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Abstract

Pudlák shows that bounded arithmetic (Buss’ S2) proves an upper bound on the
Ramsey number Rr(k) (the r refers to the number of colors, assigned to edges; the
k refers to the size of the monochromatic set). We will strengthen this result by im-
proving the bound. We also investigate lower bounds, obtaining a non-constructive
lower bound for the special case of 2 colors (i.e. r = 2), by formalizing a use of the
probabilistic method. A constructive lower bound is worked out for the case when
the monochromatic set size is fixed to 3 (i.e. k = 3). The constructive lower bound is
used to prove two “reversals.” To explain this idea we note that the Ramsey upper
bound proof for k = 3 (when the upper bound is explicitly mentioned) uses the
weak pigeonhole principle (WPHP) in a significant way. The Ramsey upper bound
proof for the case in which the upper bound is not explicitly mentioned, uses the
totality of the exponentiation function (Exp) in a significant way. It turns out that
the Ramsey upper bounds actually imply the respective principles (WPHP and Exp)
used to prove them, indicating that these principles were in some sense necessary.
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1 Introduction

In this paper we will formalize upper and lower Ramsey bounds in the context of bounded
arithmetic. Bounded arithmetic is a natural place to consider finite combinatorics like Ram-
sey theory, since one of the key features of bounded arithmetic is the fact that the expo-
nentiation function cannot be defined. If exponentiation is added as an axiom to bounded
arithmetic, many proofs in finite combinatorics go through easily. Without exponentiation,
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just in bounded arithmetic, we are often forced to find a different proof, or a proof may not
even be possible. Thus it is of interest to consider how much Ramsey theory can be carried
out in bounded arithmetic.

We use the conventional arrow notation n → (k)r to mean that if each of the edges of the
complete graph on n vertices is assigned one of r colors then there is a size k subset X of
the vertices, such that all of the edges with vertices in X are assigned the same color (X is
called monochromatic). The smallest such n that makes the arrow relation hold is denoted
Rr(k).

The starting point for Ramsey theory in bounded arithmetic is Pudlák’s result ([Pud 91]). He
shows (in theorem 1) that in bounded arithmetic we can prove a formalization of rrk → (k)r,

or Rr(k) ≤ rrk. In section 3 we improve this to Rr(k) ≤ (1 + ε) (rk−r)!
((k−1)!)r , where ε > 0 is any

fixed rational number (this is the convention throughout for ε unless otherwise mentioned).
In Ramsey theory it is common to consider special cases for which the bounds can be
improved. We consider the well-studied (in the combinatorics literature) special case where
k = 3, and further improve the bound to Rr(3) ≤ 3(1 + ε)(r!). Both proofs follow [Pud 91],
but improve the bound by counting more efficiently. Counting sets in bounded arithmetic is
used throughout this paper; we raise this point more explicitly in the conclusion.

The lower bounds on Rr(k) come in two varieties, constructive and non-constructive. By
constructive, people mean that given any r and k, there is a number n and an explicit de-
scription of a particular r-coloring (i.e. a coloring of the edges using r colors) of the complete
graph on n vertices, such that there is no size k monochromatic set, implying Rr(k) > n. By
non-constructive, one means that there is an existence argument, but no explicit description
of the coloring. A major issue in Ramsey theory is finding constructive lower bounds, even
though the non-constructive bound is usually much better. The combinatorics literature gen-
erally relies on our intuition as far as what counts as an explicit description. What people
generally have in mind is some description which allows you to feasibly decide the color
of any given edge. A description which called on you to consider all possible graphs on n
vertices, though explicit in some sense, would not be considered a constructive lower bound;
thus the existence arguments using the probabilistic method are not considered constructive.

One of the main inspirations for this paper is to understand more precisely the distinction
between constructive and non-constructive lower bounds in Ramsey theory. A natural context
for such an investigation is a weak theory like bounded arithmetic. A constructive lower
bound is then a coloring given by a formula. We can now say exactly how constructive a
definition is according to the complexity of the formula exhibiting it. We can also go beyond
just the issue of how complex the definition is, and consider how complex it is to prove
that the definition has the correct properties, or in other words, what fragment of bounded
arithmetic do we need. With these thoughts as our ultimate motivation, we take a small step
in this direction in sections 4 and 5.
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In section 4, we consider the special case of k = 3, proving a sort of converse to Pudlák’s
theorem. Pudlák’s proof uses the weak pigeonhole principle (WPHPm

