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Abstract

The functions of computable analysis are defined by enhancing normal Tur-
ing machines to deal with real number inputs. We consider characterizations
of these functions using function algebras, known as real recursive functions.
Since there are numerous incompatible models of computation over the reals,
it is interesting to find that the two very different models we consider can be
set up to yield exactly the same functions. Bournez and Hainry [6] used a
function algebra to characterize computable analysis, restricted to the twice
continuously differentiable functions with compact domains. In our paper [11],
we found a different (and apparently more natural) function algebra that also
yields computable analysis, with the same restriction. In this paper we improve
our result in [11], finding three function algebras characterizing computable
analysis, removing the restriction to twice continuously differentiable functions
and allowing unbounded domains. One of these function algebras is built upon
the widely studied real primitive recursive functions. Furthermore, the proof of
this paper uses our method of approximation from [12], whose applicability is
further evidenced by this paper.
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1. Introduction

When is a function over the reals computable? The answer to this ques-
tion when working over the naturals has a generally agreed upon answer (e.g.
Turing-computability, recursive, etc.), but over the reals, there are a number of
incompatible computational models. We can make an informal categorization of
these models: 1) Models that evolve in discrete time steps, and 2) Models that
evolve in continuous-time. In the first category we have models like computable
analysis [23] [29], Grzegorczyk’s algebras of functionals [20], BSS-machines [2]
[1], real random access machines [27] [8], and a recursive characterization of
computable real functions [7]. In the second category, we have models like
Shannon’s circuit model (the General Purpose Analog Computer) [28] [18], con-
tinuous neural networks [24], and Moore’s real recursive functions [25] (for an
up-to-date review of continuous-time models see [3]). Discrete-time models typ-
ically use some abstract machine, like a Turing machine, where there is a clear
notion of the “next state” within a computation. Continuous-time models typ-
ically use differential equations to describe a computation which can be viewed
as proceeding continuously in real time, with no clear notion of “next state.”
The dissimilarity of the models makes it interesting to investigate connections
between them, as a number of recent papers have done. It is known that sev-
eral approaches to computability over the real numbers coincide: In particular,
computable analysis, computable functionals [20], and continuous domains [17]
all yield the same class of functions. Here, we are most interested in comparing
computable analysis with continuous-time models. Bournez et. al. [4] charac-
terize computable analysis with General Purpose Analog Computers. Bournez
and Hainry [5] [6] partially characterize computable analysis with real recursive
functions. We continue in this direction, providing various characterizations of
computable analysis with real recursive functions. Finding different models for
the same set of functions could be useful from a technical point of view, allowing
one to prove facts about one model by using one of its characterizations. Fur-
thermore, understanding when models of computation over the reals agree and
disagree should be vital for a deeper perspective on what we mean by computing
over the reals.

Computable analysis seeks to give a realistic account of how a digital com-
puter calculates with real numbers: A function is computable if from approxi-
mations to the input, we can approximate the output (using a standard discrete-
time Turing machine). Moore’s real recursive functions is a generic name we
use for models based on function algebras over the reals, i.e. a specific set of
basic functions are closed under a specific set of operations, some involving dif-
ferential equations (for background see Moore’s original paper [25], along with
the clarifying papers [15] and [22]). Moore’s motivation was to develop an ana-
log version of the normal recursive functions over the naturals, replacing the
recursion operation with a differential equation operation. The main result of
this paper (theorem 2.17) characterizes the functions of computable analysis via
real recursive functions, using three different function algebras.

Bournez and Hainry [6] proposed a class of real recursive functions that
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partially captured computable analysis. In particular, their function algebra
characterizes the twice continuously differentiable (C2) functions with compact
domain. Our function algebras remove the restriction to C2 and compact do-
mains. Their function algebra contains a set of basic functions and is closed
under the following operations: Composition, linear integration, a limit opera-
tion and a root-finding operation. One of our characterizations will be similar,
and another one will replace the root-finding operation with an operation that
finds the inverse of a function. The third, and most interesting function al-
gebra, does not have a root-finding operation or inverse operation, but instead
strengthens the operation of integration, removing the linearity restriction. This
third characterization (called ODE?

k(LIM)) of computable analysis appears to
be about as natural as one could hope for (using real recursive functions); its
underlying functions (before a kind of limit operation is applied) are merely a
few basic functions, along with functions that can be built from these, using
differential equations. In fact, this function algebra is very similar to the real
primitive recursive functions, which have been studied by a number of authors
(e.g. [15], [22], [6]; note that there are slight differences between their definitions
and only [22] actually uses the name “real primitive recursive functions”).

In addition to providing new characterizations which apply to all of the func-
tions of computable analysis, our proofs use our method of approximation (de-
veloped in [12]). To capture computable analysis with an analog model, earlier
approaches have proceeded by fixing a particular characterization of computable
analysis, and then exploiting its particular properties in order to simulate its
operation in the analog model (e.g. Turing machines are used in [4], and com-
putable functionals are used by Bournez and Hainry [6]). While we of course
begin with some model of computable analysis (we choose oracle Turing ma-
chines), we convert the problem into a question about function algebras, and
are no longer explicitly concerned with computable analysis. In particular, we
introduce the notion of one class of functions approximating another one, and
reduce the work to proving a series of approximations. Our approach offers a
number of advantages. Due to the transitivity of the approximation relation,
we can break up the proof into a number of natural steps. The approximation
context works naturally with the inductive structure of the function algebras.
And finally, our approach seems to be more general, facilitating reasoning about
our problem and other problems of this kind. The significance of the method of
approximation is discussed in more detail in the conclusion (section 5).

Section 2 introduces the terminology and discusses the main result. Section 3
outlines our proof, breaking it up into a minor step and a major step. The minor
step follows directly from our work in [11], and thus we simply summarize the
ideas for this step. The major step is set up in section 3 (page 10), leaving
the technical details of this step for section 4 (page 20). In section 5 (page 41)
we reflect on the significance of our approach to this problem, comparing it to
other approaches, and also consider strengthening our result by simplifying our
function algebra. There is an index at the end of the paper.
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2. Formulating the Main Result

We now provide the basic definitions and state the result, leaving the proof
for the next section.

Definition 2.1. For us, unless stated otherwise, a function will always have
domain D ⊆ Rk and codomain R. To indicate that a function f is defined on all
of D, with codomain E, we write f : D → E. By “domf” we mean the domain
of f . If f : Dk → E and X ⊆ D, we write f|X for the restriction of f to the

domain Xk.

Typical domains in this paper are: The naturals N = {0, 1, 2, . . .}, the integers
Z = {. . . ,−1, 0, 1, . . .}, the rationals Q, and the reals R.

Definition 2.2. For x̄ = (x1, . . . , xk), and X ⊆ R, we write x̄ ∈ X to mean
that each xi is in X; for a unary function f , the vector (f(x1), . . . , f(xk)) is
abbreviated by f(x̄).

One of the models we will consider is computable analysis, also known as
type-2 computability (see [23] or [29] for details). A function f : R → R is
computable in the sense of computable analysis if there is an oracle Turing
machine, which on input n (which we call the accuracy input), using an oracle
for x ∈ R, outputs a rational within 1/n of f(x). The oracle is used as follows: If
the machine writes a number m on the oracle tape, it receives a rational within
1/m of x. The following definition generalizes this discussion to functions with
domain Rk.

Definition 2.3. We say a function f : Rk → R is in CR iff it is computable in
the sense of computable analysis.

It is common in computable analysis to restrict the domain to bounded intervals;
however the functions of CR are defined on unbounded domains.

We now turn our attention to function algebras. We use the term operation
to refer to an operator that maps a finite number of functions to a single function.
Some operations are partial, meaning that they are undefined given certain
functions as arguments. The next few pages of technical definitions will be
followed by some (hopefully) helpful examples.

Definition 2.4. Suppose B is a set of functions (called basic functions), and
O is a set of operations. Then FA[B;O] is called a function algebra, and it
denotes the smallest set of functions containing B and closed under the oper-
ations in O. For ease of readability, we display the elements of B and O as
comma separated lists.

Some of the most important operations will be defined using differential
equations. From a vector valued function ḡ = (g1, . . . , gk) we can form an
initial value problem (IVP) in parameters ā = (a1, . . . , ak), given by the
following system of equations:

(h̄)′ = ḡ(ā, h̄) , h̄(0, ā) = ā.
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We can also write the same system of equations more explicitly as follows:

∂
∂xh1(x, ā) = g1(ā, h1, . . . , hk)

...
∂
∂xhk(x, ā) = gk(ā, h1, . . . , hk)

,

h1(0, ā) = a1

...
hk(0, ā) = ak

(1)

We understand the vector ā to be parameter variables, as opposed to just fixed
reals; thus we write the solution h̄ = (h1, . . . , hk) with the parameter variables
ā as arguments (i.e. exactly the situation described in [21], p. 93).

In general, one IVP can have many distinct solutions; when we use an IVP
to define an operation below, we want to avoid this case. Roughly, we will say
an IVP is well-posed if it has a unique solution, though more precisely, we mean
the following.

Definition 2.5. Consider the IVP (1).

• h̄(x, ā) is a maximal solution with domain D if h̄ is a solution on some
open set D ⊆ Rk+1, and for any open set E (such that D ( E), there is
no solution to the IVP on E.

• The IVP is well-posed if there is a unique maximal solution.

We can now define the operations we will be using (note that in the opera-
tions there is an implicit choice of which arguments of the function we choose
to use; any choice is allowed). Strictly speaking, all the following operations are
partial. In the operations, conditions are described that need to be satisfied in
order for the operation to output a function. If any condition is not satisfied by
the input functions, then the operation is undefined for that input.

Definition 2.6. (Operations for real functions)

1. The operation ODE takes as input, functions g1, . . . , gk. It is defined if the
IVP given by the gi is well-posed. Otherwise the operation is undefined.
If the operation is defined, the IVP has a solution h̄ = (h1, . . . , hk) with
domain D as described in definition 2.5. The operation outputs h1 and
dom h1 = D.

2. LI is the same as ODE, with the additional condition that the ḡ are linear
in the h̄.

3. Let comp be the composition operation. The operation comp takes as in-
put, functions f, g1, . . . , gk. It is defined if the functions f and gi have
appropriate arities; otherwise it is undefined. When defined, it is as fol-
lows. Given

f(y1, . . . , yk), g1(x1, . . . , xm), . . . , gk(x1, . . . , xm),

it returns the simultaneous composition:

h(x1, . . . , xm) = f(g1(x1, . . . , xm), . . . , gk(x1, . . . , xm)),

which is defined on the maximal well-defined domain, i.e.

dom h = {x̄ ∈ Rm : x̄ ∈ dom ḡ and ḡ(x̄) ∈ domf}.
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4. The operation Inverse receives a function f(x, ā) : R × Rk → R as input.
The operation Inverse is defined on f if:

(a) For all real ā, f(x, ā) is a bijection (of R) in x, and
(b) For all real ā and x, ∂

∂xf(x, ā) exists and is positive.

Otherwise it is undefined. If Inverse is defined on f then it returns f−1 :
R × Rk → R, the inverse in x, i.e. f(f−1(x, ā), ā) = x = f−1(f(x, ā), ā)
(f−1 may be referred to as Inverse(f, x); the “x” indicates the variable of
f to which Inverse is applied).

5. The root-finding operation UMU (“ unique µ”) receives a function f(x, ā) :
R× Rk → R as input. The operation UMU is defined on f if:

(a) For all real ā, f(x, ā) is increasing in x (not necessarily strictly), and
(b) For all real ā, there is a unique x such that f(x, ā) = 0 (and at that

x, ∂
∂xf exists and is positive).

Otherwise it is undefined. If UMU is defined on f , it returns the function
g : Rk → R such that for ā ∈ Rk, g(ā) is the unique x such that f(x, ā) = 0
(g may be referred to as UMU(f, x); the “x” indicates the variable of f to
which UMU is applied).

Our most important operation, ODE (also called differential recursion by
other authors) is defined without analysis style conditions such as requiring the
gi be continuous, Lipschitz, etc. In doing so, our definition is similar to [22,
Def. 3.5], rather than to that of [15]. However, as we shall see in lemma 2.15,
whenever we actually use the ODE operation, all the functions involved will
be smooth (i.e. Cn for some n ≥ 1, as defined below). Thus, whether our
ODE operation is defined as in [22] or with the requirement of being locally
Lipschitz as in [15], our results remain the same. Furthermore, the two classes of
functions we define with ODE (ODEk and ODE?

k; see definition 2.10) are both
closed under composition, so we can use standard manipulations on differential
equations to derive the following more flexible looking operation:

On input f̄ and ḡ, the derived operation operates just like ODE,
except that the IVP it solves is the following:

(h̄)′ = ḡ(x, ā, h̄) , h̄(0, ā) = f̄(ā)

(i.e. in the earlier system (1), we can replace each initial condition
“hi(0, ā) = ai” by “hi(0, ā) = fi(ā)” and allow the system to be
non-autonomous, i.e. allow x as an input to ḡ).

