such that the Kahler form ωg is integral. Then the
prequantum-line bundle is holomorphic (actually we just need the 2-form in Weil’s
construction to be (1, 1)). This admits equivalent descriptions:

(1) One can choose local trivializations si : Ui → L|Ui so that the transition
functions

ϕij : Ui ∩ Uj → C∗

are holomorphic.
(2) The total space of L admits a complex structure Ĵ which extend the complex

linear structure of the fibers, and makes the projection into a holomorphic
map.

Using the first definition one can define the following operator on sections

∂̄Lt|Ui = ∂̄fsi,

where t|Ui = fsi.
The definition is consistent because the change of trivialization is holomorphic.

One declares a section t to be holomorphic if

∂̄t = 0

Notice in particular that all the si are holomorphic.

Proposition 8. The two statementsabove are equivalent.

Proof. To go from the first to the second, use the tangent space to the holomorphic
sections to push the complex structure form the base to the total space. This,
together with the complex linear structure of the fibers defines an almost complex
structure which also makes the derivative of the projection commute with the almost
complex structures. It is integrable because if z1, . . . , zn are coordinates on the base,
then

π∗z1, . . . , π
∗zn, w/si(π(w))

are holomorphic.

Exercise 17. Prove the above assertion about the coordinates being holomorphic
w.r.t. Ĵ .
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To prove the other direction, we just need to find local holomorphic sections.
Since Ĵ is integrable we have local holomorphic coordinates w1, . . . , wn+1. Pick
any w and one coordinate z1 say whose kernel is transversal to the fiber.

The hypersurface {z1 ≡ 0} is holomorphic, because so is the coordinate. The
restriction of the projection to {z1 ≡ 0} is therefore a holomorphic local diffeomor-
phism. By the inverse function theorem the inverse is also holomorphic, giving thus
the desired section. �

The fibers of L are complex linear 1-dimensional spaces. Therefore, we can split

Ω1(M ;L) = Ω1,0(M ;L)⊕ Ω0,1(M ;L)

In particular any connection

∇ : Γ(L)→ Ω(M)⊗ Γ(L)

splits into ∇1,0 +∇0,1.
Notice that the operator

∂̄L : Γ(L)→ Ω0,1(M)⊗ Γ(L)→ Γ(L)

satisfies the Liebniz rule

∂̄L(fs) = ∂̄fs+ f∂̄L

as the (0, 1) of a connection would do.

Definition 19. A connection ∇ on L is compatible with the (integrable) complex
structure Ĵ if

∇0,1 = ∂̄L

Exercise 18. Proof that ∇ is compatible with Ĵ iff H∇ is Ĵ-complex.

Another proof of the curvature F∇ being of type (1, 1) is the following: choose s
a local holomorphic section and compute

F∇ = d
∇s
s

= d
∇0,1s

s
,

so F 0,2 = 0.

F∇ + F̄∇ = 0,
which together with the vanishing of the (0, 2) part implies the desired result.
It is a very non-trivial result that because ωg is strictly definite positive, then

large enough powers L⊗k (with the induced complex structure, connection that we
still call ∇,...) have many global holomorphic sections. recall that the hermitian
holomorphic line bundle carries a connection ∇ = ∂ + ∂̄, and s is holomorphic iff
∂̄s = 0. In particular for L⊗k one can find s : Y → L⊗k a holomorphic section
transverse to the zero section, so W = s−1(0) is a complex hypersurface. Then
(Y \W,J) is Stein.

