Characterizing Computable Analysis with Differential Equations

Kerry Ojakian¹ (with Manuel L. Campagnolo²)

¹SQIG/IT Lisbon and IST, Portugal ojakian@math.ist.utl.pt

²DM/ISA, Lisbon University of Technology and SQIG/IT Lisbon

Computability and Complexity in Analysis, 2008

くロト (過) (目) (日)

・ 同 ト ・ ヨ ト ・ ヨ ト

- 2 Technical Framework
- 3 Results: Past and Present
- Discussion of the Proof
- 5 Conclusion

ヘロト ヘ戸ト ヘヨト ヘヨト

Characterizing Computable Analysis

• Results of the form "CA = FA".

• Real Recursive Functions introduced by C. Moore 1996. Function algebras with operations like this:

Solve a differential equation and keep the result.

Modified by Bournez and Hainry 2005, 2006. Characterize Elementary Computable and Computable.

ヘロト 人間 ト ヘヨト ヘヨト

Characterizing Computable Analysis

- Results of the form "CA = FA".
- Real Recursive Functions introduced by C. Moore 1996. Function algebras with operations like this:

Solve a differential equation and keep the result.

Modified by Bournez and Hainry 2005, 2006. Characterize Elementary Computable and Computable.

ヘロン 人間 とくほ とくほ とう

- 3 Results: Past and Present
- Oiscussion of the Proof
- 5 Conclusion

ヘロト ヘ戸ト ヘヨト ヘヨト

Computable Analysis

Definition

•
$$f(x) \in \mathbf{C}(\mathbb{R})$$
:

There is a computable function $F^{x}(n)$ with an oracle for the real number x such that $|f(x) - F^{x}(n)| \le 1/n$.

• **E**(**R**): Like **C**(**R**), replacing computable by elementary computable.

イロン 不得 とくほ とくほ とうほ

Computable Analysis

Definition

•
$$f(x) \in \mathbf{C}(\mathbb{R})$$
:

There is a computable function $F^{x}(n)$ with an oracle for the real number x such that $|f(x) - F^{x}(n)| \le 1/n$.

• E(R): Like C(R), replacing computable by elementary computable.

イロト イポト イヨト イヨト 一臣

Function Algebras

Definition

Suppose \mathcal{B} is a set of functions (i.e. the basic functions) and \mathcal{O} is a set of operations. Then FA[\mathcal{B} ; \mathcal{O}] is the smallest set of functions containing \mathcal{B} and closed under \mathcal{O} .

Basic Functions:

- Constant functions: $0, 1, -1, \pi$
- Projection functions "P" (example: U(x, y) = x)

•
$$\theta_k(x) = \begin{cases} 0, & x < 0; \\ x^k, & x \ge 0. \end{cases}$$

Operation: comp (Composes the given functions)

ヘロン ヘアン ヘビン ヘビン

Function Algebras

Definition

Suppose \mathcal{B} is a set of functions (i.e. the basic functions) and \mathcal{O} is a set of operations. Then FA[\mathcal{B} ; \mathcal{O}] is the smallest set of functions containing \mathcal{B} and closed under \mathcal{O} .

Basic Functions:

- Constant functions: $0, 1, -1, \pi$
- Projection functions "P" (example: U(x, y) = x)

•
$$\theta_k(x) = \begin{cases} 0, & x < 0; \\ x^k, & x \ge 0. \end{cases}$$

Operation: comp (Composes the given functions).

ヘロト ヘアト ヘビト ヘビト

The Differential Equation Operation

Definition

ODE is the operation:

- Input: Functions: $\overrightarrow{\mathbf{g}}(\overline{x}), \overrightarrow{\mathbf{f}}(y, \overline{u}, \overline{x})$.
- Output: $h_1(y, \bar{x})$ where (h_1, \ldots, h_n) is the solution to the IVP:

$$\overrightarrow{\mathbf{h}}(0, \overline{x}) = \overrightarrow{\mathbf{g}}(\overline{x})$$

 $rac{\partial}{\partial y} \overrightarrow{\mathbf{h}} = \overrightarrow{\mathbf{f}}(y, \overrightarrow{\mathbf{h}}, \overline{x})$

Definition

LI is the operation defined like ODE, except that f must be linear in $\overrightarrow{\mathbf{h}}$.

