
Using Approximation to Relate Computational
Classes over the Reals

Manuel L. Campagnolo1 and Kerry Ojakian2

1 DM/ISA, Lisbon University of Technology and SQIG/IT Lisbon
mlc@math.isa.utl.pt

2 SQIG/IT Lisbon and IST, Portugal
ojakian@math.ist.utl.pt

Abstract. We use our method of approximation to relate various classes
of computable functions over the reals. In particular, we compare Com-
putable Analysis to the two analog models, the General Purpose Analog
Computer and Real Recursive Functions. There are a number of existing
results in the literature showing that the different models correspond ex-
actly. We show how these exact correspondences can be broken down into
a two step process of approximation and completion. We show that the
method of approximation has further application in relating classes of
functions, exploiting the transitive nature of the approximation relation.
This work builds on our earlier work with our method of approximation,
giving more evidence of the breadth of its applicability.

1 Introduction

In short, the goal of this paper is to relate various computational models over the
reals, using our notion of approximation as a unifying tool and language. Com-
putable Analysis (originating with Grzegorczyk [13]) is a model of computation
in which the data consists of the real numbers and the computation proceeds
in discrete time steps. From this point of view, a function is considered com-
putable if (roughly) from approximations for the inputs we can compute (using,
for example, a typical discrete Turing Machine) approximations for the outputs.
Various models of analog computation also compute on the real numbers, but
the computation can instead be argued to proceed in an analog manner. We
will consider two analog models, Shannon’s General Purpose Analog Computer
(GPAC) [20] and Moore’s Real Recursive Functions [16] (with some problems
corrected by Costa and Mycka in [17] and [18]). The GPAC is an analog circuit
model, which by the work of Graça and Costa [11] is equivalent to certain dy-
namical systems. The Real Recursive Functions are given by a function algebra
in which the typical discrete operations of recursion are replaced by operations
which yield the solution of a differential equation. Bournez and Hainry ([1], [2])
have related various classes of Computable Analysis and Real Recursive Func-
tions; we have expanded upon their work in [8] and [7]. Bournez, Campagnolo,
Graça, and Hainry [19] have related Computable Analysis to the GPAC. We will

use our method of approximation to provide a unified view of these results and
show how this approach can facilitate the technical development.

The motivation for characterizing the functions of Computable Analysis can
be seen as twofold. On the one hand this work can be seen as a kind of search
for a Church-Turing thesis in the context of real computation. For computation
on the natural numbers there is an agreed upon notion of what it means to be
computable, bolstered by the impressive fact that a number of different models
of computation (e.g. Turing Machines, recursive functions, while programs, etc)
yield the same set of functions. There are various models of computation over
the reals, but many lack that kind of correspondence. In the work surveyed here
the authors have developed exact correspondences within real computation by
modifying existing models in reasonable ways. Developing these correspondences
should be an important step towards some kind of a Church-Turing thesis for
real computation. Another motivation for finding these correspondences is the
possibility of shedding light on the questions of classic complexity theory. In
particular, the complexity class separations (such as the classic P versus NP
question) for the naturals correspond to the analogous questions in Computable
Analysis. Thus, interesting and useful correspondences to Computable Analysis
could allow the use of different tools to attack these questions; for example, per-
haps the P versus NP question would be reduced to a question about differential
equations, allowing new tools to come into play. This latter line of thought is
the motivation behind the work of Costa and Mycka [9], which discusses the
equivalence of an analytic condition to P = NP.

In section 3 we show how the various results (i.e. relating Computable Anal-
ysis, the GPAC, and Real Recursive Functions) all fit into a similar two step
pattern we call approximation and completion. To get the rough idea, suppose F
is the class of functions arising from one model, say Computable Analysis, and
H is the class of functions of another model, say the GPAC, and the goal is to
show that F = H. The classes happen to be defined in such a way that we can
isolate subclasses F ′ ⊆ F and H′ ⊆ H, such that F = (F ′)∗ and H = (H′)∗,
where we use the star superscript to indicate some kind of “completion” opera-
tion. The approximation step involves showing, roughly, that F ′ ≈E H′, which
means that for any function in one class, there is a function in the other one
that approximates it with an accuracy dictated by E (E is some set of func-
tions used to measure the accuracy). The completion step requires showing that
from the approximate equality F ′ ≈E H′ we can derive the genuine equality
(F ′)∗ = (H′)∗, i.e. F = H. On the technical side, this way of phrasing the
problem allows us to bring in our tools involving the method of approximation.
On the more philosophical side, we believe the approximation and completion
approach makes important issues concerning these results more explicit. In our
discussion on future work, in section 5, we discuss questions this raises.

In section 4, we show how approximations can be used to facilitate the tech-
nical work of relating different classes of functions. Supposing we are interested
in the claim F ≈E H, the transitive property of the approximation relation can
facilitate the proof. Rather than attempting to show the claim directly, which

could become cumbersome, we can develop an intermediary class G and break
the task down into two subtasks F ≈E G and G ≈E H. In particular, we will
show how this facilitates the elimination of non-analytic functions from models
of computation, while maintaining the desired properties.

In section 2 we give a streamlined account of the notion of approximation
and related concepts (the details are worked out in our papers [8] and [7], the
latter one providing an improved development). In section 5 we discuss ideas for
future work.

2 Technical Preliminaries

We provide an outline of the technical development from [8] and [7], where
we consider the latter paper to be the improved version, and the one we will
generally cite here. We start by discussing the approximation relation and then
discuss its connections to function algebras.

2.1 Approximation

To develop formally the definition of approximation we will need to be able
to talk about functions and their arguments in a precise way. Unless otherwise
stated, a function has a finite number of real arguments and a single real number
as an output. We let

Var = {xi | i ∈ N}
be the set of variables. A function is always associated with a finite set of
such variables and the values of the functions result from assigning elements of
R to its variables. For convenience, we will use any lower case letters to refer to
variables, and to refer to a finite set of variables we will put a bar over the letter
(e.g. x refers to a variable and x̄ refers to a possibly empty finite subset of Var);
we also use lower case letters to refer to real numbers. When we write a function
f as f(x̄) we mean that the set of variables associated to f is exactly the set x̄
(i.e. no more variables and no less). When we write variables or sets of variables
as a list separated by commas, such as x̄, ȳ, we intend that the variables are all
distinct. If we have lists of variables or numbers ā and b̄, the same lengths as x̄
and ȳ, respectively, then by f(ā, b̄) we mean the value of f when the variables
x̄, ȳ are assigned to ā, b̄ in order (though the elements in a set do not have an
order, we can always think of a set of variables as ordered by its indices). In
fact, given a function f(x̄) with domain X, we often write x̄ ∈ X to mean that
the variables of x̄ should be assigned arbitrarily in X. We will often speak of
a set of functions without explicitly discussing its variables; we always assume
that every function in a set of functions exists in all its “instantiations” with
variables, e.g. the function “x + y” occurring among a set of functions refers to:
x0 + x1, x1 + x0, x1 + x1, x0 + x2, etc. The key point is that given two functions,
the notion of variables allows us to associate the arguments of the functions
in any way we wish. Any classes of functions we work with will be sufficiently
strong that we can freely manipulate variables in typical ways.