n ), which states, infor-
mally, that a function from {0, 1, . . . , m− 1} to {0, 1, . . . , n− 1} is not injective, as long as
m ≥ 2n. His result can be restated for the special case of k = 3, as saying that in bounded
arithmetic WPHP2n

n implies (r3r → (3)r). By putting an idea from Kraj́ıček ([Kraj 2001])
into the context of bounded arithmetic, we shall essentially prove the converse (we call it
a “reversal”), namely, that (r3r → (3)r) implies WPHP2n

n . Kraj́ıček develops his idea in the
context of propositional proof complexity and is not concerned with having a constructive
lower bound; for our case that will be essential. We then develop a second kind of reversal,
this time for a modified Ramsey principle in which there is no explicit mention of the upper
bound of r3r; it essentially says ∀r∃n n → (3)r. In this case adding an axiom stating that
the exponentiation function is total (call this Exp) allows us to prove the Ramsey principle.
Again we get a reversal, namely, the Ramsey principle implies Exp.

In section 5 we consider the special case of r = 2 and formalize a non-constructive lower
bound whose proof uses the probabilistic method. In the earlier sections an extra predicate
symbol is used to exhibit the coloring (we call them “oracle” versions), while section 5 uses a
number to code the coloring (the “number” versions). Doing non-constructive lower bounds
essentially forces this modification on us, since we need to be able to refer to arbitrary
colorings.

Throughout the paper, we will work within the system of first-order bounded arithmetic,
S2 (or I∆0 + Ω1) as described in [Kraj 95] (developed by Buss [Buss 86], though I∆0 was
originally presented in [Par 71]). We assume familiarity with this work, but briefly mention
a few points. S2 is a theory of arithmetic in which induction is only allowed on bounded
formulae. By Σb

i we mean the set of bounded formulae with at most i alternations of bounded
quantifiers (and any number of sharply bounded quantifiers, that is, quantifiers with a bound
of essentially (log t) for some term t), beginning with an existential quantifier; Πb

i is the same,
except that we begin with a universal quantifier. For Φ being some such set of formulae,
Φ−IND is the set of all induction axioms for formulae in Φ; Φ−LIND is defined similarly for
length induction. We can now define T i

2 to be Σb
i−IND, plus some basic axioms; Si

2 is the
same, except that LIND replaces IND. Thus there is a hierarchy of theories within S2: S1

2 ⊆
T 1

2 ⊆ S2
2 ⊆ T 2

2 ⊆ . . . ⊆ S2. This can all be relativized to a new relation symbol R. By Σb
i(R)

we mean the set of Σb
i formula with R added to the language; Πb

i(R) is defined similarly. Si
2(R)

and T i
2(R) result from replacing Σb

i−LIND and Σb
i−IND by Σb

i(R)−LIND and Σb
i(R)−IND,

respectively. In any theory containing S1
2 we may conservatively add functions which run in

polynomial time in the length of their number inputs. Furthermore, for many such functions,
we can prove that appropriate definitions have the expected properties. Thus we shall freely
use such basic functions in this work.
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2 Technical Preliminaries

We make precise some of the terminology that we will use throughout the paper. By [x] we
mean the set {0, 1, . . . , x − 1}. When we refer to a number x as the domain or range of a
function we mean the set [x]. Sometimes for ease of readability we use exp(x, y) to mean xy.
We follow common terminology in bounded arithmetic, using | x| to refer to the length of the
binary representation of the number x (i.e. about log2 x). Informally, the weak pigeonhole
principle (WPHPt(n)

n ) says that a function mapping t(n) to n is not injective. Formally, we
have two variants to consider.

Definition 1 Let R be a 2 place relation symbol and t(n) a term.

• (Functional Form) WPHPt(n)
n (R) is the formula:

∀x < t(n) ∃!d < n R(x, d) → ∃x < y < t(n) ∃d < n R(x, d) ∧R(y, d).
• (Relational Form) Let rWPHPt(n)

n (R) be the same except that the ∃! quantifier is replaced
by ∃.

The relational version is a stronger statement which does not require R to be a function.
[PWW 88] first proved weak pigeon hole statements in bounded arithmetic. Their results
were strengthened by [MPW 2000] in the following result.

Theorem 2 For any Σb
1(R) formula ψ(R), T 2

2 (R) proves rWPHP2n
n (ψ(R)).

It is immediate that T 2
2 (R) suffices for the various weaker statements, such as the functional

form or the case of choosing ψ(R) to be simply R. This result is sharp in terms of the
standard hierarchy of theories within S2. In [Kraj 92] it is shown that S2

2(R) does not even
prove one of the weakest statements, WPHP2n

n (R) (see also [Kraj 95], p. 216). We also note
that the various forms of the WPHPm

n for different values of m are essentially equivalent. The
following theorem essentially comes from [PWW 88]. Provable connections of this sort are
explicitly mentioned in [Kraj 2001] (theorem 6.1) and [Thap 2002] (lemma 2.1). We state
the particular form we need.