The Differential Equation Operation

Definition

ODE is the operation:

- Input: Functions: $\overrightarrow{\mathbf{g}}(\overline{x}), \overrightarrow{\mathbf{f}}(y, \overline{u}, \overline{x})$.
- Output: $h_1(y, \bar{x})$ where $(h_1, ..., h_n)$ is the solution to the IVP:

$$\overrightarrow{\mathbf{h}}(0, \overline{x}) = \overrightarrow{\mathbf{g}}(\overline{x})$$

 $rac{\partial}{\partial y} \overrightarrow{\mathbf{h}} = \overrightarrow{\mathbf{f}}(y, \overrightarrow{\mathbf{h}}, \overline{x})$

Definition

LI is the operation defined like ODE, except that f must be linear in $\overrightarrow{\mathbf{h}}$.

The Limit Operation

Definition

LIM* is the operation:

- Input: $f(t, \bar{x})$
- Output: $F(\bar{x}) = \lim_{t\to\infty} f(t, \bar{x})$, if 1) the limit exists, 2) $|F(\bar{x}) f(t, \bar{x})| \le 1/t$, and 3) *F* is C^2 .

Definition

If \mathcal{F} a set of functions, then $\mathcal{F}(LIM^*)$ is \mathcal{F} closed under the operation LIM^* .

イロト イポト イヨト イヨト

The Limit Operation

Definition

LIM* is the operation:

- Input: $f(t, \bar{x})$
- Output: $F(\bar{x}) = \lim_{t\to\infty} f(t, \bar{x})$, if 1) the limit exists, 2) $|F(\bar{x}) f(t, \bar{x})| \le 1/t$, and 3) *F* is C^2 .

Definition

If \mathcal{F} a set of functions, then $\mathcal{F}(LIM^*)$ is \mathcal{F} closed under the operation LIM^* .

ヘロト ヘアト ヘビト ヘビト

- 4 Discussion of the Proof
- 5 Conclusion

くロト (過) (目) (日)

Elementary Computability.

- Let \mathcal{L}_k abbreviate FA[0, 1, -1, π , θ_k , P; comp, LI].
- Let \mathcal{L} abbreviate FA[0, 1, -1, P; comp, LI].

Originally Bournez and Hainry, extended by us:

Theorem

 $\mathbf{E}(\mathbb{R}) = \mathcal{L}_k(LIM) = \mathcal{L}(LIM), \text{ for } k \geq 3.$

イロト 不得 とくほと くほとう

1

Elementary Computability.

- Let \mathcal{L}_k abbreviate FA[0, 1, -1, π , θ_k , P; comp, LI].
- Let \mathcal{L} abbreviate FA[0, 1, -1, P; comp, LI].

Originally Bournez and Hainry, extended by us:

Theorem

 $\mathbf{E}(\mathbb{R}) = \mathcal{L}_k(LIM) = \mathcal{L}(LIM)$, for $k \geq 3$.

イロト 不得 とくほと くほとう

1

Computability: Previous Approach

Definition

The operation UMU:

Input: $f(t, \bar{x})$ (with unique root and other conditions) Output: Function $F(\bar{x})$ = the unique *t* such that $f(t, \bar{x}) = 0$.

Definition

Let RT_k be $FA[0, 1, -1, \theta_k, P; comp, CLI, UMU]$

Theorem (Bournez and Hainry 2005, 2006)

 $\mathcal{C}^2 \cap [\mathbf{C}(\mathbb{R})] = [RT_k(LIM^*)], \text{ for } k \geq 3$

・ロト ・ 理 ト ・ ヨ ト ・

э

Computability: Previous Approach

Definition

The operation UMU:

Input: $f(t, \bar{x})$ (with unique root and other conditions) Output: Function $F(\bar{x}) =$ the unique *t* such that $f(t, \bar{x}) = 0$.