We will now define the approximation notion between classes of functions,
building on the notion of approximation between two single functions.

Definition 1. Given a function f(x1, . . . , xk) we let domain(f) ⊆ Rk refer to
its domain.

Definition 2. If X ⊆ Rk and Y ⊆ Rk+r, we say X ⊆ Y if for every x̄ ∈ X,
there is a ȳ ∈ Rr such that x̄, ȳ ∈ Y .

Definition 3. Suppose f(x̄), h(ȳ), and ε(ū) are functions such that x̄, ū ⊆ ȳ.
Suppose also that domain(f) ⊆ domain(h). We say

f ¹ε h,

if for any assignment to the variables ȳ (which induces assignments on its subsets
x̄, ū) such that x̄ ∈ domain(f), the function ε is defined at ū and the following
holds:

|f(x)− h(y)| ≤ ε(ū).

In the above definition we tend to think of the variables ȳ as converging to
infinity, motivating the following definition.

Definition 4. A function f(x̄, ȳ) has unbounded domain in ȳ if for any
x̄ ∈ R, the set {ȳ | (x̄, ȳ) ∈ domain(f), ȳ > 0} is either empty or unbounded.

An important point in the relationship of the function and the function ap-
proximating it, is the structure of the variables, formalized in the following def-
inition.

Definition 5. Let P(Var) be the set of finite subsets of Var. We call a function
[: P(Var) → P(Var)×P(Var) a structure function, and let [1 refer to its first
component and [2 to its second.

Now we define two notions of approximation between classes of functions, say
A and B, so that roughly, we write A ¹ B to mean that for any function in A,
there is a function in B that “approximates” it. The approximation relation will
be defined relative to a class of functions E that measures the accuracy of the
approximation. The definition will also use a set of structure functions S which
are used to enforce certain relationships between the variables of the function
being approximated and the function approximating it (for example, sometimes
we will want to force the approximating function to have “parameter variables”
and at other times we want to forbid this).

Definition 6. Let A, B, and E be non-empty classes of functions Let S be a
non-empty set of structure functions.

– We write
A ¹∀ ES B

to mean that ∀ f(x̄) ∈ A, ∀ [∈ S, ∀ ε ∈ E (with variables [1(x̄)), ∃ h ∈ B
(with variables [2(x̄)), such that f ¹ε h, where ε and h have unbounded
domain in their variables other than x̄.

– We write
A ¹∃ ES B

to mean the same thing as A ¹∀ ES B, except that the second and third uni-
versal quantifiers (∀) are replaced by existential quantifiers (∃).

To obtain “approximations with no error,” we will use the following set of func-
tions:

Zero is the set of all functions f(x1, . . . , xk), for any arity k ∈ N, such
that domain(f) = Rk and its value is zero everywhere.

We will be interested in the following sets of structure functions.

– We let the minus sign (“−”) refer to the following singleton set of structure
functions:

On input x̄ it outputs (x̄, x̄).
Thus to write A ¹∀ Zero

− B means that for any function in A there is a
function in B, possibly with an extended domain, so that on their common
domain they are equal (i.e. the “approximation” must have no error).

– We let the plus sign (“+”) refer to the following set of structure functions
given by taking all the functions of the following form:

On input x̄ it outputs (x̄∪ ȳ, x̄∪ ȳ), where ȳ is a disjoint and possibly
empty finite subset of variables.

– We let ℘ refer to the following set of structure functions given by taking all
the functions of the following form:

On input x̄ it outputs (ū ∪ ȳ, x̄ ∪ ȳ), for any non-empty ȳ disjoint
from x̄ and any ū ⊆ x̄ (ū may be empty).

Thus the “−” approximation does not allow “parameter” variables, the ℘ approx-
imation requires some “parameter” variables, and the + approximation allows
“parameter” variables, but does not require them. The following lemma follow
immediately from the definitions.

Lemma 1. A ¹∀E+ B implies A ¹∃E℘ B
The stronger definition (i.e. “¹+”) is useful for the involved technical work with
approximating, as done in [7], but ultimately, a weaker kind of approximation
(i.e. “¹∃℘”) often suffices for our purposes; in particular, a weaker notion satisfies
lemma 5. However the stronger notion has other important properties, such as
satisfying lemma 3 and satisfying transitivity (lemma 2). It will be useful to list
a number of conventions regarding the approximation notation.

1. If the quantifier is missing in the superscript we assume it is ∀.
2. If the subscript is missing we assume it is “−”.
3. If E is missing, we assume E = Zero.

Thus for example, A ¹ B abbreviates A ¹∀Zero
− B.

We recall the definition of “bounding class” (we use our older definition from
[8]). A number of technical aspects of the definition are not used in this paper,
but are important for some of the results that are referenced.

Definition 7. For a function f(y, x̄), we say it converges uniformly to in-
finity in y if for every n > 0 there is m0 > 0 such that for any m, x̄ ∈ domain(f),
m ≥ m0, we have f(m, x̄) ≥ n.

Definition 8. A class of functions B is a bounding class if it has the following
properties:

1. There is an f ∈ B such that f ≥ 1.
2. f(x̄) ∈ B implies the value of f(x̄) > 0.
3. For f(x; t) ∈ B, f(x; t) = f(x;−t), for any variable t.
4. f ∈ B implies f is increasing.
5. f ∈ B converges uniformly to infinity in any of its variables.
6. If f(x̄) ∈ B and ȳ are variables disjoint from x̄, then there is f∗(x̄, ȳ) ∈ B

such that f(x̄) ≤ f∗(x̄, ȳ).
7. If f, g ∈ B, then there are h1, h2, h3 ∈ B such that f + g ≤ h1, f ◦ g ≤ h2,

and f ∗ g ≤ h3

An example of a bounding class is the following set of functions that grow
like a tower of exponentials; it will be useful for our work with the elementary
functions.

Definition 9. Let exp[n](z) be defined by exp[0](z) = z and exp[n+1](z) = exp[n](exp(z))
for n ∈ N and z ∈ R. Let T be the bounding class

T = {exp[n](|x1|+ · · ·+ |xk|) | k, n ∈ N}.

We will form “error classes” by taking the reciprocal of a bounding class, i.e.
for a set of functions F , 1/F = {1/f | f ∈ F}. The following lemma indicates
that the a form of the approximation relation is transitive.

Lemma 2. Suppose A, B, and C are classes of functions, and D is a bounding
class. If A ¹1/D

+ B ¹1/D
+ C then A ¹1/D

+ C.
A useful shorthand is the following “approximate equality.”

Definition 10. We write A ≈ES B to mean that both A ¹ES B and B ¹ES A hold.

Another important kind of relationship between classes of functions will be that
of one class dominating another.

Definition 11. Suppose A and B are classes of functions. We write A ≤ B if
for every function f(x) ∈ A there is a function h(x) ∈ B such that domain(f) ⊆
domain(h), and |f(x)| ≤ h(x) for all x ∈ domain(f).

