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Characterizing Computable Analysis

Results of the form “CA = FA”.

Real Recursive Functions introduced by C. Moore 1996.
Function algebras with operations like this:

Solve a differential equation and keep the result.

Modified by Bournez and Hainry 2005, 2006.
Characterize Elementary Computable and Computable.
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Computable Analysis

Definition

f (x) ∈ C(R):

There is a computable function F x(n) with an
oracle for the real number x such that
|f (x)− F x(n)| ≤ 1/n.

E(R): Like C(R), replacing computable by elementary
computable.
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Function Algebras

Definition

Suppose B is a set of functions (i.e. the basic functions) and O
is a set of operations. Then FA[B;O] is the smallest set of
functions containing B and closed under O.

Basic Functions:

Constant functions: 0, 1,−1, π

Projection functions “P” (example: U(x , y) = x)

θk (x) =

{
0, x < 0;
xk , x ≥ 0.

Operation: comp (Composes the given functions).
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The Differential Equation Operation

Definition

ODE is the operation:

Input: Functions: −→g (x̄),
−→
f (y , ū, x̄).

Output: h1(y , x̄) where (h1, . . . , hn) is the solution to the
IVP:

−→
h (0, x̄) =

−→g (x̄)
∂
∂y
−→
h =

−→
f (y ,

−→
h , x̄)

Definition

LI is the operation defined like ODE, except that f must be
linear in

−→
h .
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The Limit Operation

Definition

LIM∗ is the operation:

Input: f (t , x̄)

Output: F (x̄) = limt→∞f (t , x̄), if 1) the limit exists, 2)
|F (x̄)− f (t , x̄)| ≤ 1/t , and 3) F is C2.

Definition

If F a set of functions, then F(LIM∗) is F closed under the
operation LIM∗.
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Elementary Computability.

Let Lk abbreviate FA[0, 1,−1, π, θk , P; comp, LI].

Let L abbreviate FA[0, 1,−1, P; comp, LI].

Originally Bournez and Hainry, extended by us:

Theorem

E(R) = Lk (LIM) = L(LIM), for k ≥ 3.
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Computability: Previous Approach

Definition
The operation UMU:
Input: f (t , x̄) (with unique root and other conditions)
Output: Function F (x̄) = the unique t such that f (t , x̄) = 0.

Definition

Let RTk be FA[0, 1,−1, θk , P; comp, CLI, UMU]

Theorem ( Bournez and Hainry 2005, 2006 )

C2 ∩ [C(R)] = [RTk (LIM∗)], for k ≥ 3
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Computability: Our Approach

Definition

Let DFk be FA[0, 1,−1, θk , P; comp, ODE]

Our Result:

Theorem

C2 ∩ [C(R)] = [DFk (LIM∗)], for k ≥ 3.
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Motivation

General Goal: Provide alternative model for Computable
Analysis.

Specific Goal: Improve upon previous characterizations.

Some technical work is easier with this model? (e.g. like
showing a function is or is not computable)
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Useful Function Algebras

Definition
The operation Inverse:
Input: f (t , x̄) (which bijection in t and other conditions)
Output: The inverse of f

Let IVk be FA[0, 1,−1, θk , P; comp, LI, Inverse]

Let IV(c)
k be the functions of IVk that can be defined using c

or less applications of the operation Inverse.

Let RT(c)
k be the functions of RTk that can be defined using

c or less applications of the operation UMU.
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Outline

1 RT(c)
k ⊆ IV(c)

k ⊆ DFk−c ⊆ C(R), for any c ≥ 0 and k ≥ c + 3

(now, we would like something like “C(R) ⊆ RT(c)
k ”)

2 For some constant “bh”, and for any k ≥ 3, we have:

C2 ∩ [C(R)] ⊆ [RT(bh)
k (LIM∗)].

3 Closing under limits and considering compact restrictions
to complete proof.

Obtains our theorem:

C2 ∩ [C(R)] = [DFk (LIM∗)],

for k ≥ 3.
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RT(c)
k ⊆ IV(c)

k

Simulate any application of UMU with a single application of
Inverse. Given a function f (t) to find its root:

Find f−1(t) with Inverse.

The root if then f−1(0).
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IV(c)
k ⊆ DFk−c

Main point: For f ∈ DFr we can find its inverse because:

(f−1(t))′ =
1

f ′(f−1(t))

But ... then we also need f ′ ∈ DFr .

In general, if f ∈ DFr then f ′ ∈ DFr−1. Thus:

For c inverses, need to go down to DFk−c
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DFk ⊆ C(R)

Induction on DFk :

Basic Functions

Composition

The ODE Operation (the main step)

Two approaches:

1 Use Collins/Graça 2008 (this conference).
Straightforward Induction: Any function of DFk is
computable

2 Use Graça/Zhong/Buescu 2007.
Induction: Any function in DFk and any partial derivative of
it is computable, and furthermore have r.e.-open domains.
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Finishing the Proof

Thus we have shown:
RT(c)

k ⊆ IV(c)
k ⊆ DFk−c ⊆ C(R)

We also have:
C2 ∩ [C(R)] ⊆ [RT(bh)

k (LIM∗)]

Closing under limits and considering compact restrictions we
obtain our theorem:

C2 ∩ [C(R)] = [DFk (LIM∗)],

for k ≥ 3
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Conclusion

We have a new characterization of Computable Analysis. While
it seems to be an improvement, we consider ways to further
improve it:

Show it is useful!

Remove the restriction to C2 functions (more than 90%
sure it can be done).

Simplify classes to their “analytic versions” (i.e. remove θk

function ... 75% sure it is true, though it looks difficult).

Thus we conjecture:

[C(R)] = [RT(LIM)] = [IV(LIM)] = [DF(LIM)]
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