Definition

Let RT_k be $FA[0, 1, -1, \theta_k, P; comp, CLI, UMU]$

Theorem (Bournez and Hainry 2005, 2006)

 $\mathcal{C}^2 \cap [\mathbf{C}(\mathbb{R})] = [RT_k(LIM^*)]$, for $k \geq 3$

・ロト ・ 理 ト ・ ヨ ト ・

э

Computability: Previous Approach

Definition

The operation UMU:

Input: $f(t, \bar{x})$ (with unique root and other conditions) Output: Function $F(\bar{x})$ = the unique *t* such that $f(t, \bar{x}) = 0$.

Definition

Let RT_k be $FA[0, 1, -1, \theta_k, P; comp, CLI, UMU]$

Theorem (Bournez and Hainry 2005, 2006)

 $\mathcal{C}^2 \cap [\mathbf{C}(\mathbb{R})] = [RT_k(LIM^*)]$, for $k \geq 3$

・ロト ・ 理 ト ・ ヨ ト ・

Computability: Our Approach

Definition

Let DF_k be $FA[0, 1, -1, \theta_k, P; comp, ODE]$

Our Result:

Theorem

 $\mathcal{C}^2 \cap [\mathbf{C}(\mathbb{R})] = [DF_k(LIM^*)], \text{ for } k \geq 3.$

Ojakian, Campagnolo Characterizing Computable Analysis

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Computability: Our Approach

Definition

Let DF_k be $FA[0, 1, -1, \theta_k, P; comp, ODE]$

Our Result:

Theorem

$$\mathcal{C}^2 \cap [\mathbf{C}(\mathbb{R})] = [DF_k(LIM^*)], \text{ for } k \geq 3.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

- General Goal: Provide alternative model for Computable Analysis.
- Specific Goal: Improve upon previous characterizations.
- Some technical work is easier with this model? (e.g. like showing a function is or is not computable)

ヘロト 人間 ト ヘヨト ヘヨト

æ

- General Goal: Provide alternative model for Computable Analysis.
- Specific Goal: Improve upon previous characterizations.
- Some technical work is easier with this model? (e.g. like showing a function is or is not computable)

ヘロト ヘアト ヘビト ヘビト

æ

- General Goal: Provide alternative model for Computable Analysis.
- Specific Goal: Improve upon previous characterizations.
- Some technical work is easier with this model? (e.g. like showing a function is or is not computable)

イロト イポト イヨト イヨト

- 2 Technical Framework
- 3 Results: Past and Present
- Discussion of the Proof
- 5 Conclusion

ヘロト ヘ戸ト ヘヨト ヘヨト

Useful Function Algebras

Definition

The operation Inverse: Input: $f(t, \bar{x})$ (which bijection in *t* and other conditions) Output: The inverse of *f*

• Let IV_k be $FA[0, 1, -1, \theta_k, P; comp, LI, Inverse]$

- Let $IV_k^{(c)}$ be the functions of IV_k that can be defined using *c* or less applications of the operation Inverse.
- Let RT^(c)_k be the functions of RT_k that can be defined using c or less applications of the operation UMU.

イロト 不得 とくほ とくほ とうほ

Useful Function Algebras

Definition

The operation Inverse: Input: $f(t, \bar{x})$ (which bijection in *t* and other conditions) Output: The inverse of *f*

- Let IV_k be $FA[0, 1, -1, \theta_k, P; comp, LI, Inverse]$
- Let $IV_k^{(c)}$ be the functions of IV_k that can be defined using *c* or less applications of the operation Inverse.
- Let RT^(c)_k be the functions of RT_k that can be defined using c or less applications of the operation UMU.

