
Characterizing Computable Analysis with Differential Equations

(Preprint from CCA 2008)

Manuel L. Campagnolo
D.M./I.S.A., Technical University of Lisbon
and SQIG - Instituto de Telecomunicações

Lisbon, Portugal
mlc@math.isa.utl.pt

Kerry Ojakian
Department of Mathematics

SQIG - Instituto de Telecomunicações and IST, Portugal
Lisbon, Portugal

ojakian@math.ist.utl.pt

August 2008

Abstract

The functions of Computable Analysis are defined by enhancing the capacities of normal
Turing Machines to deal with real number inputs. We consider characterizations of these func-
tions using function algebras, known as Real Recursive Functions. Bournez and Hainry 2006
[5] used a function algebra to characterize the twice continuously differentiable functions of
Computable Analysis, restricted to certain compact domains. In a similar model, Shannon’s
General Purpose Analog Computer, Bournez et. al. 2007 [3] also characterize the functions of
Computable Analysis. We combine the results of [5] and Graça et. al. [13], to show that a dif-
ferent function algebra also yields Computable Analysis. We believe that our function algebra
is an improvement due to its simple definition and because the operations in our algebra are
less obviously designed to mimic the operations in the usual definition of the recursive functions
using the primitive recursion and minimization operators.

1 Introduction

Computable Analysis is a well accepted paradigm of computability for real numbers and real func-
tions. Nonetheless, other approaches to computation over the reals have been proposed. Among
these there are models that evolve step by step, like BSS-machines [1] or real random access ma-
chines, and continuous-time models like Shannon’s General Purpose Analog Computer (GPAC)
[19] [12], continuous neural networks [15] or Moore’s real recursive functions [16] (for an up-to-date
review of continuous-time models see [2]). Recently, there has been a quest for characterizations
of computability of real functions (in this paper, “computable” with no additional reference will
always refer to Computable Analysis) based on alternative models, namely on those with a con-
tinuous state space that evolve in continuous time. One motivation for this research has been to

1

understand the computational power of continuous-time systems, and search for an analog of the
Turing-Church thesis in the context of real computation.

The first true model of a universal continuous time machine was proposed by Shannon [19].
However, this has been proved to be weaker then Computable Analysis since computable functions
like Euler’s Γ or Riemann’s ζ are not “GPAC generable” [17] [18]. Note that the computability of
all GPAC generable functions follows from the results in [13], and the fact that they correspond
precisely to the solutions of polynomial differential equations as shown in [12].

To improve the upper bounds on Shannon’s GPAC a new notion of limit computation with
polynomial differential equations (called GPAC-computability) was proposed in [11] and explored
further in [3]. In that paper, it is shown that the real computable functions are precisely the
GPAC-computable functions as long as we restrict ourselves to compact domains. Although GPAC-
computability relies on a simple dynamics, the parameters of the differential equations can be
arbitrary computable reals and the limit operator applies to functions with an arbitrary slow
convergence rate (see [8] for some remarks on that model).

A more general approach to computability over the reals with differential equations was pro-
posed in [16]; it is called Real Recursive Functions. It is a recursion theory on the reals and
provides algebraic characterizations of classes of real functions. The general theory contains many
non-computable functions, resulting essentially from the inclusion of a powerful zero finding oper-
ator over the real line. Restricting the theory, it is possible to define classes that extend to the
reals certain classes of discrete functions like the primitive recursive or the elementary computable
functions [6] [7].

Instead of asking which functions over the naturals have extensions in the reals, Bournez and
Hainry proposed classes of real recursive functions that correspond precisely to classes of real
computable functions. They describe analog characterizations for the real elementary computable
functions [4] and for the functions of Computable Analysis, all restricted to C2 functions on com-
pact domains [5]. This last characterization contains a set of basic functions and is closed under
composition, linear integration, a limit operation and a root finding operation. In this paper we
propose a class of real recursive functions which is simpler in some respects, avoiding the use of
a root-finding operation, which has the disadvantage of directly mimicking the operation of min-
imization over the naturals. This is accomplished by strengthening the operation of integration,
removing the linearity restriction. A significant point is then to show that this class is not too
strong. To accomplish this, we use the results of Graça et. al. [13] to show that even this general
integration preserves computability.