Definition 2.7. We say that f is Cn if f has continuous partial derivatives of
all order k ≤ n, on its domain.

The following well known result (see [21], chapter V, theorem 3.1 and corollary
4.1, and chapter II, theorem 3.1) will be central to prove lemma 2.15. In par-
ticular, this proposition shows that if the gi are Cn then the corresponding IVP
is well-posed.
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Proposition 2.8. Consider the IVP

(h̄)′ = ḡ(ā, h̄) , h̄(0) = ā,

and suppose n ≥ 1. If ḡ is Cn and has an open domain, then its unique maximal
solution h̄(x, ā) has an open domain and is Cn.

Among our basic functions, one of the most significant will be a function
which indicates if a number is to the left or right of zero. Such a function is
the Heaviside step function: θ(x) = 0 if x < 0 and θ(x) = 1 if x ≥ 0. However,
instead we will use a function of this sort, with some smoothness constraint.
For integer k ≥ 1, we let

θk(x) =

{
0, if x < 0;
xk, if x ≥ 0.

Thus, we think of the function θk as a Ck−1 substitute for the Heaviside function.
Besides θk we will also have basic functions like the constant function “0” and
the projection functions P (e.g. P contains P(2,1)(x, y) = x, P(3,2)(x, y, z) = y,
etc.). We will use the same names for these functions in the context of various
domains (N, Q, and R).

The rank of a function with respect to an operation counts the number of
nested applications of the operation in the construction of the function.

Definition 2.9. Given a function algebra F = FA[B; op1, . . . , opn,OP], we de-
fine the rank of the construction of the a function f in F with respect to the
operation OP:

1. If f is in B (i.e. f is a basic function) then rank(f) = 0.

2. If f is opi(g1, g2, . . .), then rank(f) = max{rank(g1), rank(g2), . . .}.
3. If f is OP(g1, g2, . . .) then

rank(f) = 1 + max{rank(g1), rank(g2), . . .}.

We say that f is of rank c if it has a construction of rank less than or equal to
c.

Note that by definition, a function of rank c is also of rank n for n ≥ c. We now
define the relevant function algebras over the reals.

Definition 2.10. (Function algebras over the reals) Let k ≥ 1 be an inte-
ger.

• Let RMUk be FA[0, 1, θk,P; comp, LI,UMU].

• Let RMU
(c)
k be the functions of RMUk that have rank c with respect to

the operation UMU.

• Let πRMU
(c)
k be the function algebra RMU

(c)
k , with the constant func-

tions −1 and π added as basic functions.
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• Let INVk be FA[0, 1,−1, θk,P; comp, LI, Inverse].

• Let INV
(c)
k be the functions of INVk that have rank c with respect to the

operation Inverse.

• Let ODEk be FA[0, 1,−1, θk,P; comp,ODE].

• We define ODE?
k as follows: A function f is in ODE?

k iff f is in ODEk

and f has domain Rn for some n.

We now discuss some examples.

Example 2.11. Consider the initial value problem:

∂

∂x
h(x, y) = 1 , h(0, y) = y

The unique function satisfying this differential equation is h(x, y) = x+y. Since
the above function algebras all contain the constant function 1, and are closed
under linear differential equations, they all contain the addition function. (As
an exercise, do multiplication).

The following example shows us a function in ODEk that is not in the other
function algebras.

Example 2.12. The non-linear initial value problem

h′ = h2 , h(0) = 1,

defines the function h(y) = 1
1−y and so 1

x = h(1 − x) is in ODEk, for any

k ≥ 1 (following our conventions, the domain of 1
x is (0,+∞), not containing

any non-positive numbers). Note that the linear differential equations of LI do
not suffice to define this function.

Since the function 1
x is not total (over R), it is not in ODE?

k; for this reason
we often work with ODEk in the proofs, even though in the end we care about
ODE?

k. The next example uses the power of the basic function θk.

Example 2.13. Campagnolo et. al. [9, lemma 4.7] defined a kind of step func-
tion, step : R → R, which is increasing, continuous, and satisfies the following
property:

For any u ∈ Z, step(x) = u for x ∈ [u, u+ 1/2].

This construction can be carried out in RMU
(c)
k , for k ≥ 1, c ≥ 0.

Example 2.14. The constant functions −1 and π can each be constructed in

RMU
(1)
k . To get −1 we just find the root of x + 1. For π, see the proof of

lemma 5.1 in [6] (in case the reader checks the reference, note that despite
initial appearances, a single application of UMU suffices to define π).
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Other examples of functions in all the function algebras are sinx, ex, and the
constant functions q (for any rational q).

We list some basic properties of these function algebras in the next lemma.

Lemma 2.15. (Properties of Function Algebras)

1. πRMU
(c)
k ⊆ RMU

(c+1)
k .

2. Fk ⊆ Fk−1, where Fk is any of the function algebras in definition 2.10
containing θk as a basic function, and Fk−1 is the same function algebra
with the basic function θk−1 instead.

3. For every function algebra of definition 2.10, with the exclusion of the
function algebra ODEk, if f is one of its functions, then the domain of f
is Rn for some n.

4. Every function in ODEk has an open domain and is Ck−1, for k ≥ 2.

Proof

Point 1: Follows from example 2.14

Point 2: Follows, since θk(x) = x · θk−1(x), and all the algebras are
closed under multiplication.

Point 3: By R× we mean Rn for some n ≥ 1. The conditions on the
input to Inverse and UMU in fact require the input function to have
domain R×; the output function also has domain R×. Since the basic
functions have domain R×, and the operations (comp, Inverse, UMU,
and LI) all preserve that property whenever they are defined, all the

functions in RMUk, RMU
(c)
k , πRMU

(c)
k , INVk, and INV

(c)
k have

domain R×; by definition, the functions of ODE?
k have domain R×.

Point 4: The basic functions, and in particular θk, are all Ck−1

and have open domains. To conclude with this point, we just need
to check that all the operations preserve these properties. Suppose
the function f and the vector-valued function g = (g1, . . . , gn) are
Ck−1 and have open domains. It is known that the composition
f(g1, . . . , gn) is Ck−1. Suppose the domains of f and g are the open
sets F and G, respectively. Then the domain of f(g1, . . . , gn) is
G∩g−1(F ), which is open, since the continuity of g implies g−1(F )
is open. For the ODE operation, suppose that g1, . . . , gk are in the
algebra. By inductive hypothesis they are Ck−1 and have open do-
mains. Therefore, by lemma 2.8 (using the fact that k− 1 ≥ 1), the
unique solution output by ODE is Ck−1 and has an open domain.

�

To make the connection to computable analysis, we consider a limit operation
which allows us to take the limit of a function as some argument goes to infinity,
provided the function converges rapidly to its limit, i.e. this is exactly the kind
of limit that is implicit in the definitions of computable analysis.
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Definition 2.16. (Limits)

• The operation LIM takes as input a function f∗(x̄, t) : Rk × R → R. It is
defined on f∗ if:

1. For all real x̄, the limit f(x̄) = lim
t→∞

f∗(x̄, t) exists, and

2. For all real t > 0 and all real x̄, |f(x̄)− f∗(x̄, t)| ≤ 1/t.

Otherwise it is undefined. If LIM is defined on f∗ then it returns f(x̄) :
Rk → R (the function f may be referred to as LIM(f∗)).

We will see in definition 3.7, that f∗ is an “approximation” of f .

• Given a class of functions F, we let F(LIM) denote the closure of F under
the operation LIM.

It is easy to check that CR is closed under LIM, i.e. CR = CR(LIM). For all the
classes F considered in this paper, we in fact only need to apply LIM once to
any function, i.e. {LIM(h) | h is in F} = F(LIM).

We now state the main theorem, obtaining three characterizations of the
total computable functions via three function algebras.

Theorem 2.17. For k ≥ 2, CR = ODE?
k(LIM) = RMUk(LIM) = INVk(LIM).

We consider the characterization by ODE?
k(LIM) the most natural and interest-

ing. In characterizing CR by ODE?
k(LIM), we have characterized computable

analysis by a function algebra which differs from the real primitive recursive
functions in two essential ways: The presence of the limit operation and the pres-
ence of the extra basic function θk. The theorem improves the previous results
of this kind. In our paper [11] we partially characterized CR by ODE?

k(LIM);
namely, we only characterized those function of CR which are C2 and have a
compact domain. With the same restriction on CR, Bournez and Hainry [6]
partially characterized CR by RMUk(LIM), where the operation LI is replaced
by a slightly unnatural variant; however, we should note that their result allows
the limit operation to be interleaved with the other operations of the function
algebra. In addition to providing a full characterization, we introduce the new
characterization by INVk(LIM), and our proof uses our method of approxima-
tion.

3. The Proof

Since our proof boils down to proving a number of inclusions, we summarize
these inclusions below, making reference to the lemmas which immediately imply
them. The first step (the main step) will be discussed in part 3.2. The second
step (the minor step), discussed in part 3.1, summarizes a series of inclusions
that follow immediately from the referenced lemmas. The third step simply
puts together the first two steps in order to prove theorem 2.17.
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1. (The Main Step) Lemma 3.6 will show that for any k ≥ 1, we have:

CR ⊆ πRMU
(1)
k (LIM).

2. (The Minor Step) The lemmas 2.15, 3.1, 3.2, 3.4, and 3.5 imply the
following two chains of inclusions:

• For k ≥ 5 :

πRMU
(1)
k ⊆ RMU

(2)
k ⊆ INV

(2)
k ⊆ ODE?

k−2 ⊆ ODE?
k−3 ⊆ CR

• For k ≥ 2 :

πRMU
(1)
k ⊆ RMU

(2)
k ⊆ RMUk ⊆ INVk ⊆ CR

3. The theorem 2.17 follows immediately: We arrive at a cycle of inclusions by
closing the classes of step 2 under limits, combining the resulting inclusions
with the inclusion of step 1, and using the fact that CR is closed under
limits.

Our proof in fact also characterizes CR by πRMU
(1)
k (LIM), RMU

(2)
k (LIM) and

INV
(2)
k (LIM) (all for k ≥ 2), though we only included the cleaner characteriza-

tions in theorem 2.17.

3.1. The Minor Step

The inclusions for the minor step are discussed in this section. The lemmas
of this part are taken right from our previous paper [11], though we have (hope-
fully) improved the notation in this paper. We use RMU for BH, INV for L,
and ODE for G (in the case of BH, it had the extra basic function “−1”, which
we can remove as per example 2.14). We will discuss the intuitions behind some
of the proofs (for the detailed proofs, see the indicated citations of [11]).

The next easy lemma shows that the operation Inverse can simulate the root-
finding operation UMU. From a function f(x, ā), to use Inverse to find the x0

such that f(x0, ā) = 0, we simply invert f (or rather, a function with the same
root as f) in the argument x, to obtain some f̃(x, ā), and then we output f̃(0, ā)
(which equals x0).

Lemma 3.1. [11, Lemma 3.2] For k ≥ 2 and c ≥ 0, RMU
(c)
k ⊆ INV

(c)
k .

An immediate consequence of the lemma is that RMUk ⊆ INVk, for k ≥ 2.
The next lemma shows that the operation Inverse can be simulated by the

function algebra ODEk. While the actual proof gets somewhat involved (see
[11] for the detailed proof), the intuition is quite simple. Supposing we want to
invert the function f(x) in ODEk, we recall that the Inverse Function Theorem
tells us that

∂

∂x
f−1(x) =

1
∂
∂xf(f−1(x))

.

Since the function
1

x
in ODEk, we can use ∂

∂xf to set up the previous differential

equation, and thus f−1 is in ODEk. However, having f in ODEk does not imply
∂
∂xf is in ODEk; yet it suffices to work in the larger class ODEk−c (for some
c).

11



Lemma 3.2. [11, Lemma 3.5] INV
(c)
k ⊆ ODE?

k−c, for c ≥ 0 and k ≥ c+ 3.

For our result, it will be fundamental to know when the solution to a differ-
ential equation is computable (in the sense of computable analysis). By a classic
result of Pour-El and Richards [26], the solution may not be computable, even if
the differential equation is defined using computable functions and initial condi-
tions. However, under a uniqueness condition, Collins and Graça [13] [14] show
that the solution is computable.

Proposition 3.3. [14, Theorem 21] Consider the initial value problem

(h̄)′ = ḡ(h̄) , h̄(0) = ā,

where ḡ is continuous on an open subset of Rn, and such that for each fixed
initial condition ā, there is a unique solution on a maximum interval. Then the
operator that takes ḡ and ā to its unique solution, is computable.

Or, in our terminology, if ḡ is computable, the solution h̄ (as a function of
its main variable and its parameter variables) is computable.