The growth rate of a class of functions turns out to be a significant issue. In
fact for two bounding classes B1 and B2, if both B1 ≤ B2 and B2 ≤ B1 (not the
same as B1 = B2), then they can typically be interchanged without effecting our
results.

2.2 Function Algebras

We will use function algebras to define most of our classes of functions. They are
defined by giving some basic functions and closing the class under operations on
functions.

Definition 12. Suppose A is a class of functions. An operation with domain
A is a function which takes as input some functions in A, and outputs a single
function.

Definition 13. Suppose B is a set of functions (called basic functions), and O
is a set of operations. Then FA[B;O] is called a function algebra, and it denotes
the smallest set of functions containing B and closed under the operations in O.
For ease of readability, we often list the elements of B or O simply as a list
separated by commas.

One consequence of this definition is that if the set of basic functions have
some property which is preserved under the operations, then all functions in
the algebra will satisfy it. For k ∈ N, by Ck we mean the k−times continuously
differentiable functions on R. We give an example of a function algebra that only
contains C2 functions. It will use the operation of obtaining a solution to a linear
differential equation.

Definition 14. LI is the operation which takes as input functions:

g1(x̄), . . . , gn(x̄), s11(y, x̄), . . . , snn(y, x̄),

and returns h1(y, x̄) where we have the following defining equations:

h1(0, x̄) = g1(x̄)
...

hn(0, x̄) = gn(x̄)

∂
∂y h1(y, x̄) = s11(y, x̄)h1(y, x̄) + . . . + s1n(y, x̄)hn(y, x̄)
...
∂
∂y hn(y, x̄) = sn1(y, x̄)h1(y, x̄) + . . . + snn(y, x̄)hn(y, x̄)

Note that technically LI is not an operation in our sense because it does not
have a fixed arity; we can simply view it as a convenient way to refer to a set
of operations, each having a fixed arity. Note that an aspect of the operation
is to choose the variable y with respect to which we differentiate; we avoid this
technical point for this operation and for others. The basic functions will include

a function θ3, where for any k ∈ N (k > 0), θk(x) =
{

0, x < 0;
xk, x ≥ 0. , a Ck−1 version

of the discontinuous function which indicates whether a number is to the left or
right of zero. We will also include some constants such as π, as well as the set
of projection functions which we denote by P. By comp we mean the operation
of composition.

Definition 15. Let L abbreviate FA[0, 1,−1, π, θ3,P; comp, LI].

To compare function algebras it will be useful to talk about a class of func-
tions, B, approximating an operation; intuitively this means that if any functions
are approximated by B then applying the operation maintains this approxima-
tion by B.

Definition 16. Suppose op is an arity k operation with domain A, and B is a
class of functions. We write op ¹E+ B to mean:

For any f1, . . . , fk ∈ A, if fi ¹E+ B (i = 1 . . . k) then op(f1, . . . , fk) ¹E+ B

The following is an easy but repeatedly used lemma.

Lemma 3. Suppose B1 and B2 are classes of functions and O1 and O2 are sets
of operations.

If B1 ¹E+ FA[B2;O2] and op ¹E+ FA[B2;O2] holds for every op ∈ O1 then
FA[B1;O1] ¹E+ FA[B2;O2].

We will now recall how composition can be approximated in a general way,
using the concept of modulus functions (recalling the definition from [7], for
technical reasons, in this paper, we add a few requirements).

Definition 17.

– |b̄− ā| abbreviates |b1 − a1|+ . . . + |bn − an|.
– Suppose f(x) and m(x, z) are functions such that domain(f) ⊆ domain(m).

Then m is a modulus for f if m is increasing, has unbounded domain in z,
and:

For all x̄ ∈ domain(f) and z > 0 such that x̄, z ∈ domain(m), we
have that |x̄ − ȳ| ≤ m(x̄, z) implies |f(x̄) − f(ȳ)| ≤ 1/z, for all
ȳ ∈ domain(f).

– A class of functions M is a modulus for the class of functions F if for any
f ∈ F , there is m ∈M such that m is a modulus for f .

It will be useful here and later to define the notion of restricting a function
(whether a real function or even in the case where the function is an operation).

Definition 18. If f is any function, say with domain A, and B is a set, we
write f|B to indicate the function f with its domain restricted to A ∩ B.

Lemma 4. (see [7]) Let H and F be a classes of functions closed under com-
position and let B be a bounding class.

If H ≤ B and H has a 1/B modulus then comp|H ¹1/B
+ F .

3 Characterizing computable analysis

We will begin by introducing the technical framework and then discuss our
general approach to characterizing the classes of computable analysis via the
two step pattern of approximation and completion. We will use standard notions
from Computable Analysis, as described in Ko [14] and Weihrauch [21], though
following more closely the former. For the most part Ko restricts his attention to
functions defined on a finite interval, while we consider functions defined on all
of R. Thus in this work, a number of notions will depend on both the input value
to the function, as well as the usual accuracy parameter (as in, for example, the
case of the modulus functions).

By C(R) we mean the total R−functions f(x) which can be computed to
accuracy 1/n (n ≥ 1). The real input x is given by an oracle which gives x
to any demanded precision as a dyadic rational; the precision 1/n is given by
putting n on the input tape (we call this the accuracy input). Note that we
use the approximation of the form 1/n rather than 1/2n, since for the classes we
work with are sufficiently strong that such distinctions have no effect.

We now consider the process of approximation and completion. We will use
the approximation as defined in the previous section, as a first step in this
process. For the second step, the completion, all the results will use some kind
of limit operation, which will be defined relative to a class of suitable functions
(the idea of using a limit operation goes back to work from Costa and Mycka,
see [17] and [18]).

Definition 19. We say a class of functions E converges to 0 if any function
in E converges to 0 as any of its arguments (which has unbounded definition)
converges to +∞.

A useful class that converges to 0 is 1/ID, where ID is the set of unary iden-
tity functions, one for each variable (i.e. 1/ID = { 1

x0
, 1

x1
, 1

x2
, . . .}). The limit

definition follows our older paper [8].

Definition 20. Suppose E is a class of functions that converges to 0. E−LIM is
the operation which takes a function f(t, x̄) and returns F (x̄) = limt→∞f(t, x̄) if
the limit exists and there is a function α(t, x̄) ∈ E such that F ¹α f , for positive
t.

If we write LIM without a prefix, we mean 1/ID−LIM.
By F(op), for a class of functions F and an operation op, we mean the set

of functions F together with those that result from a single application of op
to a function in F . The next proposition points out how a sufficiently good
approximation leads to a kind of containment when limits are added.