2 Formulating the Main Result

We now provide the basic definitions and state the result, leaving the proof for the next section.
We start by defining a flexible set of computable functions over the reals, R, placing no restriction
on the domains of the functions (see [14] or [20] for details on Computable Analysis and Type-2
computability). Unless otherwise stated, for us, a function will always have some domain E ⊆ Rk,
for some positive integer k, and codomain R.

Definition 2.1 We say a function f is in C(R) iff there is a Type-2 Turing Machine M such that
for any x̄ in the domain of f , M calculates f(x̄) on input x̄; for x̄ not in the domain of f , we ask
nothing of M .

2

Though the above definition is convenient, useful theorems will consider restrictions of the domains.

Definition 2.2 Suppose F is a set of functions. By its compact restriction, denoted [F], we
mean the following set of functions: Consider any function f(x1, . . . , xk) in F and any product of
intervals ([a1, b1]× . . .× [ak, bk]), where ai, bi are rationals. If the domain of f includes this product,
then the restriction of f to this product is in [F].

We will basically consider the set [C(R)] ∩ C2, where for an integer k ≥ 1, we let Ck refer to the
set of (possibly partial) functions which are k times continuously differentiable with respect to any
variable on their domain of definition.

We now turn our attention to function algebras. We use the term operation to refer to a
function whose inputs and outputs are real functions.

Definition 2.3 Suppose B is a set of functions (called basic functions), and O is a set of oper-
ations. Then FA[B;O] is called a function algebra, and it denotes the smallest set of functions
containing B and closed under the operations in O. For ease of readability, we often list the elements
of B or O simply as a list separated by commas.

Some of the most important operations will be defined using differential equations. In general
an initial value problem (IVP) is given by a system of equations like the following:

h1(x̄, 0) = f1(x̄)
...

hk(x̄, 0) = fk(x̄)

∂
∂th1(x̄, t) = g1(x̄, t, h1, . . . , hk)

...
∂
∂thk(x̄, t) = gk(x̄, t, h1, . . . , hk).

The functions fi are used to give initial conditions depending on the parameters x̄ and the functions
gi are used to describe the differential equations. More succinctly, the above system of equations
will be written as:

h̄(x̄, 0) = f̄(x̄)
∂
∂t h̄(x̄, t) = ḡ(x̄, t, h̄),

with the bars on top of the functions indicating a vector of functions. Given functions f̄ , ḡ, by a
solution to the corresponding IVP, we essentially mean the usual notion. However, since f̄ and ḡ
may be partial, we further clarify what we intend. We mean to take functions h̄ such that for every
x̄, either h̄(x̄, t) is not defined for any t, or is defined for t on some open interval containing 0; in
this latter case, we take the interval to be a maximal such interval.

We can now define the operations we will be using (note that in the operations there is an
implicit choice of which arguments of the function we choose to use; any choice is allowed):

1. The operation ODE takes as input some functions f̄ and ḡ of appropriate arities, sets up the
corresponding IVP discussed above to obtain a solution h̄ (as discussed above), and returns
h1, the first function in the list h̄.

3

2. LI is the same as ODE, with the restriction that the ḡ are linear in the h̄.

3. Let comp be the operation which takes two functions and returns the functional composition;
a composition of partial functions is defined on the maximal well-defined domain.

4. Let Inverse be the operation which takes a function f(t, x̄) such that for any x̄, f(t, x̄) is a
bijection in t, such that ∂

∂tf(t, x̄) > 0 for all t. The operator Inverse then returns Inverse(f,t),
the inverse f−1 in t, i.e. f(f−1(t, x̄), x̄) = t = f−1(f(t, x̄), x̄).