イロト 不得 とくほ とくほ とうほ

Useful Function Algebras

Definition

The operation Inverse:

Input: $f(t, \bar{x})$ (which bijection in *t* and other conditions) Output: The inverse of *f*

- Let IV_k be $FA[0, 1, -1, \theta_k, P; comp, LI, Inverse]$
- Let $IV_k^{(c)}$ be the functions of IV_k that can be defined using *c* or less applications of the operation Inverse.
- Let RT^(c)_k be the functions of RT_k that can be defined using c or less applications of the operation UMU.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Outline

• $\mathsf{RT}_k^{(c)} \subseteq \mathsf{IV}_k^{(c)} \subseteq \mathsf{DF}_{k-c} \subseteq \mathbf{C}(\mathbb{R})$, for any $c \ge 0$ and $k \ge c+3$ (now, we would like something like " $\mathbf{C}(\mathbb{R}) \subseteq \mathsf{RT}_k^{(c)}$ ")

If a provide a provide a set of the set of

 $\mathcal{C}^2 \cap [\mathbf{C}(\mathbb{R})] \subseteq [\mathsf{RT}_k^{(\mathrm{bh})}(\mathsf{LIM}^*)].$

Closing under limits and considering compact restrictions to complete proof.

Obtains our theorem:

$$\mathcal{C}^2 \cap [\mathbf{C}(\mathbb{R})] = [\mathsf{DF}_k(\mathsf{LIM}^*)],$$

for $k \geq 3$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Outline

• $\mathsf{RT}_k^{(c)} \subseteq \mathsf{IV}_k^{(c)} \subseteq \mathsf{DF}_{k-c} \subseteq \mathbf{C}(\mathbb{R})$, for any $c \ge 0$ and $k \ge c+3$ (now, we would like something like " $\mathbf{C}(\mathbb{R}) \subseteq \mathsf{RT}_k^{(c)}$ ")

② For some constant "bh", and for any $k \ge 3$, we have:

 $\mathcal{C}^2 \cap [\mathbf{C}(\mathbb{R})] \subseteq [\mathsf{RT}_k^{(\mathrm{bh})}(\mathsf{LIM}^*)].$

Closing under limits and considering compact restrictions to complete proof.

Obtains our theorem:

$$\mathcal{C}^2 \cap [\mathbf{C}(\mathbb{R})] = [\mathsf{DF}_k(\mathsf{LIM}^*)],$$

for $k \geq 3$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Outline

- $\mathsf{RT}_k^{(c)} \subseteq \mathsf{IV}_k^{(c)} \subseteq \mathsf{DF}_{k-c} \subseteq \mathbf{C}(\mathbb{R})$, for any $c \ge 0$ and $k \ge c+3$ (now, we would like something like " $\mathbf{C}(\mathbb{R}) \subseteq \mathsf{RT}_k^{(c)}$ ")
- **②** For some constant "bh", and for any $k \ge 3$, we have:

$$\mathcal{C}^2 \cap [\mathbf{C}(\mathbb{R})] \subseteq [\mathsf{RT}_k^{(\mathrm{bh})}(\mathsf{LIM}^*)].$$

Closing under limits and considering compact restrictions to complete proof.

Obtains our theorem:

$$\mathcal{C}^2 \cap [\mathbf{C}(\mathbb{R})] = [\mathsf{DF}_k(\mathsf{LIM}^*)],$$

for $k \geq 3$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Outline

- $\mathsf{RT}_k^{(c)} \subseteq \mathsf{IV}_k^{(c)} \subseteq \mathsf{DF}_{k-c} \subseteq \mathbf{C}(\mathbb{R})$, for any $c \ge 0$ and $k \ge c+3$ (now, we would like something like " $\mathbf{C}(\mathbb{R}) \subseteq \mathsf{RT}_k^{(c)}$ ")
- **②** For some constant "bh", and for any $k \ge 3$, we have:

$$\mathcal{C}^2 \cap [\mathbf{C}(\mathbb{R})] \subseteq [\mathsf{RT}_k^{(\mathrm{bh})}(\mathsf{LIM}^*)].$$

Closing under limits and considering compact restrictions to complete proof.