Lemma 5. Suppose A and B are classes of functions and E is a class of func-
tions that converges to 0. Then A ¹∃E℘ B implies A ¹ B(E−LIM)

The approach of approximation and completion highlights some interesting
issues. In making the process of completion more distinct, we raise the question of

considering the range of techniques that might be employed to complete a class.
Going even further, this raises the question of eliminating completion from the
characterizations of Computable Analysis. Given that Computable Analysis is
defined via an implicit completion process (made explicit in proposition 4), it is
not surprising that its characterizations can all be shown to employ completion
in an explicit manner. Thus, to characterize Computable Analysis without the
use of a completion process would be more of a surprise and provide a more
distinctly alternative model of computation. We expand upon these thoughts in
section 5. In the ensuing subsections we work out the approximation and com-
pletion approach for particular cases: The elementary Real Recursive Functions
in part 3.1, Computable Analysis in part 3.2, the computable Real Recursive
Functions in part 3.3, and the GPAC in part 3.4.

3.1 Elementary computability

In this section we recall our work ([8], [7]) concerning elementary computability,
which extended the work of [1]. By E(R) we mean the same class as C(R), except
that for real input x and accuracy input n, the computation time is restricted
to elementary time. A fundamental point in this development is the following
approximation theorem (from [7], though stated there with a different, though
“equivalent” bounding class).

Proposition 1. E(R) ≈1/T
+ L

To obtain a class of functions which actually equals E(R) we will add various
kinds of limit operations to L. The following is a limit operation that resembles
LIMω (definition 8 from [1]).

Definition 21. dLIM is the operation which takes a function f(t, x̄) and if
| ∂
∂tf | ≤ 1/2t for t ≥ 1, it returns F (x̄) = limt→∞f(t, x̄).

Note that the derivative condition guarantees the existence of the limit. Our
main result from [7] is the following.

Proposition 2. E(R) = L(LIM) = L(dLIM)

Proof. By proposition 1 we know E(R) ≈1/T
+ L, which implies E(R) ≈∃ 1/ID

℘ L.
Thus by lemma 5 we can conclude E(R)(LIM) ≈ E(R), and since we are dealing
with total functions, E(R) = L(LIM). The part on dLIM follows from our work
in [7].

Thus the result characterizing E(R) can be stated as an approximation
(proposition 1) and completion (proposition 2), for two different kinds of com-
pletion processes.

3.2 Rephrasing computable analysis

We will show how the functions of computable analysis can be defined by an
approximation and completion. We use a class of functions defined on the ratio-
nals. A Q−function f(x) is in C(Q) if there is a computable function on N that
computes it in the following sense: On input x = (−1)k(p/q) ∈ Q (p/q in lowest
terms and k = 0 or 1) the machine is given the triple (p, q, k), and it computes
a triple (a, b, s) such that f(x) = (−1)s(a/b); for a sequence of inputs x we use
a sequence of triples. Note that C(R) contains only continuous functions, while
C(Q) contains discontinuous functions.

Definition 22. Consider the Q−functions from C(Q) that have a computable
modulus function (so they are all continuous). Let ModRec be the unique con-
tinuous extensions of these functions to R.

Now we make an observation that is similar to corollary 2.14 of Ko [14].

Proposition 3. C(R) ≈1/ID
℘ ModRec

The proof is basically identical to that of [7], lemma 6.7, except that here we
consider computable rather than elementary functions, and only care about a
1/ID approximation. From proposition 3 and the fact that C(R) is closed under
LIM, lemma 5 yields the following.

Proposition 4. C(R) = ModRec(LIM)

Definition 23. Consider the Q−functions from C(Q) that are continuous. Let
CtnRec be the unique continuous extensions of these functions to R.

Question 1. Is the following true: C(R) = CtnRec(LIM)?

If the answer to the question is yes, then we have an interesting characterization
of C(R): Starting with E(Q), a discrete class making no reference to approxi-
mation or oracle inputs, we restrict it in a necessary way in order to equal C(R)
(i.e. being continuous) and this turns out to be sufficient. However, a negative
answer seems reasonable, in which case there is a continuous function defined
via a computable function, whose modulus is not computably bounded, which
would be an interesting negative result.

3.3 A function algebra for the computable functions over the reals

We recall that Bournez and Hainry [2] find a function algebra characterizing
the C2 functions of C(R). For their results they define an operation CLI which is
similar to LI except that it receives an extra input function and requires the result
of the operation to be bounded by this function. They also define a restricted
root-finding operation called UMU (see [2] for details on these operations). Both
here and later, we will need to restrict classes of functions in various ways.

Definition 24. Suppose S is a set which contains finite lists of the form (X1, . . . , Xk),
where Xi ⊆ R. For a class of functions F , we let

FS = {f(x1, . . . , xk)|X1×...×Xk
| f ∈ F and (X1, . . . , Xk) ∈ S}.

In this section we will be interested in the following set of lists:

R = {([a1, b1], . . . , [ak, bk]) | k ∈ N, ai, bi ∈ Q such that 0 ∈ [ai, bi]},

They then prove (though restated here) as theorem 7.1 in [2]:

For C2 functions

C(R)|R ≈ FA[0, 1, θ3, P; comp, CLI, UMU, LIMω]|R

Note that we have used an approximate equality in the above claim; recall-
ing the definition, this means that for a function from either class there is one
that extends it in the other class. Though the essential aspects of the proofs
in [2] seem sound, there are some ambiguities. We restrict our statement of
their theorem in two ways. First, we have stated it with reference to the set
R, rather than with reference to all compact domains (which appears to be
more in line with their work, namely lemma 7.4 of [2]). Second, by stating it
as an approximate equality, rather than an equality, we are not requiring that
the domains of corresponding functions be identical. To get an actual equality
(requiring equal functions to also have equal domains) would require restricting
C(R) to having exactly the domains that can be achieved with functions from
FA[0, 1, θ3, P; comp, CLI,UMU, LIMω]. This leads to a question of interest here
and generally for function algebras containing partial functions.

Question 2. Can we provide a nice characterization of the following set:

{Domain(f) | f ∈ FA[0, 1, θ3, P; comp, CLI,UMU, LIMω]}.

Now we consider formulating their result as an approximation and comple-
tion. From proposition 7.1 and an inspection of the proofs of lemmas 7.4 and 7.5
of [2], we can restate the core of their results as follows.

Proposition 5. For C2 functions the following holds:

– FA[0, 1, θ3, P; comp,CLI,UMU] ¹ C(R)
– C(R)|R ¹1/ID

℘ FA[0, 1, θ3, P; comp, CLI, UMU]

Applying lemma 5 and using the fact that C(R) is closed under LIM, we can
conclude the following.

Proposition 6.

– FA[0, 1, θ3, P; comp,CLI,UMU](LIM) ¹ C(R)
– C(R)|R ¹ FA[0, 1, θ3, P; comp, CLI,UMU](LIM)

We can state the above result as an approximate equality, and using our work
from [7], we can include dLIM, as an equivalent completion process.

Proposition 7. For C2 functions:

C(R)|R ≈ FA[0, 1, θ3, P; comp, CLI, UMU](LIM)|R
= FA[0, 1, θ3, P; comp, CLI, UMU](dLIM)|R

Thus their result can be stated as an approximation and completion. Further-
more, following the form of our proof for L in [7], the following should be true
(i.e. without a restriction to C2 functions), using our method of lifting.