Theorem 3 Let i ≥ 1 and φ(R) be a formula of complexity Σb
i(R); let t(n) be a term, and

ε > 0 be a fixed rational. Then there is a formula ψ(R) of complexity Σb
i(R) such that Si

2(R)
proves WPHPt(n)

n (ψ(R)) → WPHP(1+ε)n
n (φ(R)).

In stating the theorems we will stick with the typical case of m = 2n, but use the above
theorem freely. The theorem holds for the relational form too.

In many places, we will use numbers to code sequences, which will be used to talk about
objects such as sets and colorings of graphs. Suppose we have a number x and we want to
code a sequence of length x. The natural way to encode such a sequence would be with a
number of size about 2x, however we cannot carry out exponentiation in bounded arithmetic
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unless x is small enough.

Definition 4 Let small(x) abbreviate ∃m x < |m|.

If x is small (from now on, we use the word in the formal sense of the above definition), we
can in fact find 2x and so we can work with sequences of length x. In this paper, when a
parameter x is small, we will freely refer to various objects coded by sequences of this length;
we will also freely refer to operations on these objects, such as checking for membership in
a number that codes a set.

Sometimes we explicitly mention the use of smallness, but when there are exponentially large
terms (such as 2x or x!) the assumption of smallness is implicit. So for example, the formula
φ(2x) abbreviates small(x) → φ(2x).

Now we define the Ramsey principle. It uses a 3 argument relation symbol H to refer to the
colors of edges; the first two arguments are vertices and the third argument is the color of
the edge connecting them. The principle says that if all the edges of the complete graph on n
vertices are colored with one of r colors (always assumed to be at least 2), then we can find
a monochromatic set X of size k. We use the notation size(X) to refer to the cardinality of
the set coded by the number X; in terms of its encoding as a sequence this simply amounts
to the length of an appropriate sequence for the set X.

Definition 5 Let H be a relation symbol with 3 arguments.

• Let Coloring(H,n, r) be ∀x < y < n ∃!d < r H(x, y, d).
• Let Monochromatic(H, X, n, r) be ∃d < r ∀u, v ∈ X H(u, v, d).
• Let Ramsey(H,n → (k)r) be

Coloring(H, n, r) → ∃X ⊆ [n] size(X) = k ∧Monochromatic(H,X, n, r).

3 Ramsey upper bounds

As discussed, Pudlák showed that bounded arithmetic can prove the upper bound of Rr(k) ≤
rrk. First we improve this bound to Rr(k) ≤ (1 + ε) (rk−r)!

((k−1)!)r ≈ rrk (1+ε)

rr−1/2(k−1)(r−1)/2
√

2π
r−1 . The

last approximate equality uses Stirling’s formula, a form of which can be proven in S1
2 by

the work of [Jer 03] (in his appendix).

We note that for the special case of r = 2, we get R2(k) ≤ (1 + ε)
(

2k−2
k−1

)
, close to the best

known upper bound (outside of bounded arithmetic) of 1√
k−1

(
2k−2
k−1

)
[Thom 88]. However,

for the special case of k = 3, this bound yields only Rr(3) ≤ (1 + ε) (2r)!
2r , somewhat larger

than the best known upper bound. We provide a special argument catered to this case that
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improves this further to Rr(3) ≤ 3(1 + ε)(r!); the best known bound (outside of bounded
arithmetic) is (e− 1

24
)(r!) ([Folk 74] and [CG 83]).

We will see that the various Ramsey principles can be proved in T 3
2 (H). It can be shown

that S2
2(H) does not prove these Ramsey principles, so it is unknown where exactly they fit

in the hierarchy S1
2(H) ⊆ T 1

2 (H) ⊆ S2
2(H) ⊆ T 2

2 (H) ⊆ . . . ⊆ S2(H). This will be further
discussed at the end of section 4.

3.1 General Improvement

Now we consider the general case, showing the following.

Theorem 6 There is a Σb
2(H) formula ψ(H) such that S2

2(H) + WPHP2n
n (ψ(H)) proves

Ramsey(H, (1 + ε) (rk−r)!
((k−1)!)r → (k)r).

First we note how this theorem leads to a corollary.

Corollary 7 T 3
2 (H) proves Ramsey(H, (1 + ε) (rk−r)!