Note that in our statement of proposition 3.3, we slightly modified the statement
appearing in [14]; they had a slight ambiguity which we clarify by writing that
“for each fixed initial condition ā, there is a unique solution on a maximum
interval.” By reading the proof of their theorem (and communicating with an
author of [14]), we see that this is their intended meaning, and what they in
fact prove. Using the last proposition, we reprove (a slightly strengthened form
of) lemma 3.11 of [11] in a much simpler manner; in [11], we used the weaker
result of Graça et. al. [19], while now we use proposition 3.3.

Lemma 3.4. (Almost lemma 3.11 from [11]) For k ≥ 2, ODE?
k ⊆ CR.

Proof

We proceed by induction on the structure of ODEk (k is fixed),
showing that these functions are computable on their domain; the
result then holds since ODE?

k is a subset of ODEk. The basic
functions of ODEk are all computable. It is well-known that the
composition of two (real) computable functions is computable [29].
For the operation ODE, suppose g1, . . . , gk are in ODEk, and are
used to set up the differential equation (1). Since k ≥ 2, each gi
is C1 and has an open domain, by lemma 2.15 (part 4), and thus
the IVP has a unique solution. By inductive hypothesis, the gi are
computable, thus all the requirements of proposition 3.3 are satisfied,
so the result of the operation ODE is computable on its domain.

�

To show that the functions of INVk are computable (in the sense of com-
putable analysis) we proceed by induction. The basic functions are computable.

12



The composition operation preserves computability. The operation LI also pre-
serves computability, using proposition 3.3 in the same say we did in the proof
of lemma 3.4 (note that the related function algebra of Bournez and Hainry [6]
used a slightly unnatural variant of LI because proposition 3.3 was proved after
their work). The inverse operation is known to preserve computability: See
[29] (p.180) for the case of a function with a bounded domain; our situation
with an unbounded domain is similar (in both cases we can use a binary search
algorithm). Thus we have proved the following lemma.

Lemma 3.5. INVk ⊆ CR, for k ≥ 2.

3.2. The Main Step: The Setup

Now we discuss the main step, whose goal is to prove the following lemma.

Lemma 3.6. (Main Lemma) CR ⊆ πRMU
(1)
k (LIM), for k ≥ 1.

This lemma will follow from a series of lemmas, in which we will use the
notion of one class of functions approximating another class of functions. We
discuss the notion of approximation (a simplified version of what we developed
in [12]) and then introduce a number of intermediary classes of functions which
are used to facilitate the proof. At the end of this section we outline the proof,
leaving the technical lemmas for section 4.

Definition 3.7. (Approximation)

• Consider functions f and f∗. We write f(x̄) � f∗(x̄, t), if

|f(x̄)− f∗(x̄, t)| < 1

t
,

for all x̄ in the domain of f , and all t > 0 (the variable “t” is called
the approximation parameter); we emphasize that if some x̄ is in the
domain of f , then (x̄, t) is in the domain of f∗ for all t > 0.

• For classes of functions A and B, we write A � B if for any f in A there
is some f∗ in B such that f � f∗.

We reserve the variable t, and sometimes t1 and t2, for the approximation pa-
rameters.

Remark From the definition of LIM we have the following relations:

1. If f � f∗ then f = LIM(f∗);

2. If A � B then A ⊆ B(LIM).

The approximation relation is transitive, assuming a niceness condition.

Definition 3.8. (Nice classes) A class of functions F is called nice if it
satisfies the following properties:

13



1. It contains the addition function, i.e. for f(x, y) = x+ y, f is in F.

2. It contains the unary identity function, i.e. for f(x) = x, f is in F.

3. It is closed under composition.

Lemma 3.9. (Transitivity) Suppose A, B, and C are classes of functions
and suppose C is nice. Then A � B and B � C implies A � C.

Proof

Let f(x̄) be in A. Thus we have g(x̄, t1) in B such that |f(x̄) −
g(x̄, t1)| < 1/t1, and h(x̄, t1, t2) in C such that |g(x̄, t1)−h(x̄, t1, t2)| <
1/t2. Thus h̃(x̄, t) = h(x̄, 2t, 2t) is in C since C is nice; furthermore,
f � h̃, by the triangle inequality.

�

To obtain our result over the reals we will make significant use of the classical
computable functions over the naturals.

Definition 3.10. Let CN be the functions f : Nk → N, such that f is com-
putable.

There are numerous characterizations of CN with function algebras; we pick one
that will be useful to us, defined using the following operations.

Definition 3.11. (Bounded sums and products) Let f : N × Nk → N be a
function.

• The bounded summation operation (
∑

) takes f as input and returns

g : N× Nk → N, where g(y, ā) =

y∑
x=0

f(x, ā).

• The bounded product operation (
∏

) takes f as input and returns g :

N× Nk → N, where g(y, ā) =

y∏
x=0

f(x, ā).

We define a search operation similar to the classic µ operation (i.e. given a
function f(x, ā), µ(f) is the function g(ā) = the first x0 such that f(x0, ā) = 0).
Our operation will be limited, but in the end it will be just as powerful as the
full µ operation (note, that it searches for a one instead of a zero).

Definition 3.12. The operation MU receives a function f : N × Nk → N as
input. MU is defined on f if the following two conditions are satisfied:

1. For each ā, there is a unique xā ≥ 1 (called the one of f) such that

f(x, ā) =

 0, if x < xā;
1, if x = xā;
2, if x > xā.

14



a = 4 0 0 0 0 0 0 0
a = 3 0 0 0 0 0 0 1
a = 2 0 0 0 0 0 1 2
a = 1 0 0 1 2 2 2 2
a = 0 0 0 1 2 2 2 2

x = 0 x = 1 x = 2 x = 3 x = 4 x = 5 x = 6

Figure 1: Example of f(x, a) that satisfies the requirements of definition 3.12

2. The function g(ā) = xā is increasing in all arguments.

Otherwise MU is undefined on f . If MU is defined, then its output is g.

Figure 1 is an example of a function f(x, a) on which MU is defined (i.e. we
have just indicated some values of f(x, a), but we could extend f). For any
fixed a, f(x, a) satisfies the first requirement of MU. For any fixed x, f(x, a)
is decreasing in a, which is exactly what is needed to guarantee the second
requirement of MU.

We now use the preceding operations to define a modification of the standard
function algebra for the computable functions over N.

Definition 3.13. (The function algebra NMU)

• Let x . y =

{
x− y, if x ≥ y;
0, otherwise.

(called cut-off subtraction)

• Let NMU be FA[0, 1,+, . ,P; comp,
∑
,
∏
,MU].

• Let NMU(c) be the functions of NMU that have rank c with respect to
the operation MU.

We chose the basic functions of NMU so that without MU, we get the ele-
mentary computable functions, i.e. FA[0, 1,+, . ,P; comp,

∑
,
∏

] is exactly the
elementary computable functions. The next lemma follows from standard char-
acterizations of the computable functions, since we can simulate the standard
µ−operation with our restricted MU by pre-processing a given function with
elementary computable functions (similar to [6, proposition 2.2]). The standard
normal form theorem (where Kleene’s predicate can be taken as elementary, [16,
corollary 12-4.5]) allows to get away with a single application of µ or MU.

Lemma 3.14. CN = NMU(1)

We will define various classes of functions over Q, used as a bridge between
the classes on the naturals and the reals. In the end we will not care about these
classes; they are simply intermediary classes defined not with the intention of
looking pretty, but with the goal of making the proofs run smoothly.

Definition 3.15. Let CQ be {f|Q | f is in CR}.
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Thus, CQ is just the functions of CR with their domains (but not their ranges)
restricted to Q. For other classes over Q, the following definitions of a kind of
denominator, numerator, and sign function will be convenient.

Definition 3.16. We define three functions from Q to Z. For a rational (-1)s pq
presented in lowest terms, where p and q are positive integers, let:

D

(
(-1)s

p

q

)
= (-1)sq (D(0) = 0)

N

(
(-1)s

p

q

)
= (-1)sp (N(0) = 0)

sign(x) =

{
0, if x ≤ 0;
1, if x > 0.

Note that both D and N implicitly reduce their argument to lowest terms and
carry the sign (the latter property is simply to facilitate some technical devel-
opment); e.g. D(− 2

6 ) = −3. We define another notion of computability over
Q using Turing machines, but unlike CQ the machine gets the rational input
exactly, coded using naturals.

Definition 3.17. A function f : Q→ Q is in dCQ if there is a Turing machine
over N that computes it in the following sense:

On input x ∈ Q the machine is given the triple 〈 |N(x)|, |D(x)|, sign(x) 〉,
and it computes the triple 〈 |N(f(x))|, |D(f(x))|, sign(f(x)) 〉.

For a function f : Qk → Q, the definition is similar (on input x1, . . . , xk ∈ Q
the machine is given a corresponding triple for each xi).

Note that CQ contains only continuous functions, while dCQ contains discon-
tinuous functions (where we say a function with domain Qk is continuous if
it can be extended to a continuous function with domain Rk); e.g. given the
exact rational as a code we can easily decide if it is larger than 0 or not, thus
the discontinuous function sign is in dCQ. In general, if a class of functions
(over R or Q) contains only continuous functions we call it a continuous class
and otherwise we call it a discontinuous class; we will put the symbol “d” in
front of discontinuous classes, as was done with dCQ. In fact it will typically be
important for us that a class of functions is not just continuous, but that it has
modulus functions, i.e. its continuity is exhibited by a function (definition 3.19
differs from our definition in [12]; to simplify the discussion, this paper uses the
reciprocal of what we used earlier).
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Definition 3.18. (Norm-increasing) A function f(x, ā) is norm-increasing
in x if f is positive everywhere and for any fixed ā, f(x, ā) increases as |x| in-
creases. The function f is simply called norm-increasing if it is norm-increasing
in all its arguments.

It is easy to check that if f and g are norm-increasing then so are f + g, f · g,
and f ◦g. We let |x1, . . . , xk| abbreviate |x1|+ . . .+ |xk|; thus |b̄− ā| abbreviates
|b1 − a1|+ . . .+ |bn − an|.

Definition 3.19. (Modulus) Suppose f(x) : Dk → D and m(x, z) : Dk+1 →
D are functions, where D is either Q or R. We say m is a modulus for f if
m is norm-increasing and for all x̄, ȳ, z ∈ D, z > 0,

|x̄− ȳ| ≤ 1

m(x̄, z)
implies |f(x̄)− f(ȳ)| ≤ 1

z
.

Note that a function (over Q or R) that has a modulus is continuous. Also, if
m is a modulus for f , then so is a larger norm-increasing function.

Throughout the paper, we will use the important technical idea of lineariz-
ing a function. Suppose f(x, ā) is a function, and for a fixed ā, as x varies,
f(x, ā) is shown in figure 3(a) (see page 32) as the function whose graph is the
dashed line. If we just consider the values of f(x, ā) when x is an integer, con-
necting these values by straight lines yields what we call Lin(f, x), linearizing f

with respect to the argument x, shown as the function f̂ of figure 3(a), whose
graph is a solid line. By bxc we mean the greatest integer less than or equal to
x, and by dxe we mean the smallest integer greater than or equal to x.

Definition 3.20. (Linearization) Suppose f(x1, . . . , xk) : D×E → R, where
Z ⊆ D ⊆ R, and E ⊆ Rk−1. The linearization to Q (respectively, to R)
of f(x1, . . . , xk) with respect to x1, denoted Lin(f, x1), is the function h with
domain Q× E (respectively, R× E), defined by

h(x1, . . . , xk) = f(bx1c, x2, . . . , xk) · (bx1c+ 1− x1)

+ f(dx1e, x2, . . . , xk) · (x1 − bx1c).

We define Lin(f, xi) similarly, but with respect to the variable xi. By Lin(f) we
mean the full linearization Lin(. . . Lin(Lin(f, x1), x2) . . . xk).

Whether we are linearizing to Q or to R will generally be clear from context,
and so go unmentioned. Also note that while we defined Lin(f) by linearizing f
with respect to x1, then x2, and so on, in fact the order does not matter. The
next lemma holds because the full linearization operation ignores the values of
the function off of the integers, and is well-behaved in-between.

Lemma 3.21. Suppose f(x̄) is a function, and f̂(x̄) = Lin(f), the linearization
to Q or to R. The following holds.

1. For x ∈ Z, f̂(x) = f(x).
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2. f̂ is continuous.

3. For any x̄ (in Q or R), let

X = {f(bx1c, . . . , bxkc), . . . , f(dx1e, . . . , dxke)},
where we range over all 2k combinations of b·c and d·e. The following
holds:

min(X ) ≤ f̂(x̄) ≤ max(X )

We will want to linearize operations, converting operations over N to operations
over Q.