Conjecture 1. For total functions:

C(R) = FA[0, 1, θ3, P; comp, CLI, UMU](LIM)
= FA[0, 1, θ3, P; comp, CLI, UMU](dLIM)

3.4 GPAC computability

We begin by considering the result from [19], which shows how to characterize
C(R) by a kind of circuit model. We discuss their result and how to phrase it
as an approximation and completion. We then discuss some short-comings of
the result, which suggests a series of questions. The General Purpose Analog
Computer (GPAC) is an analog circuit model of computation, which by the work
of Graça and Costa [11] can be characterized as the solution of a system of
polynomial differential equations (the solutions of such a system are called the
GPAC or GPAC−generable functions). In [19], they build upon the definition of
GPAC−generability to define a notion they call GPAC−computable, which adds
a mechanism of “converging computation” to the model. We recall the definition
from that paper with the modification that we only consider the interval [0, 1]
(just for notational convenience, as treating a general interval [a, b] is about the
same).

Definition 25. [19] A function f : [0, 1] → R is GPAC−computable iff there
exists some computable polynomials p : Rn+1 → Rn, p0 : R → R, and n − 1
computable real values α1, ..., αn−1 such that:

1. (y1, ..., yn) is the solution of Cauchy problem y′ = p(y, t) with initial condi-
tion (α1, ..., αn−1, p0(x)) set at time t0 = 0

2. There are i, j ∈ {1, ..., n} such that limt→∞ yj(t) = 0 and |f(x) − yi(t)| ≤
yj(t) for all x ∈ [0, 1] and all t ∈ [0, +∞).3

They then show in [19] (theorem 17) that (recalling definition 24, in this section
we use sets of lists which just contain one element and simply list that element):
3 We assume that y(t) is defined for all t ≥ 0. This condition is not necessarily satisfied

for all polynomial ODEs, and we restrict our attention only to ODEs satisfying this
condition.

C(R)|[0,1] = GPAC−computable.

To put the problem into our language, we will define an operation which
takes a list of polynomials and a list of initial conditions and returns the first
component of the resulting system of polynomial differential equations.

Definition 26. Let PI be the operation which takes as input some polynomials

P0(x), P1(u1, . . . , un, t), . . ., Pn(u1, . . . , un, t),

and some initial conditions: α1, . . . , αn−1 ∈ R. Consider the following initial
value problem:

∂
∂ty1(t, x) = P1(y1, . . . , yn, t)
...
∂
∂tyn(t, x) = Pn(y1, . . . , yn, t)
y1(0, x) = α1
...
yn−1(0, x) = αn−1

yn(0, x) = P0(x)

and return y1(t, x) if it is defined for all 0 ≤ x ≤ 1 and t ≥ 0.

We define a version of GPAC−generability, relative to a set of real numbers.

Definition 27. For a set X ⊆ R, let GPACX be the set of functions that can be
created by PI using polynomials with coefficients from X and initial conditions
from X.

Definition 28. For X ⊆ R, let GEX be the set of functions y(t, x) in GPACX

such that for any x, y(t, x) → 0 as t →∞.

Now, if we let CR be the set of computable real numbers, then

GPAC−computable = GPACCR(GECR−LIM).

Note that this uses the observation that for a polynomial, being computable is the
same as having computable coefficients. This way of talking about GPAC−computability
has the advantage of making the concept of limits a separate and distinct idea,
thus allowing us to state the approximation claim (a significant claim, which is
basically a restatement of much of the work from [19]).

Proposition 8. C(R)|[0,1] ¹∃GECR℘ GPACCR ⊆ C(R)|[0,1],[0,∞)

In the previous proposition, the inclusion follows immediately from theorem
24 of [19] (a theorem in fact restating a result from [12]). The approximation
follows from theorem 17 of [19] and the definitions; if f(x) ∈ C(R)|[0,1] then by
theorem 17, f(x) is GPAC−computable, which in our terminology implies the
approximation (it should be possible to extract a more direct proof from [19],
using the proof of theorem 18 and the latter part of section 5).

The following shows essentially that C(R) is closed under limits.

Lemma 6. C(R)|[0,1],[0,∞)(GECR−LIM) ⊆ C(R)|[0,1]

Proof. Suppose f(x, t) ∈ C(R)|[0,1],[0,∞) and y(x, t) ∈ GECR, and suppose g(x) =
limt→∞ f(x, t), such that g ¹y f . We need to show that g ∈ C(R)|[0,1], that is on
input x ∈ [0, 1], and accuracy input n ∈ N, we need to compute g(x) to accuracy
1/n. We just need to compute f(x, t) for a large enough t, and to find such a t
we just follow the algorithm of [19], at the end of section 6.

Proposition 9. C(R)[0,1] = GPACCR(GECR−LIM)

Proof. Using lemma 6 and proposition 8, together with lemma 5, we can con-
clude:

C(R)|[0,1] ⊆ GPACCR(GECR−LIM)
⊆ C(R)|[0,1],[0,∞)(GECR−LIM)
⊆ C(R)|[0,1]

Now we consider some short-comings of the result. This result fits into
a series of results which characterize computable analysis in a manner that
is different and distinct from it. The result of [19] only does this to an ex-
tent, because it includes notions from computable analysis in the definition of
GPAC−computability. Or stated in terms of the GPACX , the approximation and
completion results use the fact that X = CR, the computable reals. Thus a very
natural question is to consider if the result of [19] can be modified so that it holds
for a notion of GPAC computability that is distinct from computable analysis.
In our notation, this amounts to the following question:

Question 3. Does there exist a nice set X ⊆ R, defined without computable
analysis, such that:

C(R)|[0,1] = GPACX(GEX−LIM)?

Phrasing the result as an approximation and completion, emphasizes the exact
completion process used, in this case GEX−LIM. Thus a refinement of the above
question would be to consider a more natural limit operation E−LIM, for some
nicer E such as 1/ID. To answer the previous question (say, with a nicer E),
following the approach above, first we would show an approximation:

C(R)|[0,1] ¹∃E℘ GPACX ⊆ C(R)|[0,1],[0,∞).

Since we are thinking of X ⊆ CR, the inclusion is immediate, and the work
involved is to show the approximation, which, if true, by lemma 5 would answer
the question affirmatively.

We hope that we can use our methods to facilitate answering these questions.
Note that GPACX = X(PI), which is probably not the same as FA[X; PI]; recall
that the first notation indicates that PI can be applied once with coefficients
from X, while the latter function algebra allows repeated use of PI . To bring
our methods into play, we would like to be able to discuss the GPAC as a function
algebra. This motivates the following question.