5. The operation UMU takes a function f(t, x̄) such that:

(a) For any x̄, f(t, x̄) is increasing (not necessarily strictly) in t, and

(b) For any x̄, there is a unique t such that f(t, x̄) = 0 (and at that t, ∂
∂tf > 0),

then returns the function UMU(f, t) = the unique t such that f(t, x̄) = 0.

Besides constant functions like “0” we will also use the following basic functions:

• For a positive integer k, let θk(x) =
{

0, x < 0;
xk, x ≥ 0.

, a Ck−1 version of the discontinuous

function which indicates whether a number is to the left or right of zero.

• Let P be the set of projection functions (e.g. P(2,1)(x, y) = x, P(3,2)(x, y, z) = y, etc.).

We now define all the function algebras we will be using.

Definition 2.4 (Function Algebras)

• Let BH
(∞)
k be FA[0, 1,−1, θk,P; comp, LI,UMU]

• Let BH
(c)
k be the functions of BH

(∞)
k that can be defined using c or less applications of the

operation UMU.

• Let L(∞)
k be FA[0, 1,−1, θk,P; comp, LI, Inverse]

• Let L(c)
k be the functions of L(∞)

k that can be defined using c or less applications of the operation
Inverse.

• Let Gk be FA[0, 1,−1, θk,P; comp,ODE]

To make the connection to Computable Analysis, we consider a limit operation.

Definition 2.5

• Let LIM∗ be the operation which takes a function f(t, x̄) and returns F (x̄) = limt→∞f(t, x̄) if
the limit exists, |F (x̄)− f(t, x̄)| ≤ 1/t, for t ≥ 1, and F is C2.

• Given a class of functions F , we let F(LIM∗) denote the closure of F under the operation
LIM∗ (for all the classes considered, it will in fact suffice to apply the operation LIM∗ just
once).

4

Note that we use the expression LIM∗ to distinguish it from the limit LIM that we use in [9], which
is the same, except that it has no restriction that the resulting F need be C2.

We now state the main claim, that the compact restriction of our function algebra coincides
with the compact computable functions which are C2.

Theorem 2.6 For r ≥ 3, C2 ∩ [C(R)] = [Gr(LIM∗)].

3 The Proof

The following 4 steps prove theorem 2.6, modulo a few lemmas (whose proofs follow).

1. A series of lemmas (3.2, 3.5, 3.11) will show the following inclusions for any c ≥ 0 and
k ≥ c + 3:

BH
(c)
k ⊆ L(c)

k ⊆ Gk−c ⊆ C(R).

2. Lemma 3.1 will show that for some fixed constant “bh”, and for any k ≥ 3, we have:

C2 ∩ [C(R)] ⊆ [BH
(bh)
k (LIM∗)].

3. C(R) is closed under LIM∗ (easy to see; discussed in [9] after lemma 13 for the case of
elementary computable functions).

4. Putting together the previous three steps we arrive at the following inclusions (for k ≥ bh+3)
by closing under limits and considering compact restrictions:

C2 ∩ [C(R)] ⊆ [BH
(bh)
k (LIM∗)] ⊆ [L(bh)

k (LIM∗)] ⊆

⊆ [Gk−bh(LIM∗)] ⊆ [C(R)(LIM∗)] ∩ C2 ⊆ [C(R)] ∩ C2

Theorem 2.6 follows by choosing k = r + bh, with r ≥ 3 in the preceding inclusions.

The main result from [5] that we use is the following lemma (with an altered form discussed
in [8]); also note that they did the construction for k = 3, but it is similar for larger k, while
maintaining the restriction to just C2 functions. Furthermore, we include a fixed constant we call
bh, allowed since their construction is uniform.

Lemma 3.1 There is a fixed constant bh, such that for any k ≥ 3, we have

C2 ∩ [C(R)] ⊆ [BH
(bh)
k (LIM∗)].

Note that [5] uses a restricted kind of LI operation, which they use in proving the opposite
inclusion to the above lemma; however, we can simply use LI since we will not use their argument
to show the opposite inclusion.