Definition 3.22. Suppose OP is an operation which takes a function f : Nk →
N and returns a function g : Nm → N. By OPQ, we mean the following opera-
tion:

1. OPQ takes as input f : Qk → Q such that f|N : Nk → N.

2. OPQ then applies OP to f|N to get some g : Nm → N.

3. Let g̃ extend g to the integers so that g̃ is zero if any argument is negative.

4. OPQ outputs Lin(g̃).

We illustrate the previous definition by considering an example with MU (re-
call definition 3.12) and the derived operation MUQ. Consider some function
f : Q2 → Q which is an extension of the function over the naturals illus-
trated in figure 1 (see page 15); thus f satisfies the condition of step 1 of the
above definition. We apply MUQ to f and argument x. Step 2 defines a func-
tion g over the naturals such that g(0) = 2, g(1) = 2, g(2) = 5, g(3) = 6,
and so on. Step 3 extends g to g̃, a function with domain Z, whose value
is zero on negative integers. Finally step 4 connects the following points by
straight line segments: {. . . , (−1, g̃(−1)), (0, g̃(0)), (1, g̃(1)), (2, g̃(2)), . . .} =
{. . . , (−1, 0), (0, 2), (1, 2), (2, 5), . . .}. The operation

∑
Q is more intuitive: To

sum up to a rational y, we compute two sums, the sum up to byc and the sum
up to dye, and we return the weighted average of the two sums according to
where y is between byc and dye.

We will now define two function algebras over Q, one continuous and the
other discontinuous.

Definition 3.23. (The continuous function algebra QMU)

• Let div : Q→ Q such that div(x) = Lin(f), where f(x) =

{
1/x, if x ≥ 1;
1, otherwise.

• Let QMU be FA[0, 1,−1,+, ∗, div, θ1,P; comp,
∑

Q,
∏

Q,MUQ, Lin].

• Let QMU(c) be the functions of QMU that have rank c with respect to
the operation MUQ.
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The function div allows us to construct rationals within the function algebra.
While other functions could do the job, div will have some technical advantages.

The next function algebra is our discontinuous function algebra over Q,
differing from QMU in two ways: It does not have the operation Lin and it
does have the extra basic function D, though we restrict how D can be used in
composition (this restriction is used in the proof of lemma 4.3).

Definition 3.24. (The discontinuous function algebra dQMU)

• Let dQMUbe FA[0, 1,−1,+, ∗, div, θ1,D,P; comp,
∑

Q,
∏

Q,MUQ], except
that in dQMU we restrict the comp operation as follows:

On input f(y1, . . . , yk), g1(x1, . . . , xm), . . . , gk(x1, . . . , xm), we can
only form the composition f(g1(x1, . . . , xm), . . . , gk(x1, . . . , xm))
if f is D−free, meaning that the function D never appears in
its construction.

• Let dQMU(c) be the functions of dQMU that have rank c with respect to
the operation MUQ.

The main difference between dQMU and QMU is that dQMU can break
up rational inputs into their integer components (using the function D) while
QMU cannot. To make up for this weakness, QMU has the extra operation
Lin, which is important for proving that QMU can approximate the functions
of dQMU which have an appropriate modulus (lemma 4.5).

We have now defined all the classes of functions that we will need, modulo the
restricting of the two discontinuous classes to certain subsets of their continuous
functions. We will restrict dCQ and dQMU(1) to their functions that happen

to have a modulus in QMU(1) (other classes, such as CN, which have the same

“growth rate” as QMU(1) could have been used in its place, though our choice
seems most convenient).

Definition 3.25. (Continuous restrictions of dCQ and dQMU)

• Let d̃CQ be the functions in dCQ that have a modulus function in QMU(1).

• Let ˜dQMU
(1)

be the functions in dQMU(1) that have a modulus function
in QMU(1).

Outline of the proof of the main lemma 3.6.

We wish to prove that CR ⊆ πRMU
(1)
k (LIM) for k ≥ 1. Consider

the sequence of approximations in figure 2 (note that containment is
an approximation with zero error). Once we have proved these four
approximations, we apply transitivity (lemma 3.9) to obtain:

CQ � πRMU
(1)
k .
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Lem. 4.6 Lem. 4.2 Lem. 4.5 Lem. 4.12

CQ � d̃CQ ⊆ ˜dQMU
(1)

� QMU(1) � πRMU
(1)
k

Figure 2: Approximations to prove CQ � πRMU
(1)
k .

To apply transitivity we have a niceness condition, which is obvious

in all the required cases, namely QMU(1) and πRMU
(1)
k . Note

that we need not worry about the niceness of ˜dQMU
(1)

since the

inclusion in figure 2 allows us to conclude CQ � ˜dQMU
(1)

without
relying on lemma 3.9. Now consider some fR : Rn → R in CR. By
definition of CQ, fR is the extension of some function fQ : Qn → R
in CQ. We have shown that fQ is approximated by some continuous

function, say f∗, with domain Rn+1, in πRMU
(1)
k . Since all the

functions in CR are continuous, we can easily verify that fR is also

approximated by f∗, which means that CR � πRMU
(1)
k . Recalling

the remark after definition 3.7, we see that the main lemma 3.6

follows by closing πRMU
(1)
k under LIM.

�

The next section is devoted to proving the four approximations in figure 2.

4. The Main Step: Technical Aspects

We prove the sequence of approximations in figure 2. The final approxima-

tion, QMU(1) � πRMU
(1)
k , is the technical heart of the argument. The other

three approximations are similar to approximations appearing in our paper [12];
where the proofs are similar we will make reference to the appropriate parts of
[12]. First we discuss the three easier approximations, and then we discuss the
final one.

4.1. The First Three Approximations

The next lemma holds because the classes QMU and dQMU contain ex-
tensions of the basic functions of NMU (note that x . y = θ1(x− y)) and their
operations extend appropriately those of NMU.

Lemma 4.1. Every function of NMU(1) can be extended to a function in
QMU(1) and to a D−free function in dQMU(1).

A typical use of the last lemma will be to start with a function which is clearly in
CN (and thus in NMU(1), by lemma 3.14), extend it to a function in one of the
rational classes, and then perform some basic manipulations to this extension
so that it works properly for negative integers and rationals (we will typically
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just refer to the last lemma without discussing the basic manipulations done
in the rational classes). We note some useful functions in dQMU(1) (recall
definition 3.16):

• sign is in dQMU(1) (because sign(x) = sign|Z(D(x)), and using lemma 4.1,

sign|Z has an extension in dQMU(1)).

• |N(x)| is in dQMU(1) (because |N(x)| = x ∗ D(x)).

The following lemma proves the inclusion from figure 2.

Lemma 4.2. d̃CQ ⊆ ˜dQMU
(1)

Proof

We show that dCQ ⊆ dQMU(1) and the lemma follows immediately.
Suppose f(x) is in dCQ, so there are f1, f2, f3 in CN, (and so in

NMU(1) by lemma 3.14) such that

f(x) =
f1(|N(x)|, |D(x)|, sign(x))

f2(|N(x)|, |D(x)|, sign(x))
(−1)f3(|N(x)|,|D(x)|,sign(x))

By lemma 4.1, f1, f2, and f3 have extensions in dQMU(1), say g1, g2,
and g3 respectively, which are D-free. The class dQMU(1) also con-
tains a function S(x) such that S(0) = 1 and S(1) = −1. Thus f(x)

is in dQMU(1) because we can write it as a composition meeting
the requirements of dQMU(1):

g1(|N(x)|, |D(x)|, sign(x))

∗ div(g2(|N(x)|, |D(x)|, sign(x)))

∗ S(g3(|N(x)|, |D(x)|, sign(x)))

�

The next lemma (a simplification of [12, lemma 17]) essentially shows that we

can assume that any function in dQMU(1) only applies D directly to arguments,
and not to more complicated constructions.

Lemma 4.3. For any function h(x̄) in dQMU(1), there is a function h̃(x̄, ȳ)

in QMU(1) such that h(x̄) = h̃(x̄,D(x̄)).

Proof

We proceed by induction on dQMU(1). The basic functions in
dQMU(1) trivially satisfy the claim since all of them except D are
in QMU(1) and D itself fits the desired form.

For composition, suppose h(x) = f(g(x)) (composition with more

functions works similarly), where f is D−free. Thus f is in QMU(1),
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and by inductive hypothesis, we have g̃(x, y) in QMU(1) such that

g(x) = g̃(x,D(x)). Let h̃(x, y) = f(g̃(x, y)), a function in QMU(1)

such that h(x) = h̃(x,D(x)) as claimed.

For the three other operations, the inductive steps are easy, due to
their definition via linearization. For example, consider bounded
sums. Consider the function

∑
Q(f(x, ā)), where inductively we can

write f(x, ā) = f̃(x, ā,D(x), D(ā)), for some f̃ in QMU(1). In

QMU(1), we can easily define (using lemma 4.1) a function s(u),

such that for u ∈ N, s(u) =

{
0, if u = 0;
1, if u ≥ 1

(we do not care what

s does off of the naturals); i.e. on the naturals s(u) = D(u). So
f(x, ā) = f̃(x, ā, s(x), s(ā)) for x, ā ∈ N. Recall that by definition
(recall definition 3.22)

∑
Q ignores the values of the input function

off of the naturals, thus
∑

Q(f(x, ā)) =
∑

Q(f̃(x, ā, s(x), s(ā))) is

in QMU(1). The other operations follow similarly, since they also
ignore values off of the naturals.

�

We write duc in a statement to indicate that the statement holds if each
occurrence of duc is replaced by either buc or due; we allow one occurrence of
duc to be replaced by buc and another occurrence in the same statement to
be replaced by due (this notation will be used only in lemmas 4.4, 4.5, and

4.6). Notice that given x, for large M , dMxc
dMc is approximately x, thus a small

calculation proves the next lemma.

Lemma 4.4. Given r(x, ā) in QMU(1) (respectively, in CQ) there is r̃(x, ā) in

QMU(1) (respectively, in CQ) such that∣∣∣∣x− dr̃(x, ā) · xc
dr̃(x, ā)c

∣∣∣∣ ≤ 1

r(x, ā)
, for all x, ā ∈ Q.

We now prove an approximation from figure 2, showing that the class of con-
tinuous functions QMU(1) can approximate functions from the discontinuous
class dQMU(1) which have a QMU(1) modulus. The core of the proof depends
on the fact that QMU(1) has Lin as one of its operations (in fact, this proof is

the reason for including the operation in the definition of QMU(1)); the proof
is similar to part of the proof of lemma 18 of [12].

Lemma 4.5. ˜dQMU
(1)

� QMU(1)

Proof

Let f(x) be in dQMU(1), assuming just one variable for ease of

readability, and suppose m(x, t) is a QMU(1) modulus function for

f . Our goal is now to find some f∗(x, t) in QMU(1), such that
f � f∗.

22



It will be more convenient to write the rational x as a/b, where
a, b ∈ Z. By lemma 4.3, f(a/b) can be written as g(a/b,D(a/b)),

where g is in QMU(1). We define a function F : Z2 → Q by
F (a, b) = g(a/b,D(a/b)). The functions a/b and D(a/b) (as func-

tions of type Z2 → Q) have extensions in QMU(1), using lemma 4.1

and functions (like div) in QMU(1) (for one concrete approach see
the functions dv and bottom in the proof of lemma 18 of [12]). Thus

F has an extension in QMU(1) (which we will also call F ), and

F̂ = Lin(F ) is in QMU(1). To relate F̂ and f , consider the ra-
tional grid Q × Q, where F̂ and f have been evaluated at all the
points, i.e. for all (u, v) ∈ Q × Q we consider F̂ (u, v) and f(u/v).
Note that on the integer sub-grid Z × Z, F̂ and f agree, i.e. for
(u, v) ∈ Z × Z, F̂ (u, v) = f(u/v). The idea of the proof is as fol-
lows. Given a rational x, we find large u, v ∈ Q such that x = u/v.
Since u and v are large, the fraction u/v is approximately the same
as any of the four fractions buc/bvc, due/bvc, buc/dve, due/dve. Con-
sequently F̂ (u, v) and f(u/v) will both be close to the four values
F̂ (buc, bvc), F̂ (due, bvc), F̂ (buc, dve), F̂ (due, dve) and so as desired,
F̂ (u, v) will be approximately equal to f(x). We now carry out the
details of the proof.

Applying lemma 4.4 to m, we get some m̃(x, t) in QMU(1) such
that:

(F)

∣∣∣∣x− dx · m̃(x, t)c
dm̃(x, t)c

∣∣∣∣ ≤ 1

m(x, t)
.

We define f∗(x, t) = F̂ (x · m̃(x, t), m̃(x, t)) in QMU(1). We just
need to show that |f(x) − f∗(x, t)| ≤ 1/t. For any x, t ∈ Q, let X
be the following set of 4 numbers:

{ F̂ (bx · m̃(x, t)c, bm̃(x, t)c),
F̂ (bx · m̃(x, t)c, dm̃(x, t)e),
F̂ (dx · m̃(x, t)e, bm̃(x, t)c),
F̂ (dx · m̃(x, t)e, dm̃(x, t)e) }.