Question 4. Is there an operation PI∗ which is similar to PI , but has the
property that for X ⊆ R, X(PI∗) = FA[X; PI∗], or at least X(PI∗) ≈E+ FA[X; PI∗],
for a suitable E?
We could refer to X(PI∗) by GPAC∗X . If we found such an operation PI∗, then
showing C(R) = GPAC∗X(E−LIM) could be reduced to showing C(R) ¹E+ FA[X; PI∗],
perhaps with the domains of the functions of C(R) restricted in some way. Now
we could employ a strategy that we will use in the next section. We could con-
sider the intermediary class FA[CR;PI∗] and then due to transitivity, break down
the goal into the two subgoals:

1. C(R) ¹E+ FA[CR;PI∗], and
2. FA[CR; PI∗] ¹E+ FA[X; PI∗]

We expect the first subgoal to proceed as in [19]. Furthermore, we expect that
PI∗ has been defined so that PI∗ ¹E+ FA[X; PI∗], thus by lemma 3, we can reduce
the second subgoal to CR ¹E+ FA[X; PI∗], or in words:

Starting with coefficients from X and applying polynomial differential
equations, can we approximate all the computable reals?

4 Making classes analytic

In the previous section we discussed some connections between Computable
Analysis and analog models like the Real Recursive Functions and the GPAC.
These models are claimed to be closely related to classical physics, where initial
value problems play a prominent role. As pointed out in [10], models of natural
phenomena arising from classical physics typically involve differential equations
with analytic solutions. However, the function algebras considered in sections
3.1 and 3.3 do not satisfy this condition since they include the function θ3 which
is not analytic. The role of θ3 is crucial in the proofs of the results stated in sec-
tions 3.1 and 3.3, since it allows us to define continuous “clocks” and simulate
the discrete dynamics of Turing Machines. This is done using a technique first
applied in [3] and refined in the context of function algebras on the reals in [5]
and [6]. In this section we apply the method of approximation to show that θ3

can be removed from the function algebra L (we also remove the constant π),
obtaining therefore an analytic characterization we denote by La of the elemen-
tary computable functions. The basic technical point we use here is the fact that
the approximation relation is transitive, which allows us to define an intermedi-
ary class of functions for convenience and then dispense with it in the end. For
example, in relating E(R) and La, we use L as a convenient intermediary class
(convenient because it has the non-analytic function θ3 which makes technical
work easier).

Formally, we define the class

La = FA[0, 1,−1, P; comp, LI],

which only contains analytic functions. As pointed out in [6], if the input func-
tions to the operation LI are total, then the operation defines a new total function
whose bound is exponential in terms of the bound on the input functions, allow-
ing us to conclude the following.

Lemma 7. All functions in L and La are total. Furthermore, L,La ≤ T .

We claim that L ≈1/T
+ La. We just need to show that L ¹1/T

+ La since the
other direction is trivial. We show how La can approximate θ3 and π and the
operations of L.

Lemma 8. θ3, π ¹1/T
+ La.

Proof. Let α(x, z) ∈ T . Consider the well known function y(t) = e−t2 defined
in La by y′ = −2ty and y(0) = 1 which satisfies

∫ +∞
−∞ y(t)dt =

√
π. Therefore,

c1(x) = 2
∫ x

0
y(t)dt gives an approximation of

√
π in La with error smaller than

e−x2
. Squaring that function gives an approximation of π. Given c1, we can also

obtain an approximation c2(x) of 1√
π

in La since it contains a function that
approximates 1

x over R+ as noticed in Remark 6 of [1]
Now, take the indefinite integral F (x) =

∫ x

0
y(t)dt, which is a strictly in-

creasing function such that limx→−∞ F (x) = −
√

π
2 and limx→+∞ F (x) =

√
π

2 .
Define the analytic function H(x, u) = c2(u)F (xu) + 1

2 which is therefore in La

(H stands for an approximation of the Heaviside function). Finally, there is a
u ∈ La such that θa(x, z) = H(x, u(x, z)) x3 is the desired approximation of θ3,
i.e. |θa(x, z) − θ3(x)| < 1

α(x,z) . To see that this is true, notice that u can be
chosen sufficiently larger than any α ∈ T .

To approximate the operations we follow a more general approach than nec-
essary, since we believe it may be more generally applicable (discussed at the
end of the section). The goal is to show for any operations op in the algebra that
replacing a set of functions f1, . . . , fk by their approximations f∗1 , . . . , f∗k , still
defines an approximation h∗ = op(f∗1 , . . . , f∗k) of h = op(f1, . . . , fk). To achieve
this we have to understand how far apart h∗ and h are when their arguments
vary. Toward this end we define the notion of Lipschitz functions.

Definition 29.

– Let f be a function on n arguments, and L a function on 2n arguments. f
is L−Lipschitz if domain(f) × domain(f) ⊆ domain(L), and |f(b̄) − f(ā)| ≤
L(b̄, ā)|b̄− ā| for all ā and b̄ in the domain of f .

– A class of functions F is B−Lipschitz if for every f in F there is an L in
B such that f is L−Lipschitz.

A given f trivially admits the Lipschitz function |f(b̄)− f(ā)|/|b̄− ā|. How-
ever, this cannot always be defined (for instance L is not closed under division).
Moreover, we will be interested in increasing Lipschitz functions. To show that
classes have increasing Lipschitz functions we can use derivative bounds.

Definition 30. Let F be a class of differentiable functions. Then

F ′ = { ∂

∂xi
f(x1, . . . , xk) | f ∈ F}.

Lemma 9. If F is a class of functions such that F ′ ≤ B, where B is a bounding
class, then F is B−Lipschitz.

Proof. Let h(x1, . . . , xn) be in F . To find a Lipschitz function, consider:

|h(b̄)− h(ā)| ≤ |h(b1, b2, . . . , bn)− h(a1, b2, . . . , bn)|
+ |h(a1, b2, . . . , bn)− h(a1, a2, b3 . . . , bn)|

...
+ |h(a1, . . . , an−1, bn)− h(a1, . . . , an)|

Consider the first term |h(b1, b2, . . . , bn)−h(a1, b2, . . . , bn)|. Consider the function
∂

∂x1
h(x1, x2, . . . , xn) ∈ F ′ and let β(x1, . . . , xn) ∈ B such that β dominates it. Let

L1(b; a) = β(|a1|+ |b1|, b2, . . . , bn), which is dominated by a function in B (which
for convenience we also call L1). Since β is increasing and |a1|, |b1| ≤ |a1|+|b1|, L1

dominates the derivative ∂
∂x1

h(x1, b2, . . . , bn) for all x1 on the interval between
a1 and b1, and so we have:

|h(b1, b2, . . . , bn)− h(a1, b2, . . . , bn)| ≤
|(h(a1, b2, . . . , bn)+|b1−a1|L1(b; a))−h(a1, b2, . . . , bn)| = L1(b; a)|b1−a1|.

We obtain L2(b; a), . . . , Ln(b; a) for all the terms and we bound the sum by
something in B, yielding our Lipschitz function.

For instance, Proposition 4.3 of [6] gives bounds on the derivatives of func-
tions in L. The same bounds apply to La. By lemmas 9 and 7 this implies that
L and La are T −Lipschitz. In our notation this gives the following lemma.

Lemma 10. L′, (La)′ ≤ T . Moreover, L and La are T −Lipschitz.

This permits us to establish a bound on the distance of the solutions of two
different initial value problems. In our case we are interested in comparing initial
value problems defined with a function and its approximation.