The rest of the paper will prove the three inclusions of step 1 above, in order. The following
lemma proves the first inclusion of step 1.

Lemma 3.2 For k ≥ 2 and c ≥ 0, BH
(c)
k ⊆ L(c)

k .

5

Proof

We just need to show that any application of UMU in BH
(∞)
k can be simulated by a single

application of Inverse in L(∞)
k . Suppose f(t, x̄) satisfies the conditions for the application

of UMU. This means for any x̄, f is non-decreasing in t and has a unique zero. Let
F (t, x̄) = θk(f)et − θk(−f)e−t, and we can check that F has the same zero as f for any
x̄, and also has the property that its derivative is positive at all the t except possibly
at its zero, where it may be 0. Now consider the function G(t, x̄) = f(t, x̄) + F (t, x̄).
It has the same zero as f and has a positive derivative in t, everywhere (using the fact
that to apply UMU to f one of the conditions was that its derivative in t be positive at
the zero of t). Now to get the root given by UMU(f, t), we let H be Inverse(G, t) and
return H(0, x̄).

�

Now we work towards the second inclusion of step 1. Note that when working in Gk, the ODE
operation can solve differential equations with the initial condition not just for t = 0, but for t
equal to a constant definable in Gk. The following often used lemma follows by an inductive proof
on Gk, using the key fact that from y′ = f(y, t), if f is Ck, then so is the solution y; also recall that
the basic function θk is Ck−1.

Lemma 3.3 Any function in Gk is Ck−1 on its domain.

We often want at least k ≥ 3, since the guarantee of C2 functions allows us to switch the order of
partial derivatives.

Lemma 3.4 For k ≥ 1, if f(t, x̄) ∈ Gk and f satisfies the conditions:

1. ∂
∂tf > 0

2. ∂
∂tf ∈ Gk

then Inverse(f, t) ∈ Gk.

Proof

First, we notice that for any function f(t, x̄) ∈ Gk we have following property: For any
x̄ such that f(t, x̄) is defined for some t, there are some constants (independent of t, but
not x̄) α, β ∈ Gk such that f(α, x̄) is defined and f(α, x̄) = β. The property is easily
verified by structural induction on the description of f in Gk. In addition, Gk contains
the function h(z) = 1/z, since it can be defined by the ODE h(1) = 1 and h′ = −h2.

Now we prove the lemma by applying the Inverse Function Theorem to f(t, x̄), where
x̄ is fixed. By hypothesis we know ∂

∂tf ∈ Gk and ∂
∂tf 6= 0; additionally we know that

Gk contains h and is closed under composition, and thus we can define the differential
equation

∂

∂t
f−1(t, x̄) =

1
∂
∂tf(f−1(t, x̄), x̄)

in Gk, with initial condition is given by f−1(β, x̄) = α. Therefore, f−1(f(t, x̄), x̄) = t =
f(f−1(t, x̄), x̄), i.e. f−1 = Inverse(f, t).

�

6

The next lemma shows that c applications of the inverse operation are captured by Gk−c, the
second inclusion in step 1 of the above proof outline.

Lemma 3.5 For c ≥ 0 and k ≥ c + 3, we have L(c)
k ⊆ Gk−c.

Proof

We will prove a stronger result:

We show that if g ∈ L(c)
k , then g ∈ Gk−c and g′ ∈ Gk−c−1, where g′ denotes

any partial derivative of g.

We first notice that and Gk ⊆ Gk−1 since θk(t) = t θk−1(t). The proof will be done
by induction first in c and then in the description of the function. We skip the base
case (c = 0) since it can easily be proved using the techniques below and we proceed
to prove the induction step. Let’s then suppose that if f ∈ L(c−1)

k , then f ∈ Gk−c+1

and f ′ ∈ Gk−c, and consider some function g ∈ L(c)
k . We now proceed by structural

induction on L(c)
k :

(1) g is a basic function of L(c)
k and therefore is in Gk−c. All basic functions have

derivatives in Gk−c ⊆ Gk−c−1 except for θk whose derivative is k θk−1 and belongs to
Gk−c−1.