By lemma 3.21, we know that for any x, t ∈ Q: min(X) ≤ f∗(x, t) ≤
max(X). Thus it suffices to show that |f(x)−F̂ (dx · m̃(x, t)c , dm̃(x, t)c)| ≤
1/t (for example, if f(x) ≤ min(X), we would then have |max(X)−
f(x)| ≤ 1/t, and f∗(x, t) is even closer to f(x) than max(X)). By
definition,

F̂ (dx · m̃(x, t)c , dm̃(x, t)c) = g

(
dx · m̃(x, t)c
dm̃(x, t)c

,D

(
dx · m̃(x, t)c
dm̃(x, t)c

))
= f

(
dx · m̃(x, t)c
dm̃(x, t)c

)
.
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By propertyF and the definition of a modulus, |f(x)− f
(
dx · m̃(x, t)c
dm̃(x, t)c

)
| ≤ 1/t,

as desired.

�

In the next lemma, we want to show that the continuous class CQ can be
approximated by the functions of the discontinuous class dCQ which happen

to have a QMU(1) modulus; the proof is very similar to part of the proof of
lemma 16 of [12].

Lemma 4.6. CQ � d̃CQ

Proof

Let f(x) be in CQ (assume one argument for ease of exposition),
and we need some f∗(x, t) in dCQ such that f � f∗, and f∗ has a

QMU(1) modulus. Let M be the Turing machine that computes f in
the sense of computable analysis. Thus M has an oracle tape which
gives approximations of x, and an input tape for the accuracy input
(recall definition 2.3 and the immediately preceding discussion). The
function f∗(x, t) will be defined by a Turing machine which takes
x, t ∈ Q as input, where each rational is given exactly as a triple
of natural numbers, though to keep it simple, we ignore the sign
and consider rationals as pairs, i.e. the positive rational p/q is given
by the pair (p, q). To obtain the condition f � f∗ alone would be
straightforward. We could define f∗ in terms of M, by inputting
the desired accuracy, dte, to the machine M, and use the exact x
as the oracle to M. This is roughly how f∗ will be defined, however
with such a definition, for fixed t, f∗(x, t) could fluctuate arbitrarily
between f(x) − 1

t and f(x) + 1
t , and thus not even be continuous;

i.e. though the final function f defined from M is continuous, the
“approximations” defined from M may not be. Guaranteeing the
modulus condition will then require some care and is the reason we
will use (2) to define f∗.

Since f is computable in the sense of computable analysis, it has a
computable modulus, e.g. a modulus function m(x, z) in CQ. By

lemma 4.4, there is some m̃(x, z) in CQ such that

∣∣∣∣x− dx · m̃(x, z)c
dm̃(x, z)c

∣∣∣∣ ≤ 1

m(x, z)
.

Now we will define a function h(n, p, q) : Z3 → Q:

Run M with accuracy input n, using p/q as its oracle.
When we say to use p/q as the oracle, we mean that when-
ever some oracle query is made, enough bits of the binary
expansion of p/q are given. Define h(n, p, q) to be the
output of this run of M.
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We can define h to be zero for non-integer rationals so that the
linearization ĥ = Lin(h) is a function ĥ : Q3 → Q. We define

f∗(x, t) = ĥ(2t+ 1, x · m̃(x, 2t+ 1), m̃(x, 2t+ 1)), (2)

which is contained in both CQ and dCQ. Since f∗ is in CQ it has a
modulus in CQ. By lemmas 3.14 and 4.1, we can conclude that the

modulus is in QMU(1) (since the growth rate of CN is the same as
CQ, and for modulus functions, growth rate is all that matters). It
is left to check that |f(x) − f∗(x, t)| ≤ 1/t. By lemma 3.21 (as in
the proof of lemma 4.5), it suffices to show

|f(x)− ĥ(d2t+ 1c , dx · m̃(x, 2t+ 1)c , dm̃(x, 2t+ 1)c)| ≤ 1/t. By the
definition of M, the result of a run with accuracy input d2t+ 1c ≥ 2t

and oracle
dx · m̃(x, 2t+ 1)c
dm̃(x, 2t+ 1)c

must be within 1/(2t) of f

(
dx · m̃(x, 2t+ 1)c
dm̃(x, 2t+ 1)c

)
,

and so∣∣∣∣f (dx · m̃(x, 2t+ 1)c
dm̃(x, 2t+ 1)c

)
− ĥ(d2t+ 1c , dx · m̃(x, 2t+ 1)c , dm̃(x, 2t+ 1)c)

∣∣∣∣ ≤ 1

2t
.

Because

∣∣∣∣x− dx · m̃(x, 2t+ 1)c
dm̃(x, 2t+ 1)c

∣∣∣∣ ≤ 1

m(x, 2t+ 1)
, the definition of the

modulus yields∣∣∣∣f(x)− f
(
dx · m̃(x, 2t+ 1)c
dm̃(x, 2t+ 1)c

)∣∣∣∣ ≤ 1

2t
.

By the triangle inequality we are done.

�

4.2. The Final Approximation: QMU(1) � πRMU
(1)
k

We now begin the core technical work needed to prove the final approxima-

tion of figure 2, QMU(1) � πRMU
(1)
k . For the technical development we will

use a restriction of πRMU
(c)
k to those functions that we can bound appropri-

ately.

Definition 4.7. Let
−−−−−→
πRMU

(c)
k be the functions f(x̄) in πRMU

(c)
k such that

there is a norm-increasing function b(x̄) in πRMU
(c)
k such that |f(x̄)| ≤ b(x̄).

By definition,
−−−−−→
πRMU

(c)
k ⊆ πRMU

(c)
k . Our approach and the proofs to come,

make essential use of the class
−−−−−→
πRMU

(c)
k , however, we claim (but do not prove

here) that for all but possibly a few integers c and k, the classes
−−−−−→
πRMU

(c)
k and

πRMU
(c)
k are the same.

Note that
−−−−−→
πRMU

(c)
k contains the functions 0,1, −1, π, θk, and P. The

property of being norm-increasing is preserved by composition. From norm-
increasing bounds on f and g we can get a norm increasing bound on h =
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LI(f, g). Thus by induction on the structure of
−−−−−→
πRMU

(c)
k we can prove the

following lemma.

Lemma 4.8.
−−−−−→
πRMU

(c)
k contains the basic functions 0,1, −1, π, θk, and P,

and is closed under comp and LI.

Thus we can work with
−−−−−→
πRMU

(c)
k as if it were πRMU

(c)
k , except when we

want to use the UMU operation (in which case we need to make sure we can
appropriately bound the output of UMU).

We now begin a somewhat involved technical discussion in the next two
lemmas (4.9 and 4.11) and corollary 4.10. The reader who would rather avoid
this technical part enjoys our sympathy, however natural alternatives to using
linearization seem to further complicate matters. We will show how to deal with

linearization (approximately) in
−−−−−→
πRMU

(c)
k . It may be helpful to keep in mind

that we will use linearization for two distinct purposes. On the one hand, we
will need to be able to “approximate” the operation Lin, which is an operation of
the function algebra QMU(1) (the point of lemma 4.9 and corollary 4.10). On
the other hand, the approximating function we construct has a number of nice
properties that we make explicit (in lemma 4.11), and use in conjunction with
the UMU operation in the final step of lemma 4.12. The next lemma says that−−−−−→
πRMU

(c)
k can approximately do linearization in one variable, and constructs a

kind of “partial modulus.”

Lemma 4.9. Suppose f(x, ā) is in
−−−−−→
πRMU

(c)
k . There are L(x, ā, t) and m(x, ā, z)

in
−−−−−→
πRMU

(c)
k , such that (for f̂(x, ā) denoting Lin(f, x)):

1. f̂(x, ā) � L(x, ā, t) and L(0, ā, t) = f(0, ā),

2. |x− x′| ≤ 1

m(x, ā, z)
implies |f̂(x, ā)− f̂(x′, ā)| ≤ 1

z
,

Proof

The notation is a little involved: We initially use the notation L when
dealing with x ≥ 0; we then define L which extends the construction
to all real x. We will define and discuss the function L and then
carry out the error analysis and the construction of L to prove part
1. The proof of part 2 will follow from the constructions in part 1.
Figure 3 (on page 32) summarizes the proof.

Part 1

Proof setup.

To define the function L(x, ā, t) in
−−−−−→
πRMU

(c)
k , we will first define

L̃(x, ā, u), and then show that there is a function α(x, ā, t) in
−−−−−→
πRMU

(c)
k

such that for the definition

L(x, ā, t) = L̃(x, ā, α(x, ā, t)),
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we have |f̂(x, ā)−L(x, ā, t)| ≤ 1

t
for all t > 0 and all x ≥ 0. We will

define other functions with arguments x, ā and u; throughout, we
will assume u > 0, and when we draw such functions we will assume
ā and u are fixed, while x varies.

Working backwards, we define L̃, providing intuition via figure 3
on page 32. Consider the (typically discontinuous) step function

∆(x, ā) = f(bxc + 1, ā) − f(bxc, ā), which gives the slope of f̂ on

the interval (bxc, bxc+ 1); the functions f , f̂ , and ∆ are pictured in
figure 3(a). We will approximate the discontinuous function ∆(x, ā)
with a continuous slope function S(x, ā, u), where the approximation
will only be bad near integers; functions ∆ and S are pictured in
figure 3(b). L̃ will then be defined by making its slope S(x, ā, u), i.e.

L̃(x, ā, u) = f(0, ā) +

∫ x

0

S(y, ā, u) dy. (3)

To construct S we will use LI to define a function W that approx-
imates f(bxc + 1, ā) on most of the interval [bxc, bxc + 1]. Let
F (x, ā) = f(step(x), ā), and note that F (x, ā) = f(bxc, ā) for x ∈
[bxc, bxc+ 1

2 ]; recall the function step from example 2.13. We define

W in
−−−−−→
πRMU

(c)
k with the following linear differential equation (W

is drawn along with f and F in figure 3(c)).

∂

∂x
W (x, ā, u) = (F (x+ 1, ā)−W (x, ā, u)) θk(sin 2πx)u (4)

and initial condition W (0, ā, u) = f(0, ā). Once one believes that
figure 3(c) accurately portrays W (technical discussion follows), it
makes sense to define

S(x, ā, u) = W (x, ā, u)−W (x− 1, ā, u).

We have now worked backwards to a complete definition of L̃; in
the error analysis we will define the function α(x, ā, t), and thus
complete the definition of L(x, ā, t).

Definition of L̃ and α: technical details.
Now we find useful expressions forW and S. LetK(x) =

∫ x
bxc sink(2πy)dy,

which is strictly increasing for x ∈ [bxc, bxc + 1/2]. As an approxi-
mation for ∆(n, ā) we let

∆̃n = f(n+ 1, ā)−W (n, ā, u), for integer n ≥ 0;

note that ∆̃n does depend on ā and u, though we drop these argu-
ments to simplify the notation (throughout this proof, the letter “n”
refers to elements of N). We can derive the following expressions for
W and S, for x ∈ [n, n+ 1):
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W (x, ā, u) = f(n+ 1, ā)− ∆̃n Θ(x, u) (5)

S(x, ā, u) = f(n+ 1, ā)− f(n, ā) + (∆̃n−1 − ∆̃n) Θ(x, u) (6)

where

Θ(u) = exp{−uK( 1
2 )}, and

Θ(x, u) =

{
exp{−uK(x)}, for n ≤ x ≤ n+ 1

2 ;
Θ(u), for n+ 1

2 < x < n+ 1.

The expression for S follows immediately from the expression for W ,
so we now discuss the expression for W . For x ≥ 0, either ∆̃n = 0
and W (x, ā, u) = f(n + 1, ā) for x ∈ [n, n + 1

2 ], or ∆̃n 6= 0 and
the differential equation (4) can be explicitly solved by separating
variables. In either case, its solution for x ∈ [n, n+ 1/2] is the above
expression. For x ∈ [n+ 1

2 , n+ 1], ∂
∂xW = 0 and thus W (x, ā, u) =

W (n+ 1
2 , ā, u).

Now we carry out the error analysis. By definition of L̃, the (signed)

error of approximation of f̂(x, ā) by L̃ is

E(x, ā, u) = L̃(x, ā, u)− f̂(x, ā) =

∫ x

0

S(y, ā, u)−∆(y, ā) dy. (7)

If we let ε(u) =

∫ 1
2

0

exp {−uK(x)} dx+ 1
2 exp{−uK( 1

2 )},

∫ n+1

n

S(x, ā, u)−∆(x, ā) dx = (∆̃n−1 − ∆̃n) ε(u),

and the total approximation error at x = n is (using a telescoping
sum):

E(n, ā, u) =
∑n−1
i=0

∫ i+1

i
S(x, ā, u)−∆(x, ā) dx

= (∆̃−1 − ∆̃n−1) ε(u) = −∆̃n−1 ε(u).
(8)

For non-integer x ∈ (n, n + 1), (6) shows that S(x, ā, u) is always
above or below ∆(x, ā), therefore E(x, ā, u) is between E(n, ā, u) and
E(n+ 1, ā, u), and so

|E(x, ā, u)| ≤ max{|E(bxc, ā, u)|, |E(bxc+1, ā, u)|} = max{|∆̃bxc−1|, |∆̃bxc|} ε(u).