Obtains our theorem:

$$\mathcal{C}^2 \cap [\mathbf{C}(\mathbb{R})] = [\mathsf{DF}_k(\mathsf{LIM}^*)],$$

for $k \geq 3$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Simulate any application of UMU with a single application of Inverse. Given a function f(t) to find its root:

- Find $f^{-1}(t)$ with Inverse.
- The root if then $f^{-1}(0)$.

イロト イポト イヨト イヨト 一臣

Main point: For $f \in DF_r$ we can find its inverse because:

$$(f^{-1}(t))' = \frac{1}{f'(f^{-1}(t))}$$

But ... then we also need $f' \in \mathsf{DF}_r$.

In general, if $f \in DF_r$ then $f' \in DF_{r-1}$. Thus: For c inverses, need to go down to DF_{k-c}

イロト イポト イヨト イヨト 三日

Main point: For $f \in DF_r$ we can find its inverse because:

$$(f^{-1}(t))' = \frac{1}{f'(f^{-1}(t))}$$

But ... then we also need $f' \in \mathsf{DF}_r$.

In general, if $f \in DF_r$ then $f' \in DF_{r-1}$. Thus: For *c* inverses, need to go down to DF_{k-c}

イロト 不得 とくほ とくほ とう

1

Induction on DF_k :

- Basic Functions
- Composition
- The ODE Operation (the main step)

Two approaches:

- Use Collins/Graça 2008 (this conference).
 Straightforward Induction: Any function of DF_k is computable
- Use Graça/Zhong/Buescu 2007. Induction: Any function in DF_k and any partial derivative of it is computable, and furthermore have r.e.-open domains.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Induction on DF_k :

- Basic Functions
- Composition
- The ODE Operation (the main step)

Two approaches:

- Use Collins/Graça 2008 (this conference).
 Straightforward Induction: Any function of DF_k is computable
- Use Graça/Zhong/Buescu 2007. Induction: Any function in DF_k and any partial derivative of it is computable, and furthermore have r.e.-open domains.

イロト 不得 とくほ とくほ とうほ

Induction on DF_k :

- Basic Functions
- Composition
- The ODE Operation (the main step)

Two approaches:

- Use Collins/Graça 2008 (this conference).
 Straightforward Induction: Any function of DF_k is computable
- Use Graça/Zhong/Buescu 2007. Induction: Any function in DF_k and any partial derivative of it is computable, and furthermore have r.e.-open domains.

<ロト < 同ト < 回ト < 回ト = 三

Finishing the Proof

Thus we have shown: $\mathsf{RT}_{k}^{(c)} \subseteq \mathsf{IV}_{k}^{(c)} \subseteq \mathsf{DF}_{k-c} \subseteq \mathbf{C}(\mathbb{R})$

We also have: $\mathcal{C}^2 \cap [\mathbf{C}(\mathbb{R})] \subseteq [\mathsf{RT}_k^{(\mathrm{bh})}(\mathsf{LIM}^*)]$

Closing under limits and considering compact restrictions we obtain our theorem:

$$\mathcal{C}^2 \cap [\mathbf{C}(\mathbb{R})] = [\mathsf{DF}_k(\mathsf{LIM}^*)],$$

for *k* ≥ 3

<ロ> <四> <四> <四> <三</td>

Finishing the Proof

Thus we have shown: $\mathsf{RT}_{k}^{(c)} \subseteq \mathsf{IV}_{k}^{(c)} \subseteq \mathsf{DF}_{k-c} \subseteq \mathbf{C}(\mathbb{R})$

We also have: $\mathcal{C}^2 \cap [\mathbf{C}(\mathbb{R})] \subseteq [\mathsf{RT}_k^{(\mathrm{bh})}(\mathsf{LIM}^*)]$