(2) For composition, let g = u ◦ v, where u, v ∈ Gk−c. Therefore g ∈ Gk−c and since
(u ◦ v)′ = (u′ ◦ v) · v′, all the derivatives of g are in Gk−c−1 by inductive hypothesis.

(3) Suppose that g(t, x̄) is defined by linear differentiation with respect to t, i.e.

g(0, x̄) = u(x̄),
∂

∂t
g(t, x̄) = v(t, x̄) g(t, x̄)

for some u, v ∈ Gk−c. Then g ∈ Gk−c. We consider the two types of derivatives: ∂
∂tg

and ∂
∂xi

g. It is clear that ∂
∂tg ∈ Gk−c ⊆ Gk−c−1. For ∂g

∂xi
we calculate:

∂g

∂xi
(0, x̄) =

∂u

∂xi
(x̄) and

∂

∂t

∂g

∂xi
=

∂

∂xi

∂g

∂t
=

∂v

∂xi
g + v

∂g

∂xi

since the derivation variables t and xi can be switched (justified because g ∈ Gk−c

and k ≥ c + 3, so we apply lemma 3.3 to conclude that g is C2). By hypothesis,
∂u
∂xi

, ∂v
∂xi

∈ Gk−c−1 and v ∈ Gk−c−1 and thus we obtain a differential equation that
defines ∂g

∂xi
in Gk−c−1.

(4) Suppose that g = Inverse(f, t), where f ∈ L(c−1)
k ; note that to apply Inverse, we are

assuming f is a bijection in t, such that ∂f
∂t > 0. By inductive hypothesis f ∈ Gk−c+1 ⊆

Gk−c and f ′ ∈ Gk−c. By Lemma 3.4 we conclude that g ∈ Gk−c also. Let’s look at the
two types of derivatives of g: ∂g

∂t and ∂g
∂xi

. By the Inverse Function Theorem,

∂

∂t
g(t, x̄) =

1
∂
∂tf(g(t, x̄), x̄)

.

7

This shows that ∂g
∂t is in Gk−c ⊆ Gk−c−1. To prove the claim for ∂g

∂xi
we derivate ∂g

∂t with
respect to xi and switch the order of the derivatives. This leads to a linear differential
equation in ∂g

∂xi
which involves f , g and ∂f

∂t in Gk−c ⊆ Gk−c−1 and the second derivatives
∂2f
∂t2

and ∂2f
∂t∂xi

. Using similar techniques, it can be shown that the second derivatives of
f are in Gk−c−1. As a result, ∂g

∂xi
is also in Gk−c−1. �

We will now need to introduce some theory from [13] in order to prove the last inclusion in
step 1 (recall that it was Gk ⊆ C(R)).

Definition 3.6 A subset E ⊆ Rk is r.e.-open if it is open and there are computable sequences of
rationals {an} and {rn} such that E =

⋃∞
n=0 B(an, rn), where B(a, r) is the open ball in Rk with

center a and radius r.

In general, an r.e.-open subset can be exhibited in many ways. At a certain point we will want
to make sure that the r.e.-open set is exhibited in the following “robust” manner.

Definition 3.7

• A rational ball is an open ball with a rational number radius, which has a vector of rationals
as its center.

• An r.e.-open set is given robustly if for any ball B in its representation, and any rational
ball A ⊆ B, A is in the representation.

Given an r.e. representation of a set, we can devise another r.e. representation which is robust
by enumerating the original representation, while regularly pausing in order to put in appropriate
rational sub-balls of the balls already enumerated. Since we are dealing with computable rationals
which we know exactly, this new enumeration is r.e.

Lemma 3.8 If a set is r.e.-open, then this can be exhibited robustly.

The next lemma will be used in the proof of the inductive step of lemma 3.11.

Lemma 3.9 Given two computable functions with r.e.-open domains, their composition is com-
putable with an r.e.-open domain.