To proceed, we need to find a norm-increasing bound on ∆̃n that
is not dependent on u. Recall that ∆̃n = f(n + 1, ā) −W (n, ā, u).
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By assumption f (and therefore F ) has a norm-increasing bound in
−−−−−→
πRMU

(c)
k , so we only need to consider W . Note that W (bxc, ā, u)

is in between the largest and smallest of the following three val-
ues: F (bxc − 1, ā), F (bxc, ā) and F (bxc + 1, ā); this follows from
equation 4, as illustrated in figure 3(c). Therefore, F (bxc, ā) is be-
tween F (x, ā) and F (x − 1

2 , ā) for all x. All those bounds only in-
volve the function F and can be assumed norm-increasing. They
can be combined with the bound on f to find some function β

in
−−−−−→
πRMU

(c)
k such that max{|∆̃bxc−1|, |∆̃bxc|} ≤ β(x, ā). Hence,

|E(x, ā, u)| ≤ β(x, ā) ε(u).

Finally, we check how ε(u) decreases with u and we use this to define

α(x, ā, t) in
−−−−−→
πRMU

(c)
k (recall that α is the missing function we use

to define L from L̃) such that

|E(x, ā, α(x, ā, t))| ≤ β(x, ā) ε(α(x, ā, t)) ≤ 1

t
.

To do this, we need to bound ε(u). There is some κ that depends
on k such that K(x) ≥ (x − bxc)κ for bxc ≤ x ≤ bxc + 1

2 . Thus, if
0 ≤ x ≤ 1

2 we bound the first term of ε(u) as follows:∫ 1
2

0

exp {−uK(x)} dx ≤
∫ 1

2

0

exp {−uxκ} dx

≤ u−1/κ

∫ +∞

0

exp{−xk}dx

≤ u−1/κ(1 +

∫ +∞

1

exp {−x} dx)

≤ 2u−1/κ.

The second term of ε(u) is 1
2 exp{−uK( 1

2 )} and is bounded by u−
1
κ

for u large enough. Therefore, β(x, ā) ε(α(x, ā, t)) ≤ 3β(x, ā) (α(x, ā, t))−
1
κ .

Thus, choosing a large enough α(x, ā, t) ≥ (3 t β(x, ā))κ we obtain
the desired 1

t bound, on |E(x, ā, α(x, ā, t))|.
Definition of L.
To conclude this part of the proof we address the case of x < 0. We
denote by L−(x, ā, t) the function that is defined from f(−x, ā) in-
stead of f(x, ā) as in the construction above; e.g. L−(1, ā, t) gives an
approximate value of f(−1, ā). Notice that L(0, ā, t) = L−(0, ā, t) =

f(0, ā) for any t. To obtain an approximation for f̂ over R we just
have to define an appropriate convex combination of L and L−. We
will define

L(x, ā, t) = (1− λ(x, ā, t))L−(−x, ā, 3t) + λ(x, ā, t)L(x, ā, 3t), (9)

for a function λ (defined below) which resembles the Heaviside func-
tion θ, but continuously and quickly switches from 0 to 1 on the
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interval [0, δ], for a function δ = δ(ā, t) which will be discussed.
Therefore, L will be precisely L, for x ≥ δ, and L−, for x ≤ 0; hence
the previous error analysis still holds off of [0, δ]. Next, we consider

the error |f̂(x, ā)− L(x, ā, t)| on [0, δ].

First, we will want a function B in
−−−−−→
πRMU

(c)
k such that |∆(x, ā)| ≤

B(x, ā). From the constructions above it is clear that u can be
chosen large enough (depending on F and k) so that S(n, ā, u)−1 ≤
∆(n, ā) ≤ S(n, ā, u)+1 (see Figure 3(b)). Given that S is monotonic
on [n, n+ 1

2 ] and constant on [n+ 1
2 , n+ 1], ∆(x, ā) can be bounded

as follows:

min{S(x, ā, u), S(x+
1

2
, ā, u)}−1 ≤ ∆(x, ā) ≤ max{S(x, ā, u), S(x+

1

2
, ā, u)}+1,

and thus we can find such a B. To conclude part 1 of the proof we
only need B(0, ā); however, we will need B(x, ā) in part 2 of the

proof. Let δ(ā, t) =
1

B(0, ā)(3t+ 1)
, and define

λ(x, ā, t) =

{
0, x ≤ 0;
1, x ≥ δ(ā, t), (10)

and for 0 ≤ x ≤ δ(ā, t), λ(x, ā, t) is increasing in x (but we do
not care about its exact definition). Note that such a function λ

is in
−−−−−→
πRMU

(c)
k (even though we do not have the exact division

operation needed for δ, we can define a non-zero decreasing function
that converges to zero faster than 1/x, such as e−x). The error,

|f̂(x, ā) − L(x, ā, t)|, for x ≤ 0 or x ≥ δ(ā, t) has been done, so
we consider the case of 0 < x < δ(ā, t) (some technical discussion
follows to justify the second equality):

|f̂(x, ā)− L(x, ā, t)| = |f̂(x, ā)− {(1− λ(x, ā, t))L−(−x, ā, 3t) + λ(x, ā, t)L(x, ā, 3t)}|
= |f̂(x, ā)− (1− λ(x, ā, t))f(0, ā)− λ(x, ā, t)L(x, ā, 3t)|
≤ |f̂(x, ā)− f̂(0, ā)|+ λ(x, ā, t)|L(x, ā, 3t)− f̂(0, ā)|
≤ |f̂(x, ā)− f̂(0, ā)|+ λ(x, ā, t){|L(x, ā, 3t)− f̂(x, ā)|+ |f̂(x, ā)− f̂(0, ā)|}
≤ ∆(0, ā)δ(ā, t) + 1 · (|L(x, ā, 3t)− f̂(x, ā)|+ ∆(0, ā)δ(ā, t))

≤ 1

3t
+

1

3t
+

1

3t

≤ 1

t

To justify the second equality we point out why L−(−x, ā, 3t) =
f(0, ā), for 0 < x < δ(ā, t). Assume that δ(ā, t) ≤ 1

2 , which is
guaranteed if B(0, ā) ≥ 2. We make the following claim:

For any f , any u and x ∈ [− 1
2 , 0], L̃(x, ā, u) = f(0, ā).
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We apply this to f(−x, ā) and u = 3t to conclude that L−(x, ā, 3t) =
f(0, ā), and thus L−(−x, ā, 3t) = f(0, ā) for x ∈ [0, 1

2 ]. To prove the

claim, it suffices (by the definition of L̃) to show that S(x, ā, u) = 0
for x ∈ [− 1

2 , 0], and thus (by definition of S) it suffices to show that
W (x, ā, u) = f(0, ā) for x ∈ [− 3

2 , 0]. To prove the last point, we recall

that W (0, ā, u) = f(0, ā) and show that ∂
∂xW = 0 for x ∈ [− 3

2 , 0].
To get the derivative to be zero, we consider the definition of W
in equation (4), and it suffices to note that: For x ∈ [− 3

2 ,−1] or
x ∈ [− 1

2 , 0], θk(sin 2πx) = 0 and for x ∈ [−1,− 1
2 ], by definition,

F (x+ 1, ā) = f(0, ā).

Part 2.

For |x− x′| ≤ 1 we have

|f̂(x, ā)− f̂(x′, ā)| ≤ |x− x′| max{|∆(x, ā)|, |∆(x′, ā)|},

since ∆ gives the slope of f̂ . In part 1, we saw that there is a function

B in
−−−−−→
πRMU

(c)
k such that |∆(x, ā)| ≤ B(x, ā). We use it to bound

max{|∆(x, ā)|, |∆(x′, ā)|} by some M(x, ā) in
−−−−−→
πRMU

(c)
k ; then we

can simply take m(x, ā, z) = M(x, ā)z.

�

The basic point of the next corollary is that from an approximation to a
function, we can construct an approximation to its full linearization, and get
a genuine modulus for the linearization. Basically, repeated application of the
last lemma yields the corollary.

Corollary 4.10. If f(x̄) � f∗(x̄, t) and f∗ is in
−−−−−→
πRMU

(c)
k , then there are

functions L and m in
−−−−−→
πRMU

(c)
k such that Lin(f) � L and m is a modulus for

Lin(f).

Proof

Suppose f(x1, . . . , xn) � f∗(x1, . . . , xn, t), where f∗ is in
−−−−−→
πRMU

(c)
k .

Let f̂0 = f , and let f̂k+1 = Lin(f̂k, xk+1).

We proceed by induction on k from 0 up to n, showing:

There are Lk and norm-increasing mk in
−−−−−→
πRMU

(c)
k such

that for x1, . . . , xk ∈ R, and xk+1, . . . , xn ∈ Z:

1. |f̂k(x1, . . . , xn)− Lk(x1, . . . , xn, t)| ≤
1

t
, and

2. |x1−x′1|+ . . .+ |xk−x′k| ≤
1

mk(x1, . . . , xn, z)
implies

|f̂k(x1, . . . , xn)− f̂k(x′1, . . . , x
′
k, xk+1, . . . , xn)| ≤ 1

z
.
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Figure 3: Constructions in lemma 4.9 for fixed ā and u:
(a) The dotted line represents f(x) and the thin solid line represents f̂(x) = Lin(f, x), which

we aim to approximate; the slope of f̂(x) is given by ∆(x), which is represented by the thick,
discontinuous solid line.
(b) We approximate ∆(x) by S(x, u), represented by the continuous line, where S(x, u) =
W (x, u)−W (x− 1, u).
(c) This figure illustrates the construction of W from f : The dotted line represents f(x) as
before, the thin solid line represents F (x), which is constant on the intervals [n, n+ 1/2], and
the thick solid line represents W (x, u) as defined from F with the linear differential equation
(4); the figure shows that W (x, u) is close to F (n), and thus to f(n), for most of x ∈ [n−1, n].
Note that the graph of W was in fact obtained by numerically integrating (4) with u = 10.
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When k = n, we have proved the corollary. For k = 0, we take
L0 = f∗, and we need no m0 (we may take it to be identically
zero so the inductive step works). We now complete the proof by
discussing the inductive step from k to k + 1. Inductively, we have
appropriate Lk and mk. Let L̂k = Lin(Lk, xk+1) and note that from
the inductive hypothesis and the definition of Lin, we have:

(�) For x1, . . . , xk+1 ∈ R, xk+2, . . . , xn ∈ Z, |f̂k+1(x1, . . . , xn)−L̂k(x1, . . . , xn, t)| ≤ 1/t.

From lemma 4.9 we have L and m in
−−−−−→
πRMU

(c)
k such that:

• L̂k � L

• |xk+1 − x′k+1| ≤
1

m(x1, . . . , xn, t, z)
implies

|L̂k(x1, . . . , xn, t)− L̂k(x1, . . . , xk, x
′
k+1, xk+2, . . . , xn, t)| ≤

1

z

Let Lk+1(x1, . . . , xn, t) = L(x1, . . . , xn, 2t, 2t). For x1, . . . , xk+1 ∈
R, and xk+2, . . . , xn ∈ Z: |f̂k+1(x1, . . . , xn) − L̂k(x1, . . . , xn, 2t)| ≤
1

2t
by �, and |L̂k(x1, . . . , xn, 2t) − Lk+1(x1, . . . , xn, t)| ≤

1

2t
by the

definition of L, thus by the triangle inequality, Lk+1 appropriately
approximates f̂k+1.

Now we consider the modulus claim. By definition,
−−−−−→
πRMU

(c)
k con-

tains a norm-increasing bound on |m|; we use the same name “m”

for this bound. Let b be some norm-increasing function in
−−−−−→
πRMU

(c)
k

such that |x|+ 1 ≤ b(x). Let mk+1(x1, . . . , xn, z) =

1+mk(x1, . . . , xk, b(xk+1), xk+2, . . . , xn, 5z)+m(b(x1), . . . , b(xk), xk+1, . . . , xn, 5z, 5z).

It is a norm-increasing function in
−−−−−→
πRMU

(c)
k . Now we check the

main property for modulus functions. Suppose we have some

x1, . . . , xk+1, x
′
1, . . . , x

′
k+1 ∈ R, xk+2, . . . , xn ∈ Z satisfying:

|x1 − x′1|+ . . .+ |xk+1 − x′k+1| ≤
1

mk+1(x1, . . . , xn, z)
.

Consider:

(F) |f̂k+1(x1, . . . , xn)− f̂k+1(x′1, . . . , x
′
k, xk+1, . . . , xn)|.