Indeed, consider the function

f = −log〈s, s〉 : Y \W → R
If we now take the restriction of s to W , we can compute the curvature. Since

the curvature is of type (1, 1) and s is holomorphic we have

F∇ = ∂̄
∇1,0s

s
Now

∂f = df1,0 = −d〈s, s〉
〈s, s〉

1,0

= − (〈∇1,0s, s〉+ 〈s,∇1,0s〉)
〈s, s〉

1,0

= −〈∇
1,0s, s〉
〈s, s〉

= −∇
1,0s

s
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As a consequence
i∂∂̄f = iF∇ = 2πωg,

and this proves the claim.
Now we have the tools to prove that in exercise 5

− i
2
F∇ = ωFS

Indeed in CPn with homogeneous coordinates [Z0 : · · · : Zn] consider the open set
U0 for which Z0 6= 0. It is parametrized by the chart

Cn −→ U0

(z1, . . . , zn) 7−→ [1 : z1 : · · · : zn]

Then we have the local holomorphic section

s0 : Cn −→ Cn+1\{0}
(z1, . . . , zn) 7−→ (1, z1, . . . , zn)

The covariant derivative of s0 is the hermitian projection onto the fibre of the
usual derivative

∇s0 = 〈(0, dz1, . . . , dzn), (1, z1, . . . , zn)〉 (1, z1, . . . , zn)
〈(1, z1, . . . , zn), (1, z1, . . . , zn)〉

,

and therefore

∇s0

s0
=

∑n
j=1 z̄jdzj

1 +
∑n
j=1 zj z̄j

= ∂log(1 +
n∑
j=1

zj z̄j)

So we conclude

i

2
F∇
|U0

=
i

2
∂̄∂log(1 +

n∑
j=1

zj z̄j) = ωFS|U0

5. (Semi)-local normal forms

Recall that a submanifold N ↪→ (M2n+1, ξ) is isotropic if TN ⊂ ξ.
At the linear level, the tangent space of an isotropic submanifold is isotropic

inside ξx (for the conformal symplectic structure), therefore it can have at most
dimension n.

Example 7.
(1) Any submanifold N ⊂ M gives rise to a Legendrian inside of Ct(M) by

taking the submanifold of hyperplanes containing its tangent subspace.
(2) The zero section of T ∗M is Legendrian inside J 1M with the canonical

contact structure.

Isotropic and contact submanifolds are important because -up to some extent-
they determine the contact structure (even the contact form) in a tubular neigh-
borhood.

Why is this important?

Proposition 9. Let N ⊂M be a compact submanifold, and α, α′ contact forms on
M such that

(1) α|N = α′|N
(2) dα|N = dα′|N
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Then there exists U,U ′ neighborhoods of N and φ : U → U ′ diffeomorphism
extending the identity on N such that

φ∗α′ = fα

Proof. Consider the convex combination αt := tα+ (1− t)α′. Then the conditions
guarantee that we have a family of contact forms in a small tubular neighborhood
V of N . Indeed, write αt = α′ + t(α− α′). Then

αt ∧ αnt = α′ ∧ dα′n + (α− α′) ∧ βt + d(α′ − α) ∧ β′t, βt, β′t ∈ Ωn(U)

Now we can apply the same Moser trick leading to the proof of Gray’s stability
theorem. Just observe that the solution of equation 12 vanishes at N for all time,
so the isotopy fixes the submanifold. �

Remark 13. Firstly, observe that conditions 1, 2 would follow from α = α′ at N at
first order. In particular for a given contact form α′ we can take a model of normal
bundle to linearize α in the normal directions α(1)

N , and the proposition implies that
α and α(1)

N define contactomorphic structures in suitable tubular neighborhoods.

Theorem 6 (Darboux theorem for contact forms). Let (M,α) be a contact ma-
nifold. About each x ∈ M there exist a coordinate chart ϕ : R2n+1 → U , with
coordinates x1, . . . , x2n+1, so that

ϕ∗αstd = α (21)

Proof. Notice that the statement is a normal form for the 1-form, not just for
the contact structure, so it is stronger than what one would expect from Moser’s
technique as it has been used so far.

Take any coordinates x1, . . . , x2n+1 and linearize the 1-form α to obtain α(1). As
noticed in remark 13 we can apply Moser’s technique to pull back α into fα(1).