((k−1)!)r → (k)r).

Proof

By theorem 6, it suffices to show that T 3
2 (H) proves WPHP2n

n (ψ(H)) for ψ being Σb
2(H).

First we write ψ equivalently as (∃x < t φ(H)), where φ(H) is Πb
1(H). We know that

T 2
2 (R) proves WPHP2n

n (∃x < t R), so for φ(H) replacing R in the Σb
2(R) induction axioms

of the T 2
2 (R) proof, we can push negations in and pull out quantifiers to see that it suffices

to have Σb
3(H) induction.

¤

We now prove theorem 6, following Pudlák’s argument (we also follow the presentation in
Kraj́ıček [Kraj 95], theorem 12.1.3).

Assuming the Ramsey principle is false allows us to define an injection from the set of
vertices to a smaller set of sequences. Such an injection will violate the WPHP, giving us our
desired contradiction. Our set of vertices is [(1 + ε) (rk−r)!

((k−1)!)r ], which we will map to the set

of sequences with elements from [r] and no more than k − 2 of any number (let’s call such
sequences “good”). To this point the argument will be the same as Pudlák’s. We shall then

diverge by mapping the good sequences injectively to (rk−r)!
((k−1)!)r , so the composition of these

two maps is an injection from (1 + ε) (rk−r)!
((k−1)!)r to (rk−r)!

((k−1)!)r , violating WPHP(1+ε)n
n . It will be

helpful to have a more general notion of good sequences given by the following definition.

Definition 8 For small a0, . . . , ar−1 and r, let Gooda0,...,ar−1 be the set of sequences with
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elements from [r] having at most ai i’s.

This set can be exhibited by a ∆b
1 (in S1

2) formula, which will allow the latter part of the
proof to go through in S1

2 .

First, working in S2
2(H), we shall repeat Pudlák’s argument, describing the first map, from

the set of vertices, (1 + ε) (rk−r)!
((k−1)!)r , to the set of good sequences, Goodk−2,...,k−2, under the

assumption that H is an r-coloring of the edges with no size k monochromatic set. To aid
the process we define a Πb

1(H) relation E with 2 sequences as arguments. The first is a
sequence of vertices; the second is a sequence of colors (i.e. numbers from [r]).

E(〈x0, . . . , xh〉, 〈δ0, . . . , δh−1〉) holds if

x0 = 0 ∧
x0 < x1 < . . . < xh ∧
∀i < j ≤ h H(xi, xj, δi) ∧
∀i < h∀y < xi+1 (y > xi → ∃j ≤ i ¬H(xj, y, δj))

In words, E says that we start with x0 = 0 and let x1 be the smallest numbered vertex such
that edge {x0, x1} is colored δ0; x2 is the next smallest such that edge {x1, x2} is colored δ1 and

edge {x0, x2} is colored δ0, and so on. Given x < (1+ε) (rk−r)!
((k−1)!)r we define F (x) to be the unique

sequence δ such that for some 〈x0, . . . , xh〉 we have E(〈x0, . . . , xh〉, δ), where xh = x. We can
show, using Σb

2(H)−LIND, that F is a well-defined, injective function; we only need LIND
because the pertinent parameter in the inductive proofs is the length of the sequences, and
such lengths are small. To show its range is indeed Goodk−2,...,k−2 consider what would happen
if δ had any color repeated k−1 times, at say δi1 = . . . = δik−1

, for i1 < . . . < ik−1 < h. Then
the edges of {xi1 , . . . , xik−1

, xh} would all be colored δi1 , thus yielding a size k monochromatic
set, violating our assumption. For the formula ψ(H, x, δ) called for in the theorem, we take
the Σb

2(H) definition of F (x) = δ, namely ∃〈x0, . . . , xh〉 xh = x ∧ E(〈x0, . . . , xh〉, δ).

Now we define the map f , from Goodk−2,...,k−2 to (rk−r)!
((k−1)!)r . We will refer to general small pa-

rameters ai, as this facilitates the inductive arguments, and then in the end we will substitute
k − 2 for these parameters. For small parameters, let G(a0, . . . , ar−1) = (a0+...+ar−1+r)!

(a0+1)!...(ar−1+1)!
− 1,

an approximation of the size of Gooda0,...,ar−1 ; an inductive proof shows that G(a0, . . . , ar−1)
is an integer. If any ai = −1 we define G(a0, . . . , ar−1) = 0. We can see that for ai ≥ 0, G
satisfies the following recursive bound.
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G(a0, . . . , ar−1)≥ 1 + G(a0 − 1, a1, . . . , ar−1)

+G(a0, a1 − 1, a2, . . . , ar−1)

+ . . .