Letting r = bxk+1c, by definition of Lin, (F) equals:

|(r+1−xk+1)(f̂k(x1, . . . , xk, r, xk+2, . . . , xn)−f̂k(x′1, . . . , x
′
k, r, xk+2, . . . , xn))

+(xk+1−r)(f̂k(x1, . . . , xk, r+1, xk+2, . . . , xn)−f̂k(x′1, . . . , x
′
k, r+

1, xk+2, . . . , xn))|.
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Since |r|, |r + 1| ≤ b(xk+1) and

mk+1(x1, . . . , xn, z) ≥ mk(x1, . . . xk, b(xk+1), xk+2, . . . , xn, 5z), we
use the inductive hypothesis and the fact that mk is norm-increasing,

to bound (F) by
2

5z
. Now consider

|f̂k+1(x1, . . . , xn)− f̂k+1(x′1, . . . , x
′
k+1, xk+2, . . . , xn)| ≤

|f̂k+1(x1, . . . , xn)− f̂k+1(x′1, . . . , x
′
k, xk+1, . . . , xn)|

+ |f̂k+1(x′1, . . . , x
′
k, xk+1, . . . , xn)−L̂k(x′1, . . . , x

′
k, xk+1, . . . , xn, 5z)|

+ |L̂k(x′1, . . . , x
′
k, xk+1, . . . , xn, 5z)−L̂k(x′1, . . . , x

′
k, x
′
k+1, xk+2, . . . , xn, 5z)|

+ |L̂k(x′1, . . . , x
′
k, x
′
k+1, xk+2, . . . , xn, 5z)−f̂k+1(x′1, . . . , x

′
k, x
′
k+1, xk+2, . . . , xn)|.

In the above sum of four terms, the first is bounded by
2

5z
, since

it is (F); we observe that the other three terms are each bounded

by
1

5z
, thus providing the desired

1

z
bound. The second and fourth

terms are bounded by
1

5z
because of �. For the third term, we note

that |x′i| ≤ b(xi) since mk+1(x1, . . . , xn, z) ≥ 1, thus using the fact
that m is norm-increasing we get:

m(x′1, . . . , x
′
k, xk+1, . . . , xn, 5z, 5z) ≤ m(b(x1), . . . , b(xk), xk+1, . . . , xn, 5z, 5z)

= mk+1(x1, . . . , xn, z)

By the properties of m we bound the third term by
1

5z
.

�

The next lemma shows that if a function has the right shape for the MU
operation (definition 3.12) over the naturals, then the approximate linearization
has the analogous behavior over the reals.

Lemma 4.11. Suppose f(y, z) is in
−−−−−→
πRMU

(c)
k , and f|Z(y, z) satisfies: a) the

conditions of MU when y, z ≥ 0, b) f|Z(y, z) = 0 when y < 0, and c) f|Z(y, z) =
f|Z(y, 0) when z < 0.

Then there is a function L(y, z, t) in
−−−−−→
πRMU

(c)
k such that:

1. Lin(f) � L,

2. For any z and t, L(y, z, t) increases with y,

3. For any z and t, there is exactly one y∗ such that L(y∗, z, t) = 1, and for
this unique y∗, ∂

∂yL(y∗, z, t) > 0,

4. For any y and t, L(y, z, t) decreases with z.

Proof
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The basic approach of the proof is to use the proof of lemma 4.9,
first with respect to y (i.e. y plays the role of x), applied to the
function f(y, z), to arrive at the function L1(y, z, t1). Then we use
the proof of lemma 4.9 again, but now with respect to z (i.e. z plays
the role of x), and applied to the function L1(y, z, t1), to arrive
at the function L2(y, z, t1, t2), so that our desired function will be
L(y, z, t) = L2(y, z, 2t, 2t).

When we use the proof of lemma 4.9 to get L1 we write L1 in place
of L, and W1 in place of W ; likewise we write L2 in place of L, and
W2 in place of W , when getting L2. By assumption, for a integer z,
there is a natural yz such that f(yz, z) = 1; note that yz = y0 for
negative integer z.

Parts 1, 2 and 3. Recall that in lemma 4.9, the construction
worked by first constructing the function L̃(y, z, u), then letting
L(y, z, t) = L̃(y, z, α(y, z, t)), for a certain function α that depends
on y, z, and t. In this proof, we make a key modification at this
point (both for L1 and L2), choosing an α which depends only on
t. Recall that we chose α(y, z, t) such that β(y, z)ε(α(y, z, t)) ≤ 1/t.
In the current situation, due to the particular shape of f , we can
bound β(y, z) by 3 (independent of y, z): Recall that β was defined
on page 29 to be a bound on max{|∆̃n−1|, |∆̃n|}, approximations to
the slope of f (with respect to y or z), which for the exact slope
would be at most 2, and for sufficiently large u is less than 3 (since
we substitute α(t) for u, we just assume that we have taken α(t) to
be sufficiently large). Thus in the construction of L1, based on f ,
and L2, based on L1 (where L1 inherits the rough shape of f), we
can take α to be a function just of t. The same argument applies
to the definition of λ and δ in (10) to conclude we can take δ as a
function of just t, λ (in the construction of L1) as a function of just
y and t, and λ (in L2) as a function of just z and t.

Construction for L1.

We begin by considering L1, showing that for z restricted to being
an integer, ∂

∂yL1(y, z, t1) ≥ 0, and for y > yz − 1, ∂
∂yL1(y, z, t1) > 0

(note that since L1 approximates f , the positive derivative after
yz − 1 is enough to guarantee that L1 has a unique one, at which
it has a positive derivative, i.e. part 3 of the lemma). Since L1 is
defined as in (9), we will first prove the claim for L1 on y ≥ 0; the
argument extends to L−1 on y ≤ 0. Finally, we will consider the
interval [0, δ], where L1 is a combination of L1 and L−1 .

Since L1(y, z, t1) = L̃1(y, z, α(t1)), we analyze L̃1(y, z, u). We rewrite
(6) to get

∂

∂y
L̃1(y, z, u) = [f(n+1, z)−f(n, z)] (1−Θ(y, u))+[W1(n, z, u)−W1(n−1, z, u)] Θ(y, u),

(11)
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for y ∈ [n, n+1). Note that 0 < Θ(u) ≤ Θ(y, u) ≤ 1; hence the above
expression is a convex combination of f(n+ 1, z)− f(n, z), which is
non-negative by hypothesis, and W1(n, z, u)−W1(n−1, z, u), which
we claim is also non-negative. To show this, consider integer k ≥ 0
and y ∈ [k, k + 1), letting y → k + 1 in (5) to derive the following
recurrence:

W1(k + 1, z, u) = [1−Θ(u)] f(k + 1, z) + Θ(u)W1(k, z, u). (12)

This is now a convex combination of f(k + 1, z) and W1(k, z, u).

We now proceed by induction on k, up to n, showingW1(k+1, z, u) ≥
W1(k, z, u). For k = 0, this is true, since W1(0, z, u) = f(0, z), and
we can use (12) to conclude that W1(1, z, u) ≥ f(0, z) = W1(0, z, u).
Furthermore, if W1(k, z, u) ≥W1(k−1, z, u) then by (12) and the as-
sumption that f(k+1, z) ≥ f(k, z) we conclude thatW1(k+1, z, u) ≥
[1 − Θ(u)] f(k, z) + Θ(u)W1(k − 1, z, u) = W1(k, z, u). Therefore,
W1(n, z, u) ≥W1(n− 1, z, u), so the difference W1(n, z, u)−W1(n−
1, z, u) ≥ 0, as desired. Thus ∂

∂y L̃1(y, z, u) ≥ 0 for all y ≥ 0.

To show ∂
∂y L̃1 > 0 for y > yz − 1, we consider two cases: yz −

1 < y < yz and y ≥ yz. We use equation (11) in both cases,
showing that either its first term or its second term is positive (we
just showed that both terms of (11) are non-negative). In the case
yz − 1 < y < yz, Θ(y, u) < 1, and f(yz, z)− f(yz − 1, z) = 1, so the
first term is positive. In the case y ≥ yz, Θ(y, u) > 0 (it always is)
and by induction on integer n ≥ yz, W1(n, z, u) > W1(n−1, z, u), so
the second term is positive (the induction is similar to the previous
induction, again using (12)).

To conclude, we consider L1 over R. Recalling (9), for y ≥ δ(t1), L1

is L1, and for y ≤ 0, L1(y, z, t1) = L−1 (−y, z, t1); the former case was
just analyzed, and the latter case can be handled similarly (in fact,
the shape of f makes L−1 (−y, z, t1) = 0 for all y ≤ 0). We just need
to show that L1(y, z, t1) is also increasing for 0 ≤ y ≤ δ(t1). Without
loss of generality we suppose that δ(t) ≤ 1

2 , so the expression of L1

simplifies to

L1(y, z, t1) = (1− λ(y, t1))f(0, z) + λ(y, t1)L1(y, z, 3t1), (13)

as seen at the end of part 1 of lemma 4.9. Since f(0, z) = L1(0, z, 3t1)
and L1(y, z, 3t1) is increasing in y, L1 is increasing on [0, δ].

Construction for L2.

Now we consider L2(y, z, t1, t2), the construction of lemma 4.9 ap-
plied to L1, linearizing with respect to z; so now z plays the role of
x, and ā is y together with t1. Let L̂1 = Lin(L1, z); the construction

we are now carrying out will approximate L̂1. We show that the
earlier properties of L1 that held for integer z, also hold for all real
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z; in particular, for all z, ∂
∂yL2 ≥ 0, and there is some yz such that

the one of L2 occurs after yz − 1 and ∂
∂yL2 > 0 for y > yz − 1.

We start by considering the function L2(y, z, t1, t2), for z ≥ 0; at
the end we briefly discuss L2. Consider z ∈ [n, n + 1) for some
integer n ≥ 0, and focus on L̃2(y, z, t1, u), where L2(y, z, t1, t2) =
L̃2(y, z, t1, α(t2)). We derive from (7) and (8) two convenient ex-
pressions when z ∈ [n, n+ 1):

L̃2(y, z, t1, u) = L̂1(y, z, t1)− [ε(u)− σ(z, u)] ∆̃n−1 − σ(z, u) ∆̃n

= A1(z, u) L1(y, n, t1) +A2(z, u) L1(y, n+ 1, t1)+
+ [ε(u)− σ(z, u)]W2(y, n− 1, t1, u) + σ(z, u)W2(y, n, t1, u)

(14)
where σ(z, u) =

∫ z
n

Θ(r, u)dr, A1(z, u) = n+ 1− z − ε(u) + σ(z, u),
and A2(z, u) = z − n− σ(z, u).

Now we differentiate (14) with respect to y to write

∂
∂y L̃2(y, z, t1, u) = A1(z, u) ∂

∂yL1(y, n, t1) +A2(z, u) ∂
∂yL1(y, n+ 1, t1)+

+ [ε(u)− σ(z, u)] ∂
∂yW2(y, n− 1, t1, u) + σ(z, u) ∂

∂yW2(y, n, t1, u).

(15)
Is is easy to check the following facts (for z ∈ [n, n + 1]): σ(z, u)
is strictly increasing; σ(n, u) = 0; σ(n + 1, u) = ε(u); z − n ≥
σ(z, u); and n + 1 − z ≥ ε(u) − σ(z, u). Hence A1, A2, ε(u) −
σ(z, u), σ(z, u) ≥ 0 for z ∈ [n, n+1]. We have shown that ∂

∂yL1(y, n+

1, t1), ∂∂yL1(y, n, t1) ≥ 0, so to prove that L̃2 has the desired proper-

ties, it suffices to show that for integer k = 0, . . . , n, ∂
∂yW2(y, k, t1, u) ≥

0 and furthermore, if y > yk−1 then ∂
∂yW2(y, k, t1, u) > 0. We prove

these facts by induction on k up to n, similar to the inductive proofs
used in the construction of L1. The induction proceeds like before,
using the following recurrence (which can be derived from equation
(12)):

∂

∂y
W2(y, k, t1, u) = [1−Θ(u)]

∂

∂y
L1(y, k, t1)+Θ(u)

∂

∂y
W2(y, k−1, t1, u).

Recalling once again (9), for z ≥ δ(t2), L2(y, z, t1, t2) = L2(y, z, t1, t2),
and for z ≤ 0, L2(y, z, t1, t2) = L−2 (y,−z, t1, t2). Using the same ar-
guments as above, it is clear that L2(y, z, t1, t2), satisfies ∂

∂yL2 ≥ 0

and ∂
∂yL2 > 0 for y > yz − 1. To show that this property holds for

L2 when 0 < z < δ(t2), as before we write

L2(y, z, t1, t2) = [1−λ(z, t2)] L1(y, 0, t1)+λ(z, t2)L2(y, δ(t2), t1, 3t2).

Differentiating with respect to y yields the result, since λ does not
depend on y, and both ∂

∂yL1 and ∂
∂yL2 have the right properties.
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In the end we take L(y, z, t) = L2(y, z, 2t, 2t), which has the desired
properties.