But we can do a bit better. We apply Moser’s technique to solve this time the
equation

φ∗tαt = α0

After differentiating we obtain

φ∗t (iXtdαt + diXtαt +
d

dt
αt) = 0 (22)

So we aim at solving

iXtdαt + diXtαt +
d

dt
αt = 0, (23)

where this time Xt = Zt + htRt is not necessarily tangent to ξt. Equation 24
transforms into

iZtdαt + dht +
d

dt
αt = 0, (24)

Since Rt is never vanishing in a small neighboorhood of the origin one can solve

dht(Rt) +
d

dt
αt(Rt) = 0, ht(0) = 0,

and then find the unique Xt so that equation 24 holds.
We can actually choose the original coordinates so that the Reeb vector field is

∂/∂x2n+1 and ξ(0) is spanned by ∂/∂x1, . . . , ∂/∂x2n. We can make a further linear
change of coordinates so that x1, . . . , x2n are Darboux coordinates for dα(0)|ξ.

Then

α(1) = dx2n+1 +
n∑
i=1

lidxi,



26 D. MARTÍNEZ TORRES

and the Darboux assumption implies that tα(1) + (1− t)αstd is a family of contact
forms. �

Suppose N ⊂ (M,α) is isotropic. What information do we need to determine
α|N , dα|N?.

Being isotropic implies that TN ⊂ TNdα, the latter the symplectic annihilator
inside (ξ, dα), so we have the isomorphism

TM ' 〈R〉 ⊕ ξ/TNdα ⊕ TNdα/TN ⊕ TN, (25)

where we see the quotient bundles as subbundles (so rather than ' we have an
equality).

The summands (ξ/TNdα⊕TN, dα) are easy to understand: first, take I comple-
mentary to TNdα and isotropic; for example if J is a compatible almost complex
structure, then I := JTN does the job. Then we have

(I ⊕ TN, dα),

which is a symplectic vector subbundle of ξ.
On TN ⊕ T ∗N we have a canonical linear symplectic structure

ω((u, a), (v, b)) = a(v)− b(u)

Then one easily shows

Lemma 6. The map

Φ: (I ⊕ TN, dα) −→ (T ∗N ⊕ TN, ω)
(u, v) 7−→ (dα(u, ·), v)

is an isomorphism of symplectic vector bundles.

Definition 20. The bundle TNdα/TN -which clearly carries a symplectic linear
structure inherited from dα- is called the symplectic subnormal bundle. The bundle
does not depend on the contact form, but the symplectic linear structure conformally
depends on α.

Notice that if we identify TNdα/TN with TNdα∩Idα, then we have the splitting

(ξ, dα) = (I ⊕ TN, dα)⊕ (TNdα ∩ Idα, dα)

as symplectic vector bundles.

Theorem 7. Let N ↪→ (M,α), N ′ ↪→ (M ′, α′) isotropic submanifolds. Suppose
that there exist a diffeomorphism φ : N → N ′ and a lift to the conormal bundles

ϕ : (TNdα/TN, dα)→ (TN ′dα
′
/TN ′, dα′)

which is an isomorphism of symplectic vector bundles. Then there exist tubular
neighborhoods U,U ′ of the isotropic submanifolds an a diffeomorphism

Ψ: U → U ′

such that
(1) Ψ|N = φ
(2) Ψ∗ξ = ξ′

Proof. Define Ψ: TM|N → TM ′|N ′ by

Ψ(R) = R′, Ψ|L⊕TN = Φ
′−1 ◦ (ψ∗ ⊕ ψ∗) ◦ Φ, Ψ|TNdα/TN = ϕ

Then Ψ∗α′ = α, Ψ∗dα′ = dα in the points of N .
�

Corollary 8. A diffeomorphism of Legendrian manifolds extends to a contacto-
morphism of tubular neighborhoods.
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Remark 14. In principle theorem 7 matches contact structures in tubular neigh-
borhoods, but not contact forms unlike Darboux’ theorem. We will see in section 6
that we can also achieve equality at the level of contact forms.