Proof

It is well known that the composition of real computable functions is real computable.
We consider the r.e.-open condition. Suppose f and g are computable unary functions,
both with r.e.-open domains, F and G, respectively (restricting to unary functions sim-
plifies our discussion to the consideration of intervals rather than balls). By lemma 3.8
we assume that G is exhibited robustly; additionally, we can assume that if the interval
G is in G, then the closure Ḡ is in the domain of g. Now to give an r.e. listing of the
domain of f ◦ g we proceed as follows. We simultaneously list the intervals for F and
G. For an open interval G of G, we consider its closure Ḡ, which is in the domain of
g. The minimum, m, and the maximum, M , of g on Ḡ are computable. If the interval

8

[m,M] is contained in one of the intervals in the listing of F , then we include G in
our listing of the domain of f ◦ g. We continue this process, eventually comparing all
intervals. There is the technical issue of how the algorithm decides a containment of
the form: [m,M] ⊆ (a, b). In the situation we are concerned with, the a and b are exact
rational numbers, but the m and M are real numbers that we do not have exactly, but
can compute to any desired precision. Since the procedure we are concerned with is
a computable enumeration, we can continually revisit an interval [m, M], so when we
say to consider the containment [m,M] ⊆ (a, b), we mean to revisit the question with
increasingly more accurate m and M , till we can decide the containment. As long as
m 6= a and M 6= b we can eventually decide the inclusion, and it will turn out not to
matter that we can never decide the other inclusions.

Now we show that the algorithm works correctly. First note that we are not making
the domain of f ◦ g too big, since by construction, we only include an interval in our
listing when we are sure that f ◦ g is defined for all values in the interval. Second,
for any x in the domain of f ◦ g, we can show that our algorithm includes an interval
containing x. For x in the domain of f ◦ g, that means x is in the domain of g and
g(x) is in the domain of f . Since g(x) is in the domain of f , there is some open interval
J = (a, b) of F containing g(x). Let J ′ = (a′, b′) be any open interval containing g(x),
not necessarily in F , such that a < a′ < b′ < b. By continuity of g, there is an open
interval I containing x and such that g(I) ⊆ J ′. Some open interval of G must contain
x, and so by the robustness of G, there is a rational interval R in G such that x ∈ R ⊆ I.
At some point the algorithm considers the inclusion g(R̄) ⊆ J . We know g(R̄) ⊆ J̄ ′,
thus not only do we have g(R̄) ⊆ J , but we know that the endpoints of the interval J
are not the same as those of g(R̄), so we can eventually decide the inclusion, putting R,
which contains x, into our listing.

�

The next lemma follows easily from the hard work of [13] (the proof below points to the relevant
parts of that paper. Note that in that paper, though not always stated, by a “computable function”
they mean to include the restriction to an r.e.-open or “r.e.-closed” domain; we do not concern
ourselves with “r.e.- closed”).

Lemma 3.10 If f is a C1 computable function with a computable gradient function, then the
solution to the initial value problem y′ = f(t, y), y(0) = a (a computable) is computable and the
domain of y is r.e.-open.

Proof

Since f and its gradient function are computable, theorem 2.7 of [13] shows that f is
“effectively Lipshitz” (in fact theorem 2.7 just refers to derivatives, but, as discussed
with D. S. Graça, it should refer to the gradient and then a similar proof works to
prove it). We do not concern ourself with the definition of this notion of Lipshitz, but
simply note that theorem 3.1 of [13] shows that if f is C1 and effectively Lipshitz, then
y is computable on its maximal interval of definition containing the initial condition;
furthermore, this interval is r.e.-open.

�

9

Lemma 3.11 For k ≥ 3, Gk ⊆ C(R).

Proof

We proceed by induction, showing the following holds for any function of Gk:

? Any function and any partial derivative of it is computable, and furthermore
have r.e.-open domains.

Note that in general a computable function need not have a computable derivative, nor
is Gk closed under differentiation, so we include the condition on the derivative in ?.
Now we discuss the three cases in the induction.