Lemma 11. (Gronwall-type inequality) Let f(t, y) and f∗(t, y, α) be total C1

functions with domain R such that f ¹1/α
+ f∗. Let y(t) and y∗(t, α) be the

solutions of the following initial value problems:

y(t0) = a, d
dty(t) = f(t, y) and y∗(t0) = a∗, ∂

∂ty
∗(t, α) = f∗(t, y∗, α)

If f is β−Lipschitz, and we let
∫ x

β abbreviate
∫ x

t0
β(u, u, y(u), y∗(u, α)) du, then

where defined we have:

|y(t)− y∗(t, α)| ≤ e
∫ t

β (|a− a∗|+
∫ t

t0

e−
∫ s

β

α
ds)

Proof. The hypothesis lead to the inequalities (the first inequality follows from
y and y∗ being C1; for ease of readability we sometimes drop the arguments to
these functions.).

∂

∂t
|y(t)− y∗(t, α)| ≤ | d

dt
y(t)− ∂

∂t
y∗(t, α)|

= |f(t, y)− f∗(t, y∗, α)|
≤ |f(t, y)− f(t, y∗)|+ |f(t, y∗)− f∗(t, y∗, α)|
≤ β(t, t, y, y∗)|y − y∗|+ 1

α
.

The inequality above implies that

∂

∂t
|y(t)− y∗(t, α)| − β(t, t, y, y∗)|y(t)− y∗(t, α)| ≤ 1

α
.

Multiplication by the integrating factor e−
∫ t β yields

∂

∂t
(e−

∫ t
β |y(t)− y∗(t, α)|) ≤ e−

∫ t
β

α
.

Integrating this from t0 to t gives

e−
∫ t

β |y(t)− y∗(t, α)| − |a− a∗| ≤
∫ t

t0

e−
∫ s

β

α
ds,

which finally leads to the claimed bound.

Lemma 12. LI|L ¹1/T
+ La.

Proof. Let h be the solution of the linear initial value problem h(x̄, 0) = g(x̄)
and ∂

∂th(x̄, t) = s(x̄, t)h(x̄, t), where g, s ∈ L. Let g∗, s∗ ∈ La be approxi-
mations of g and s. We claim that the solution h∗ of the linear initial value
problem h∗(x̄, 0, α) = g∗(x̄, α) and ∂

∂th
∗(x̄, t, α) = s∗(x̄, t, α)h∗(x̄, t, α) can be

made arbitrarily close to h in La. More precisely, we claim that there is a
H(x̄, t, z) = h∗(x̄, t, α(t, z)) ∈ La such that |h(x̄, t)−H(x̄, t, z)| ≤ 1/z.

To show this, and since all functions in L and La are total and C1, we
apply lemma 11 where f in the lemma is now the product h s and the ini-
tial condition in the lemma is now a = g(x̄). By lemma 10 there is a β ∈ T
such that f is β-Lipschitz. We want to get rid of the dependence of

∫ x
β on α

so we can freely bound |h − h∗| adjusting α. By hypothesis f ¹1/α
+ f∗ which

means that f∗(t, y, α) < f(t, y) + 1 ≤ exp(f(t, y)) for all α. Likewise, the initial
conditions in the lemma satisfy a∗ < a + 1. Consider the initial value prob-
lem ∂

∂ty
+(t) = exp(f(t, y+)) and y+(t0) = a + 1. The solution y+(t) exists

in L, is increasing, and bounds y∗(t, α) for all α. Now,
∫ t

β can be bounded by
φ(t) =

∫ t

t0
β(u, u, y(u), y+(u)) du and this is bounded in T . Moreover,

∫ t

t0
e−

∫ sβds

is bounded by some constant K for β large enough. For the initial condition, we
suppose that |a− a∗| < |a− a+| ≤ 1/α.

Therefore, the right hand side in the inequality in lemma 11 can be bounded
by exp(φ(t))(1 + K)/α. Therefore, choosing α(t, z) ∈ T sufficiently large we can
guarantee that |y(t)− y∗(t, α)| ≤ 1/z. This function y∗(t, α(t, z)) corresponds to
the desired approximation H mentioned earlier in the proof.

To conclude with our goal, we only have to show that the approximation
also holds for composition. To be able to use lemma 4 we have to show that L
has an appropriate modulus. The following lemma shows that this is a direct
consequence of L being T −Lipschitz.

Lemma 13. Suppose B is a bounding class and F is class of functions that is
B−Lipschitz. Then F has a 1/B−modulus.

Proof. Let f(x̄) ∈ F and L(x̄, ȳ) ∈ B be such that |f(x̄) − f(ȳ)| ≤ L(x̄, ȳ)|x̄ −
ȳ|; recall that L is increasing. Let m(x̄, z) ∈ B be a function that dominates
L(x̄, x̄ + 1)z + 1, and suppose |x̄ − ȳ| ≤ 1/m(x̄, z). First note that this implies
that ȳ ≤ x̄ + 1, and thus |x̄− ȳ| ≤ 1/m(x̄, z) further implies:

|f(x̄)− f(ȳ)| ≤ L(x̄, ȳ)
1

m(x̄, z)

≤ L(x̄, x̄ + 1)
1

L(x̄, x̄ + 1)z + 1

≤ 1
z

Proposition 10. L ≈1/T
+ La

Proof. La ¹1/T
+ L is immediate, so we consider the approximation L ¹1/T

+

La. By lemma 8, we can approximate all the basic functions of L. Since L is
T −Lipschitz, it has, by lemma 13, a 1/T modulus, and thus we apply lemma 4
to obtain comp|L ¹1/T

+ La. By lemma 12, LI|L ¹1/T
+ La. Finally, we apply

lemma 3 to conclude the proof.

Proposition 1, together with transitivity obtains the following approximation
for E(R) with analytic functions.

Proposition 11. E(R) ≈1/T
+ La

As a result we get an improved characterization of the elementary computable
functions, applying lemma 5 (and obtaining exact equality because we are dealing
with total functions).

Proposition 12. E(R) = La(LIM)

We consider now the following generalization of LI where the initial value
problem is not required to be linear.

Definition 31. I is the operation which takes input functions f1(x̄), . . . , fk(x̄)
and g1(x̄, t, y), . . . , gk(x̄, t, y) of appropriate arities and returns h1 which is de-
fined by the equations

h1(x̄, t0) = f1(x̄)
. . .

hk(x̄, t0) = fk(x̄)
∂
∂th1(x̄, t) = g1(x̄, t, h̄)

. . .
∂
∂thk(x̄, t) = gk(x̄, t, h̄).

We will write this as h = I(f, g). Replacing LI by I in L and La lead to the
following classes.

Definition 32.

– Let G be FA[0, 1,−1, θ3,P; comp, I].
– Let Ga be FA[0, 1,−1, P; comp, I].

The class G was investigated in [4] and shown to be closed under an iteration
operation, thus allowing Turing Machines to be simulated. It would be interesting
to show that the class of analytic functions Ga could do the same. In fact, related
work has already been carried out. In [15] it was shown that analytic maps over
unbounded domains can simulate the transition function of any Turing Machine,
while only recently (by [10]) was it shown that the iterations of those transition
functions can also be simulated with analytic flows over unbounded domains.
These results motivate the search for an approximation between G and Ga.