6. Symplectic cobordisms and surgery

Let M,M ′ be oriented manifolds.

Definition 21. An oriented cobordism from M to M ′ is an oriented m+1 manifold
Y so that

∂Y = −M
∐

M,

where we use the outward normal first rule to orient the boundary. We also denote
∂Y− := M , ∂Y+ := M ′.

Clearly, oriented cobordisms can be composed/concatenated.
Any (oriented) cobordism can be split into a sequence of very simple cobordisms,

called “handle attaching”.

Definition 22. An n-dimensional k-handle is

hk := Dk ×Dn−k

∂hk = ∂Dk ×Dn−k
∐

Dk × ∂Dn−k,

where we also denote

∂hk− := ∂Dk ×Dn−k, ∂hk+ := Dk × ∂Dn−k

k handles in n-dimensional space are associated to the quadratic Morse functions
of index k

fk(x1, . . . , xn) = x2
1 + · · ·+ x2

n−k − x2
n−k+1 − · · · − x2

n

Indeed, one should understand

hk = W s(fk)×Wu(fk),

and the gradient vector field ∇fk enters through ∂hk− and leaves through ∂hk+.
The attaching sphere is ∂Dk × {0} = ∂W s(fk) ⊂ ∂hk−.

Let φ : ∂hk− → ∂Y+ be a diffeomorphism onto its image

Definition 23. The result of attaching hk to Y via φ is the manifold

Y ∪φ hk := Y
∐

hk/x ∼ φ(x)

once “corners have been rounded”.

Recall that the new manifold Y ∪φ hk -up to diffeomorphism- is entirely deter-
mined by the isotopy class of φ. Notice that

∂hk− = Sk−1 ×Dn−k,

the trivial disk bundle over the attaching sphere Sk−1. The attaching map induces
a unique up to isotopy bundle map

Sk−1 ×Dn−k → ν(φ(Sk−1)),

which in particular admits a representative which is a linear isomorphism. In short,
the attaching map φ is determined by a homotopy class of isomorphisms

Sk−1 × Rn−k → ν(φ(Sk−1)),
also called a framing of φ(Sk−1).
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Definition 24. A (directed) symplectic cobordism is a (compact for us) symplectic
manifold (Y,Ω) together with Liouville vector fields X−, X+, so that X− (resp. X+)
is defined near ∂Y− (resp. ∂Y+), transversal to it, and inwards (resp. outwards)
pointing.

In other words it is a symplectic manifold whose boundary splits into an (strongly)
concave part ∂Y− and an (strongly) convex part ∂Y+.

If given a (directed) symplectic cobordism we are able to attach a handle (to ∂Y+

say) so that we produce a new symplectic cobordism Y ′, the contact manifold ∂Y+

will have changed into ∂Y ′+. Notice for example that for a given contact manifold
(M,α), M × [0, a] inside the symplectization is a symplectic cobordism so that the
negative boundary coincides with (M,α).

In [17] (see also [2]) Weinstein described a way of attaching certain “symplectic
handles” to a symplectic cobordism to get a new one. It is based on the following
two points:

(1) Given symplectic cobordisms Y,W , find conditions (as flexible as possible)
for a gluing map φ : ∂W− → ∂Y+ so that Y ∪φW is symplectic (extending
both symplectic structures).

(2) Arrange a (directed) symplectic cobordism structure on a 2n-dimensional
k-handle hk, so that after symplectically attaching it to ∂Y+, one can still
induce an outwards pointing Liouville vector field in the new boundary

∂Y \φ(∂hk−) ∪ ∂hk+
The answer to the first point is very much related to the study of neighborhoods

of isotropic submanifolds as done in the previous section.

Definition 25 (Weinstein,[17]). Given a symplectic manifold (Y,Ω) a isotropic
setup is a quintuple (Y,Ω, H,X,N) were H is a hypersurface, X a Liouville vector
field transversal to H (perhaps locally defined) and N ⊂M an isotropic submanifold
(either isotropic for Ω in Y or isotropic for α = iXΩ|H in H).