Part 4. Analogous to (11), for z ∈ [n, n+ 1),

∂

∂z
L̃2(y, z, t1, u) = [L1(y, n+ 1, t1)− L1(y, n, t1)] (1−Θ(z, u))+

[W2(y, n, t1, u)−W2(y, n− 1, t1, u)] Θ(z, u),
(16)

which we now claim is less than or equal to 0. The argument is
similar to the one after (11), except that this time the relevant terms
in (16) are non-positive. First, L1(y, n + 1, t1) − L1(y, n, t1) ≤ 0
because of the shape of f (recall figure 1), i.e. since for all n ∈ N,
L1(y, n+ 1, t1) is just L1(y, n, t1) shifted to the right (or not shifted
at all) in the y direction. To prove that W2(y, n, t1, u) −W2(y, n −
1, t1, u) ≤ 0 we use the fact that L1(y, n + 1, t1) − L1(y, n, t1) ≤ 0
and we proceed inductively along the same lines of the argument
that follows (12). Note that for integer n < 0, the construction
reveals that W2(y, n, t, u) = W2(y, n − 1, t, u) so the difference is 0.
Finally, we adjust the argument surrounding (13) to L2, to conclude
that L2 is decreasing with respect to z ∈ R (in equation (12), and
the discussion following it, W2 is used in place of W1 and L1 in place
of f).

�

Remark In the last lemma, we can replace the single parameter z by a tuple,
since we can repeat the construction of L2 of lemma 4.11 for each member of
the tuple (similar to corollary 4.10).

Now we prove the final and most important approximation of figure 2, mak-
ing significant use of the last corollary and lemma. Proceeding in a straight-
forward way we ran into difficulties, and thus we generalize the inductive hy-
pothesis, so that we simultaneously build approximating functions and modulus
functions.

Lemma 4.12. QMU(1) � πRMU
(1)
k for any k ≥ 1.

Proof

Since
−−−−−→
πRMU

(1)
k ⊆ πRMU

(1)
k , it suffices to show QMU(1) �

−−−−−→
πRMU

(1)
k .

We proceed inductively on the construction of the function algebra
QMU(c), showing the following stronger claim (for both c = 0 and
c = 1):

For any f(x̄) in QMU(c) the following two properties hold,

1. (Approximation property) There is f∗(x̄, t) in
−−−−−→
πRMU

(c)
k such

that f � f∗, and
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2. (Modulus property) There is m(x̄, z) in
−−−−−→
πRMU

(c)
k which is a

modulus for f .

We will use a few functions in the proof which are similar to the
function step (recall example 2.13), and can be defined using it,

or defined in a similar manner, all in
−−−−−→
πRMU

(0)
k . We can define

a continuous integer rounding function rd : R → R which has the
following property: For any n ∈ N, rd(x) = n for all x ∈ [n −
1/4, n+ 1/4], and for x ≤ 0, rd(x) = 0. We can define a continuous
sign function sg : R → R such that sg(x) = 0 for x ≤ 0, and
sg(x) = 1 for x ≥ 1; its values for 0 < x < 1 do not matter.

Now we discuss the steps of the induction, showing the approxima-
tion and modulus property in each case; technically we also proceed
inductively on the rank c, though in our case we just do it for c = 0
and then for c = 1.

• Basic Functions.

The modulus of all the basic functions are simple to deal with,
so we just consider the approximation property. Except for

θ1 and div,
−−−−−→
πRMU

(0)
k contains expansions to R of the basic

functions of QMU(c), and so approximates them exactly. For

θ1 and div, we find functions in
−−−−−→
πRMU

(0)
k which approximate

these functions on Z, and then we linearize to approximate
the functions everywhere. For θ1, for x ∈ Z, θ1(x) = rd(x),
an exact approximation on Z, and thus by corollary 4.10 we
can approximate θ1 on all of Q. For div, we use the function

E(x, t) =

 1− e−tx

x
, if x 6= 0;

t, if x = 0.
, a function in

−−−−−→
πRMU

(0)
k

such that for x ∈ [1,+∞), we have |1/x−E(x, t)| ≤ 1/t (E was
defined by Bournez and Hainry [5], directly before proposition
11). Let f(x, t) = E(x, t) · sg(x) + sg(−x+ 1), so div|Z � f , and
thus by corollary 4.10 we can approximate div on all of Q.

• Composition.

Consider f(g(x)) in QMU(c) (for composition with more func-
tions, the argument is similar), where inductively we have f∗(y, t1), g∗(x, t2)

in
−−−−−→
πRMU

(c)
k such that f � f∗ and g � g∗, andmf (y, z),mg(x, z)

in
−−−−−→
πRMU

(c)
k , which are modulus functions for f and g, respec-

tively. Note that g(x) ≤ g∗(x, 1) + 1, and since the latter func-

tion is in
−−−−−→
πRMU

(c)
k we can find a function b in πRMU

(c)
k such

that |g(x)| ≤ b(x) and b is norm-increasing. Thus, mg(x,mf (b(x), z))

is in
−−−−−→
πRMU

(c)
k and it is a modulus for f ◦ g. For the approxi-

mation we note that:

f(g(x)) � f∗(g∗(x,mf (b(x), 2t)), 2t),
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where the latter function is in
−−−−−→
πRMU

(c)
k .

• Sums and Products.

We will use the following claim (follows from [9, lemma 4.7]):

If F (x, ā) is in
−−−−−→
πRMU

(c)
k and takes natural values on

natural inputs, then there is a G(y, ā) in
−−−−−→
πRMU

(c)
k

such that for y, ā ∈ N, G(y, ā) =

y∑
x=0

F (x, ā); the claim

also holds for products replacing sums.

Consider f(x, ā) in QMU(c) and let g(y, ā) be
∑

Q applied to
f and the argument x; note that since

∑
Q can be applied, f

must be natural valued on natural inputs. Inductively we have

some f∗(x, ā, t) in
−−−−−→
πRMU

(c)
k such that f � f∗; thus F (x, ā) =

rd(f∗(x, ā, 4)) is in
−−−−−→
πRMU

(c)
k . Notice that f(x, ā) = F (x, ā)

for x, ā ∈ N. We apply the above claim to obtain some G(y, ā)

in
−−−−−→
πRMU

(c)
k such that g(y, ā) = G(y, ā), for y, ā ∈ N. Using

the function sg from above we can ensure that G(y, ā) = 0 for
integer arguments y, ā when at least one argument is negative;
thus g(y, ā) = G(y, ā) for all y, ā ∈ Z. By definition 3.22,

∑
Q

returns a linearization, therefore g = Lin(g). Thus

corollary 4.10 applied to G gives us an approximation function
and modulus function for g. The argument for

∏
Q is basically

the same.

• Linearization (Lin). This step follows immediately from corol-
lary 4.10.

• Search Operation (MUQ).

For simplicity, we only consider a function of two variables (see

the remark following lemma 4.11). Consider f(y, z) in QMU(0)

satisfying the requirements of MUQ, and we let g(z) = MUQ(f),

so g is in QMU(1). It will be useful to recall the example after
definition 3.22.

We let yz ∈ N denote the unique one of f for z ∈ N, i.e. the
value yz such that f(yz, z) = 1 (recall that by definition 3.22,
for z ∈ N, we have yz ∈ N). Thus f(y, z) = 0 for natural
y ≤ yz − 1, f(yz, z) = 1, and f(y, z) = 2 for natural y ≥
yz + 1 (note that yz ≥ 1 by definition 3.12 so f(0, z) = 0).

Inductively, we have some f∗(y, z, t) in
−−−−−→
πRMU

(0)
k such that f �

f∗. As we did in the case of sums and products, we consider the
function rd(f∗(y, z, 4)), which is exactly equal to f(y, z) over
the naturals. Using that function together with sg, we obtain a
function F (y, z) such that for natural y, z, F (y, z) = f(y, z), for
negative integers z, F (y, z) = f(y, 0), and for negative integers
y, F (y, z) = 0.
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Since we have no control over how f (and thus F ) behaves
off of the integers, we apply lemma 4.11 to F (y, z) to ob-
tain L(y, z, t), an approximation of Lin(f). By conditions 2
and 3, the requirements of UMU are met, thus we can de-
fine G(z, t) = UMU(L(y, z, t) − 1, y) which finds the root of
L(y, z, t) − 1, with respect to y. Since Lin(f) � L (by condi-
tion 1 of lemma 4.11), yz, the one of f (with respect to y) is
within 1

t of the zero of L(y, z, t) − 1. This key point is guar-
anteed since the slope of Lin(f) with respect to y is 1 near yz;
if the slope near yz were very small, the zero of L(y, z, t) − 1
could be far from yz. By condition 4, G is norm-increasing and

so in
−−−−−→
πRMU

(1)
k . By definition 3.22, MUQ returns a lineariza-

tion, therefore g = Lin(g); thus corollary 4.10 supplies us with

a modulus in
−−−−−→
πRMU

(1)
k .

�

5. Conclusion

A major advance of the three characterizations of theorem 2.17 is that they
use notions from analysis instead of notions from classic computability. In terms
of the proof techniques, the advance is in the use of our method of approxima-
tion. At the end of the conclusion we present an open question that we hope
can be solved using the method of approximation.

The characterizations of CR in the style of Ko [23], which have some similar-
ity to our work, in fact rely heavily on classic computability. We can view our
theorem 2.17 as exhibiting a dense subset of CR, together with an appropriate
way to “complete” the class. For example, given a function f(x) in CR, by our
theorem we must have a function f∗(x, t) in ODE?

k such that f = lim
t→∞

f∗. If

we just consider t ∈ N, we can view f∗(x, t) as a sequence of functions con-
verging uniformly to f . Ko also characterizes CR by exhibiting functions which
converge uniformly to the functions of CR (see [23, theorem 2.15]). However in
Ko’s characterization, the uniform convergence is controlled by requiring that
the convergence proceed computably; thus Ko’s approach (and similarly envi-
sioned modifications) use classical notions of computability in the characteriza-
tion itself. In our approach we avoid the drawback of using computability in our
definition of limits or elsewhere, thus ODE?

k(LIM) provides a more genuinely
distinct characterization of CR.

To highlight the significance of the proof technique of approximation, we
compare our proof to the approach of Bournez and Hainry [6]. Most of the
work, for us and them (though, they show something slightly different) goes
into showing the main lemma 3.6, CR ⊆ RMUk(LIM). Starting with a function
f in CR, they proceed directly to an approximation F (x, t) in RMUk, without
passing through intermediary classes as we do (the notion of approximation is
not stated explicitly in their work). Like us, they, apply LIM with respect to the
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argument t to obtain the result. Deviating from us, they use the fact that there
is an elementary computable map which takes a modulus for f and a pair of
integers (at, bt) which code an approximation of x, and returns a pair of integers
(pt, qt) which code an approximation of f(x) (t is the approximation parameter).
They show how that integer map can be embedded in RMUk, and they show
how to regularize (similar to linearizing) the embedding to build F (x, t) in
RMUk, a uniform approximation for all x in the compact domain of f . The
modulus of f is a crucial ingredient in the construction. Since the techniques
applied in [6] do not exhibit a modulus for f (see [6, Remark 7.1]) they rely on
the fact that C2 functions on compact intervals have a (non constructive) trivial
uniform modulus, which they use in the construction of F . Instead, we carry
the modulus throughout our proof. Using the notion of one class of functions

approximating another class of functions, we are able to show CR � πRMU
(1)
k ,

with no additional restrictions, which implies the desired inclusion.
Since our approximation notion is transitive, we have broken up this approx-

imation into a series of approximations, using some well-chosen intermediary
classes of functions. The technique also allows us to work with function alge-
bras rather than notions from classical computability (i.e. we avoid extensive
work with the Turing machine definition of computable analysis). With func-
tion algebras, it is convenient to work with their inductive structure, a proof
technique which works well with the method of approximation. The method
appears amenable to generalization. As evidence of this, we see that in our
proof, of the four approximations (recall figure 2), three are virtually the same
as ones proved in our earlier paper [12]. In the context of a more general theory
of approximation (future work), a number of approximations should follow from
general facts, concentrating the work on the approximations that are important
for the problem at hand. Thus we see this work as another step towards a more
general theory that could have broad application to other problems of this sort.

We now discuss a possible improvement of our result. In our paper [10], we
were able to remove the function θk from the basic functions, while maintain-
ing the characterization of the elementary computable functions. This is nice
because it makes the characterization even more simple, and furthermore the
underlying function algebra (before the limit operation is applied) is then a col-
lection of analytic functions. In our earlier work [10], we were able to dispense
with the function θk, using our method of approximation, essentially showing
that it suffices to work with an approximation of θk that can be built with other
functions in the function algebra. This approach has difficulties in the context
of this paper, and so we are led to the following interesting question (supposing
Fk is one of the real function algebras we have considered in this paper, let F
be the same function algebra, but without the basic function θk):

Question Does CR = RMU(LIM) = INV(LIM) = ODE?(LIM)?

The last characterization by ODE?(LIM) would be especially interesting,
since ODE? is essentially the widely studied class of real primitive recursive
functions.
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∑
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