Unlike the case of the elementary functions, there does not appear to be
a convenient bounding class like T . However, there is a generic way to create
bounding functions that correspond to a given class of functions, by choosing
out the right functions from the class.

Definition 33. Given a class of functions F , let bdF be the functions in F that
satisfy properties 2 through 5 of the definition of bounding class.

Lemma 14. If F is closed under addition, multiplication, and composition, con-
tains a function f ≥ 1 and satisfies property 6 of bounding classes, then bdF is
a bounding class.

Definition 34. We write A ¹∀+ B to mean A ¹∀
1

bdB
+ B.

Question 5. Does the approximation G ≈∀+ Ga hold?

We could try to prove this using the approach we described for L. However,
some difficulties need to be overcome. Firstly, it is not clear if given approxima-
tions f∗ and g∗ of f and g, h = I(f, g) and h∗ = I(f∗, g∗) have the same domains.
An additional difficulty is to show that the associated bounding classes are “ap-
propriate,” amounting to the question of whether or not bdG ≤ bdGa.

5 Future work

We make the informal claim that the method of approximation provides a useful
way to organize and think about the relationships between various computational
classes. It both facilitates the technical work and suggests ideas. In particular
we consider the idea of approximation and completion and some issues raised
by organizing the work in this manner. We have seen how the various ways to
characterize Computable Analysis all fit into this two step process of approxima-
tion and completion. One advantage of this is approach is to emphasize that the
fundamental point of the various characterizations is to find an approximation.
It also helps from a technical point of view, separating the proofs into two steps,
where the approximation step can be facilitated by the various tools developed
for this method. Furthermore, by separating out the notion of completion as a
distinct step, we have seen that in some cases, different kinds of completions are
equivalent. This raises the question of considering more broadly the ways that
a class of functions can be completed. To date, the method of choice has been
to use limits, but we could also consider search operators, given the result of
Mycka [17], showing that in a certain context with Real Recursive Functions,
limits and zero-finding are equivalent.

Question 6. What other manners of “completion” are interesting and useful in
relating computational classes to Computable Analysis?

A related line of thought, alluded to earlier, is to consider the elimination of
the completion step.

Question 7. Are there characterizations of Computable Analysis, which natu-
rally capture all of its functions, without a completion operation?

This would be especially interesting in light of the fact that the very definition
of Computable Analysis is tied up with a notion of completion. Already this is
apparent in the standard definitions of Computable Analysis as a computable
process which gets increasingly closer to the result, only finished as the accuracy
parameter converges to infinity (proposition 4 points out exactly how to put the
limit into the definition). Thus, to find an alternative model with no apparent
completion step would provide a more genuinely distinct way of conceiving of
Computable Analysis. This would seem to be interesting from two points of view.
It would seem to be a very useful kind of result in understanding a Church-
Turing thesis for real computation (recalling the discussion of the introduction).
Furthermore, recall that in the introduction we considered the project of using
the correspondences to Computable Analysis as a way to bring in the methods
of analysis to the questions of classic complexity theory. A model of computation
which is more different and does not employ completion could be more useful in
this vein.

6 Acknowledgements

This work was partially supported by Fundação para a Ciência e a Tecnologia
and EU FEDER POCTI/POCI, namely, via CLC, project ConTComp POCTI
/ MAT / 45978 / 2002, and grant SFRH / BPD / 16936 / 2004.

References

1. O. Bournez and E. Hainry. Elementarily computable functions over the real num-
bers and R-sub-recursive functions. Theoretical Computer Science, 348(2–3):130–
147, 2005.

2. O. Bournez and E. Hainry. Recursive analysis characterized as a class of real
recursive functions. Fundamenta Informaticae, 74(4):409–433, 2006.

3. M. S. Branicky. Universal computation and other capabilities of hybrid and con-
tinuous dynamical systems. Theoretical Computer Science, 138(1):67–100, 1995.

4. M. L. Campagnolo. Computational complexity of real valued recursive functions
and analog circuits. PhD thesis, IST, Universidade Técnica de Lisboa, 2001.

5. M. L Campagnolo, C. Moore, and J. F. Costa. Iteration, inequalities, and differ-
entiability in analog computers. Journal of Complexity, 16(4):642–660, 2000.

6. M. L Campagnolo, C. Moore, and J. F. Costa. An analog characterization of the
Grzegorczyk hierarchy. Journal of Complexity, 18(4):977–100, 2002.

7. M. L. Campagnolo and K. Ojakian. The elementary computable functions over
the real numbers: Applying two new techniques. Submitted.

8. M. L. Campagnolo and K. Ojakian. The methods of approximation and lift-
ing in real computation. In Douglas Cenzer, Ruth Dillhage, Tanja Grubba, and
Klaus Weihrauch, editors, Proceedings of the Third International Conference on
Computability and Complexity in Analysis, CCA 2006, Gainesville, Florida, USA,
November 1–5, 2006, volume 167 of Electronic Notes in Theoretical Computer Sci-
ence, Amsterdam, 2007. Elsevier.

9. J. F. Costa and J. Mycka. The P 6= NP conjecture in the context of real and
complex analysis. Journal of Complexity, 22(2):287–303, April 2006.

10. D. S. Graça, M. L. Campagnolo, and J. Buescu. Computability with polynomial
differential equations. Advances in Applied Mathematics, 2007. to appear.

11. D. S. Graça and J. F. Costa. Analog computers and recursive functions over the
reals. Journal of Complexity, 19(5):644–664, 2003.

12. D. S. Graça, N. Zhong, and J. Buescu. Computability, noncomputability and unde-
cidability of maximal intervals of IVPs. Transactions of the American Mathematical
Society, 2007. to appear.

13. A. Grzegorczyk. Computable functionals. Fundamenta Mathematicae, 42:168–202,
1955.

14. K.-I. Ko. Complexity Theory of Real Functions. Birkhaüser, 1991.
15. P. Koiran and C. Moore. Closed-form analytic maps in one and two dimensions can

simulate universal Turing machines. Theoretical Computer Science, 210(1):217–
223, 1999.

16. C. Moore. Recursion theory on the reals and continuous-time computation. The-
oretical Computer Science, 162:23–44, 1996.

17. J. Mycka. µ−recursion and infinite limits. Theoretical Computer Science, 302:123–
133, 2003.

18. J. Mycka and J. F. Costa. Real recursive functions and their hierarchy. Journal of
Complexity, 20(6):835–857, 2004.

19. D. S. Graça O. Bournez, M. L. Campagnolo and E. Hainry. Polynomial differential
equations compute all real computable functions on computable compact intervals.
Journal of Complexity, 2007. doi: 10.1016/j.jco.2006.12.005.

20. C.E. Shannon. Mathematical theory of the differential analyzer. J. Math. Phys.
MIT, 20:337–354, 1941.

21. K. Weihrauch. Computable Analysis: An Introduction. Springer-Verlag, 2000.