Theorem 8 (Weinstein,[17]). Let (Y,Ω, H,X,N) and (Y ′,Ω′, H ′, X ′, N ′) be two
isotropic setups. Let φ : N → N ′ a diffeomorphism and Φ: TNdα/TN → TN ′dα

′
/TN ′

a symplectic vector bundle isomorphism lifting it. Then there exists V, V ′ neighbor-
hoods of N,N ′ in Y, Y ′ and an isomorphism of isotropic setups

Ψ: (Y ∩ V,Ω, H,X,N)→ (Y ′ ∩ V ′,Ω′, H ′, X ′, N ′)

which restricts to the given data.

We refer to [17] for the proof, which is based again on Moser’s method.

Remark 15. Given isotropic submanifolds and diffeomorphism as in the statement
of 7, we can symplectize both contact manifolds to obtain a couple of isotropic setups
together with the bundle map between the symplectic subnormal bundles. Then
theorem 7 implies

Ψ∗α′ = α,

because the equality holds for both the Liouville vector fields and the symplectic
forms.

Recall that according to example 7 the zero section of (J 1L, dz−λ) is Legendrian.

Corollary 9. Let L ⊂ (M,α) Legendrian, then a neighborhood of it is isomorphic
to a neighborhood of the zero section of J 1L as exact contact manifolds.

Point 2 is based on choosing the right model for a given k-handle. Let 2n+2 be
the dimension of Y , and let 0 ≤ k ≤ n.
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In R2n+2 with coordinates x1, . . . , xn, p1, . . . , pn and the standard symplectic
structure

Ωstd =
n∑
i=1

dxi ∧ dpi

All subspaces x1, . . . , xn−k, p1, . . . , pn = 0 are isotropic.
The vector field

Xk =
n−k∑
i=1

(
1
2
pi

∂

∂pi
+

1
2
xi

∂

∂xi

)
+

n∑
i=n−k+1

(
2pi

∂

∂pi
+ xi

∂

∂xi

)
(26)

is Liouville. Notice that it is the gradient of the Morse function

f ′k =
n−k∑
i=1

(
1
4
p2
i +

1
4
x2
i

)
+

n∑
i=n−k+1

(
p2
i −

1
2
x2
i

)
(27)

having an index k critical point at the origin.
Let αk := iXkΩstd

The unstable manifold W k
− for f ′k is one of the aforementioned isotropic vector

subspaces vector subspace

x1, . . . , xn−k, p1, . . . , pn = 0

The hypersurfaces ∂hk− := {f ′k = −1}, ∂hk+ := {f ′k = 1} inherit a contact
structure, since the gradient vector field is Liouville contact for αk and the attaching
sphere is isotropic. Weinstein gives a model for the k-handle hk,std so that

∂hk,std = ∂hk− ∪ ∂h
k,std
+ ,

and ∂hk,std+ is everywhere transverse to Xk, the Liouville vector field pointing out-
wards.

As a simple consequence Weinstein gives a rather clean proof of the following
result of Meckert [13].

Corollary 10. The connected sum of to exact contact manifolds (M,α), (M ′, α′)
carries an exact contact structure, unique up to isotopy.

Proof. Consider the contact manifold (M,α) ∪ (M,α′), and then its symplectiza-
tion. Points p ∈ M,p′ ∈ M ′ together with a choice of Darboux basis at (ξp, dαp)
and (ξp′ , dα′p′) allow the gluing of a symplectic 1-handle. Notice that since the
symplectic linear group is connected, up to isotopy there is a unique symplectic fra-
ming of the symplectic subnormal bundle of p∪p′, therefore no choices are involved
(because the handle is essentially unique). Besides, any two pair of points can be
joined by an isotopy though coisotropic submanifolds (points!), and therefore (see
remark 5) through contact transformations. �

Remark 16. More generally in [2] a theory for attaching “Stein handles” is de-
veloped. As a result a topological characterization of Stein manifolds of dimension
2n > 4 is given. More precisely, for any (Y, J) almost complex manifold with a
Morse exhaustion function ρ with critical points of index k ≤ n, there exist a ho-
motopic integrable almost complex structure J̃ for which f is ρ is strictly plurisub-
harmonic.