Closing under limits and considering compact restrictions we obtain our theorem:

$$\mathcal{C}^2 \cap [\mathbf{C}(\mathbb{R})] = [\mathsf{DF}_k(\mathsf{LIM}^*)],$$

for *k* ≥ 3

ヘロン 人間 とくほ とくほ とう

3

Finishing the Proof

Thus we have shown: $\mathsf{RT}_k^{(c)} \subseteq \mathsf{IV}_k^{(c)} \subseteq \mathsf{DF}_{k-c} \subseteq \mathbf{C}(\mathbb{R})$

We also have: $\mathcal{C}^2 \cap [\mathbf{C}(\mathbb{R})] \subseteq [\mathsf{RT}_k^{(\mathrm{bh})}(\mathsf{LIM}^*)]$

Closing under limits and considering compact restrictions we obtain our theorem:

$$\mathcal{C}^2 \cap [\mathbf{C}(\mathbb{R})] = [\mathsf{DF}_k(\mathsf{LIM}^*)],$$

for $k \geq 3$

イロト イポト イヨト イヨト 三日

- 2 Technical Framework
- 3 Results: Past and Present
- Discussion of the Proof

ヘロト ヘ戸ト ヘヨト ヘヨト

э

Conclusion

We have a new characterization of Computable Analysis. While it seems to be an improvement, we consider ways to further improve it:

Show it is useful!

- Remove the restriction to C^2 functions (more than 90% sure it can be done).
- Simplify classes to their "analytic versions" (i.e. remove θ_k function ... 75% sure it is true, though it looks difficult).

Thus we conjecture:

$[\textbf{C}(\mathbb{R})] = [\text{RT}(\text{LIM})] = [\text{IV}(\text{LIM})] = [\text{DF}(\text{LIM})]$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Conclusion

We have a new characterization of Computable Analysis. While it seems to be an improvement, we consider ways to further improve it:

- Show it is useful!
- Remove the restriction to C² functions (more than 90% sure it can be done).
- Simplify classes to their "analytic versions" (i.e. remove θ_k function ... 75% sure it is true, though it looks difficult).

Thus we conjecture:

$[\textbf{C}(\mathbb{R})] = [\textbf{RT}(\textsf{LIM})] = [\textsf{IV}(\textsf{LIM})] = [\textsf{DF}(\textsf{LIM})]$

・ロット (雪) () () () ()

Conclusion

We have a new characterization of Computable Analysis. While it seems to be an improvement, we consider ways to further improve it:

- Show it is useful!
- Remove the restriction to C² functions (more than 90% sure it can be done).
- Simplify classes to their "analytic versions" (i.e. remove θ_k function ... 75% sure it is true, though it looks difficult).

Thus we conjecture:

$[\textbf{C}(\mathbb{R})] = [\textbf{RT}(\textsf{LIM})] = [\textsf{IV}(\textsf{LIM})] = [\textsf{DF}(\textsf{LIM})]$

・ロット (雪) () () () ()

Conclusion

We have a new characterization of Computable Analysis. While it seems to be an improvement, we consider ways to further improve it:

- Show it is useful!
- Remove the restriction to C² functions (more than 90% sure it can be done).
- Simplify classes to their "analytic versions" (i.e. remove θ_k function ... 75% sure it is true, though it looks difficult).

Thus we conjecture:

$[\mathbf{C}(\mathbb{R})] = [\mathsf{RT}(\mathsf{LIM})] = [\mathsf{IV}(\mathsf{LIM})] = [\mathsf{DF}(\mathsf{LIM})]$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Conclusion

We have a new characterization of Computable Analysis. While it seems to be an improvement, we consider ways to further improve it:

- Show it is useful!
- Remove the restriction to C² functions (more than 90% sure it can be done).
- Simplify classes to their "analytic versions" (i.e. remove θ_k function ... 75% sure it is true, though it looks difficult).

Thus we conjecture:

$$[\mathbf{C}(\mathbb{R})] = [\mathsf{RT}(\mathsf{LIM})] = [\mathsf{IV}(\mathsf{LIM})] = [\mathsf{DF}(\mathsf{LIM})]$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・