(1) For basic functions ? is true.

(2) For composition, consider functions g(x) and f(u, y) which are computable, with
computable partial derivative functions, where all these functions have r.e.-open do-
mains. We first note that the composition h(x, y) = f(g(x), y) is computable with an
r.e.-open domain, by lemma 3.9. For the derivatives note that:

∂

∂y
h =

∂

∂y
f(g(x), y)

∂

∂x
h =

∂

∂u
f(g(x), y)

∂g

∂x

Applying lemma 3.9 again, we see that both derivatives are computable with r.e.-open
domains, because we have expressed them as compositions and products of
computable functions with r.e.-open domains (by inductive hypothesis).

(3) For the ODE operation consider the initial value problem:

y(0, x) = g(x), ∂
∂ty(t, x) = f(t, y, x)

Note that to simplify the discussion we have assumed just a single equation and a single
x (relaxing these assumptions we would just use the multi-variate chain rule below
and get a larger linear system in the end). Inductively we assume that f and g and
their partial derivative functions in t or y are computable with r.e.-open domains (even
if not in the class); thus, due to the definition of the gradient in terms of its partial
derivatives, we know the gradient is computable. So we can apply lemma 3.10 to say
that y is computable with an r.e.-open domain. Now consider the derivatives of y.
The derivative in t is just f , which is computable with an r.e-open domain. For the
derivative in x we start with the defining equation for y, and calculate:

∂

∂x∂t
y =

∂

∂x
f(t, y, x)

10

∂

∂t

(
∂y

∂x

)
=

∂f

∂y

(
∂y

∂x

)
+

∂f

∂x
,

where the change in the order of differentiation from ∂x∂t to ∂t∂x is justified because y
is C2. The last differential equation defines ∂y

∂x as a linear differential equation using the
functions ∂f

∂y and ∂f
∂x . Note that ∂f

∂y = ∂
∂yf(t, y) should be understood as: Differentiate f

with respect to its second argument and then compose the function y at this place. By
inductive hypothesis, the derivatives ∂

∂yf and ∂
∂xf are computable. We already know

that y is computable, so ∂f
∂y composed with y is computable. Since ∂y

∂x is defined by a
linear differential equation using computable functions, it is computable. Furthermore,
the domain of the solution ∂

∂xy is the same as ∂
∂yf , since the differential equation is

linear. Since the domain of ∂
∂yf is r.e.-open, so is the domain of ∂

∂xy.

�

4 Future Work, Questions, and Conjectures

We now discuss possible improvements of our results. Three specific ways to improve the results
are as follows: Removing the restriction to C2 functions, allowing more flexible domains (perhaps
non-compact), and simplifying the function algebras. On the first point, as in our paper [9] which
removed this restriction, we believe this is just an artifact of the current proof, and expect that
is restriction can be removed. Concerning the second point, the use of compact domains is used
in a significant way in the proof of [5] (i.e. they use this constraint to show a computable C2

function has a computable derivative; this is in general false for unbounded domains). We do not
conjecture anything here, but will ask a question along these lines. On the third point, in line with
our paper [8], we believe that we can dispense with the function θk, in essence showing that it
suffices to work with an approximation of it that can be built with other functions in the respective
function algebras. We are thus lead to the following conjecture and question.

Conjecture Supposing Fk is one of the function algebras we have considered in this paper, let aF
be the same function algebra, but without the basic function θk (in such a case we also leave off
the now useless subscript k). Then

[C(R)] = [aBH(∞)(LIM)] = [aL(∞)(LIM)] = [aG(LIM)].

Question Can the restriction to compact domains be removed, or can such a restriction be proved
necessary in our context?

In our paper [8], we show how to use our “method of approximation” to remove the function θk

for a different function algebra. While it seems that the same approach might work here, there are
some challenges. As a final note, we point to a new paper [10] with the claim that theorem 3.1. of
[13] can be improved by replacing the assumption that f be effective Lipschitz by the assumption
that f be continuous and the solution to the differential equation is unique. This could mean an
improvement of our result along with a simpler proof.