7. Contact geometry and complex and symplectic geometry II: open
book decompositions

Definition 26. The canonical open book decomposition B0 of C is given by the par-
tition of C origin (the binding), and the open half lines through the origin (leaves).



30 D. MARTÍNEZ TORRES

Definition 27. Given a manifold M an open book decomposition is given by
a smooth function s : M → C transversal to B0 (i.e. to all submanifolds in the
decomposition). The binding and leaves are the pullbacks of the binding and leaves
of B0.

Two open book decompositions are equivalent if there is a diffeomorphism pre-
serving bindings and leaves.

An open book decomposition, once we fix a leaf F , gives rise to a return map
φ : F → F which is the identity near ∂F (away from the binding, the open book
decomposition is a fiber bundle over S1, and hence a mapping torus). The leaf and
isotopy class of φ determine the open book decomposition.

We follow mostly [14] in the following exposition. Let F : Cn → C a holomorphic
function with an isolated complex singulatiy at the origin.

Let Sε ⊂ Cn denote the sphere of radius ε. This is a hypersurface level of the
s.p.s.h. function

ρ : Cn −→ R
z 7−→ zz̄ (28)

Since it is a polynomial function it has a finite number of critical values points
when restricted to F−1(0)\{0} (this is because the critical set is an algebraic variety,
and hence has a finite number of connected components). Therefore if ε is small
enough the singular fiber Y := F−1(0) is tranversal to Sε (notice this says Whitney
B condition holds in complex coordinates). Since ρ restricted to Y \{0} is s.p.s.h.,

Mε := F−1(0) ∩ Sε
-called the link of the singularity defined by F - carry a contact structure, the
Milnor contact structure. By Gray’s theorem it does not depend on the radius
ε.

Now take any holomorphic function G : Cn → C
(1) G vanishes at 0.
(2) G−1(0) ∩ Y has an isolated singularity at the origin.

The closed subset in CPn−1 of limit tangent hyperplanes is not the whole pro-
jective space [15]. Any function G vanishing at the origin, regular at it and with
tangent hyperplane not in the limit set satisfies the previous requirements.

Theorem 9 ([14, 1, 16]). For every ε small enough the function G : Mε → C defines
an open book decomposition, the Milnor open book associated to G.

In Milnor’s original construction [14] the embedded singular variety is Cn and
Mε is Sε. The function giving rise to a singular hypersurface is F , and hence
according to theorem 9 the link of the singularity is the binding of an open book
decomposition of Sε. In particular for complex dimension 2 the binding is a knot,
and the open book decomposition implies that it is a fibered knot.

Definition 28. Let (M, ξ) be a contact manifold. A submanifold N ↪→ M is
contact if TN t ξ, so TN ∩ ξ is a hyperplane distribution of N , and TN ∩ ξ is
contact.

Definition 29 (Giroux). Given (M, ξ) a co-oriented contact manifold, an open
book decomposition carries the contact structure if there exist α positive such that

• The binding is a contact submanifold (with the right orientation).
• The leaves are symplectic for dα (with the right orientation).

If F denotes the leaf, the monodromy of such open book belongs to Symp(F,dα).
The contact structure -up to symplectic isotopy- only depends on (F, dα) and the
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symplectic monodromy, so a new link between contact geometry and symplectic
geometry is stablished in the presence of such an open book.

Theorem 10 ([14, 1, 16]). Any Milnor open book carries the Milnor contact struc-
ture of any complex isolated singulary (the exact form comming from 2i∂̄∂ρ).

There is a more general result along the same lines.

Theorem 11 ([10]). For any (M, ξ) a co-oriented contact manifold, there exists
an open book carrying it.
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