11

5 Acknowledgements

This work was partially supported by Fundação para a Ciência e a Tecnologia and EU FEDER
POCTI/POCI, and grant SFRH / BPD / 16936 / 2004.

References

[1] Blum, L., M. Shub and S. Smale, On a theory of computation and complexity over the real num-
bers: NP-completeness, recursive functions and universal machines, Bulletin of the American
Mathematical Society 21 (1989), pp. 1–46.

[2] Bournez, O. and M. L. Campagnolo, A survey on continuous time computations, in: S. Cooper,
B. Löwe and A. Sorbi, editors, New Computational Paradigms. Changing Conceptions of What
is Computable, Springer-Verlag, New York, 2008 pp. 383–423.

[3] Bournez, O., M. L. Campagnolo, D. S. Graça and E. Hainry, Polynomial differential equations
compute all real computable functions on computable compact intervals, Journal of Complexity
23 (2007), pp. 317–335.

[4] Bournez, O. and E. Hainry, Elementarily computable functions over the real numbers and
R-sub-recursive functions, Theoretical Computer Science 348 (2005), pp. 130–147.

[5] Bournez, O. and E. Hainry, Recursive analysis characterized as a class of real recursive func-
tions, Fundamenta Informaticae 74 (2006), pp. 409–433.

[6] Campagnolo, M. L., C. Moore and J. F. Costa, Iteration, inequalities, and differentiability in
analog computers, Journal of Complexity 16 (2000), pp. 642–660.

[7] Campagnolo, M. L., C. Moore and J. F. Costa, An analog characterization of the Grzegorczyk
hierarchy, Journal of Complexity 18 (2002), pp. 977–1000.

[8] Campagnolo, M. L. and K. Ojakian, Using approximation to relate computational classes over
the reals, in: J. Durand-Lose and M. Margenstern, editors, MCU 2007, Lecture Notes in
Computer Science 4664 (2007), pp. 39–61.

[9] Campagnolo, M. L. and K. Ojakian, The elementary computable functions over the real num-
bers: applying two new techniques, Archives for Mathematical Logic 46 (2008), pp. 593–627.

[10] Collins, P. and D. S. Graça, Effective computability of solutions of ordinary differential equa-
tions - the thousand monkeys approach, in: Proceedings of the Fifth International Conference
on Computability and Complexity in Analysis (CCA 2008), 2008, in print.

[11] Graça, D. S., Some recent developments on Shannon’s general purpose analog computer, Math-
ematical Logic Quarterly 50 (2004), pp. 473–485.

[12] Graça, D. S. and J. F. Costa, Analog computers and recursive functions over the reals, Journal
of Complexity 19 (2003), pp. 644–664.

12

[13] Graça, D. S., N. Zhong and J. Buescu, Computability, noncomputability and undecidability
of maximal intervals of IVPs, Transactions of the American Mathematical Society (2007), to
appear.

[14] Ko, K.-I., “Complexity Theory of Real Functions,” Birkhaüser, 1991.

[15] Maass, W., Networks of spiking neurons: the third generation of neural network models, Neural
Networks 10 (1997), pp. 1659–1671.

[16] Moore, C., Recursion theory on the reals and continuous-time computation, Theoretical Com-
puter Science 162 (1996), pp. 23–44.

[17] Pour-El, M. B., Abstract computability and its relation to the general purpose analog computer
(some connections between logic, differential equations and analog computers), Transactions of
the American Mathematical Society 199 (1974), pp. 1–28.

[18] Rubel, L. A., A survey of transcendentally transcendental functions, American Mathematical
Monthly 96 (1989), pp. 777–788.

[19] Shannon, C., Mathematical theory of the differential analyzer, Journal of Mathematical Physics
20 (1941), pp. 337–354.

[20] Weihrauch, K., “Computable Analysis: An Introduction,” Springer-Verlag, 2000.

13