+G(a0, . . . , ar−2, ar−1 − 1)

To avoid confusion, note that for what follows, at most one parameter among any particular
list a0, . . . , ar−1 may have the number 1 subtracted from it. We define the function fa0,...,ar−1

(a function from Gooda0,...,ar−1 to [G(a0, . . . , ar−1)]) with the following recursive formulas
(Notation: 〈〉 is the empty sequence, and for strings u and v, u|v is their concatenation).

Definition 9

• fa0,...,ar−1(〈〉) = 0

• fa0,...,ar−1(x|i) = 1 + fa0,...,ai−1,...,ar−1(x)

+ G(a0 − 1, a1, . . . , ar−1)

+ . . .

+ G(a0, . . . , ai−1 − 1, . . . , ar−1)

Note that the definition of fa0,...,ar−1 is Σb
1 since we only require a recursion with a0+. . .+ar−1

steps (a small number), which can be carried out using a short sequence that can be coded
by a number.

Claim 10 For a0, . . . , ar−1 ≤ k − 2, and any sequence x such that x ∈ Gooda0,...,ar−1, we
have fa0,...,ar−1(x) < G(a0, . . . , ar−1).

Proof

The proof is by induction on the length of x and so can be carried out in S1
2 . We indicate

how the inductive step works. Suppose x is an appropriate sequence whose last element is
i; so x = x′|i.

fa0,...,ar−1(x) = 1 + fa0,...,ai−1,...,ar−1(x
′) + G(a0 − 1, a1, . . . , ar−1) +

. . . + G(a0, . . . , ai−1 − 1, . . . , ar−1)

< 1 + G(a0 − 1, a1, . . . , ar−1) +

. . . + G(a0, . . . , ai − 1, . . . , ar−1)

≤G(a0, . . . , ar−1)

The inductive hypothesis justifies the first inequality. The second inequality follows from
the recurrence on G.
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Claim 11 For any x, y ∈ Gooda0,...,ar−1, such that x 6= y, fa0,...,ar−1(x) 6= fa0,...,ar−1(y).

Proof

We proceed by induction on the sequence lengths of x or y, again working in S1
2 . As in the

last proof, we point out how the inductive step works. Suppose x = x′|i and y = y′|j. If
i = j then once we use the definition of f , we can apply the inductive hypothesis. If i 6= j,
assume i < j, and then we can calculate.

fa0,...,ar−1(x
′|i) = 1 + fa0,...,ai−1,...,ar−1(x

′) + G(a0 − 1, a1, . . . , ar−1) +

. . . + G(a0, . . . , ai−1 − 1, . . . , ar−1)

< 1 + G(a0 − 1, a1, . . . , ar−1) +

. . . + G(a0, . . . , ai − 1, . . . , ar−1)

≤ fa0,...,ar−1(y
′|j)

The first inequality follows from claim 10 and last from the definition of f .
¤

Now we turn back to the particular case of a0 = . . . = ar−1 = k − 2. The function fk−2,...,k−2

is injective by claim 11. From claim 10 we see that it has the desired the range of (rk−r)!
((k−1)!)r .

And so we have finished approximately counting the set of good sequences.

3.2 Special Case: k = 3

We now consider the special case of k = 3. It is already covered in the above case by counting
the set Good1,...,1 (r 1’s), sequences with elements from [r], having no repeated elements. We
will now count this set more efficiently, bounding its size by 3(r!), which yields the following
theorem.

Theorem 12 There is a Σb
2(H) formula ψ(H) such that S2

2(H) + WPHP2n
n (ψ(H)) proves

Ramsey(H, 3(1 + ε)(r!) → (3)r).

The following corollary is proved in a similar way to corollary 7.

Corollary 13 T 3
2 (H) proves Ramsey(H, 3(1 + ε)(r!) → (3)r).

To prove theorem 12, we proceed as in the proof of theorem 6, working in S2
2(H) to map

3(1 + ε)(r!) to Good1,...,1. Now we carry out the counting, describing an injective mapping ρ
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from Good1,...,1 to 3(r!). The rest of the argument can be carried out in S1
2 . We will use (r)m

to denote the product r(r − 1) . . . (r −m + 1).

Let ρ(〈b1, . . . , bh〉) = (r)0+(r)1+ . . .+(r)h−1+gr(〈b1, . . . , bh〉), where gs is defined recursively
as follows; the domain of gs is Good1,...,1 (s 1’s).

• gs(〈〉) = 0

• gs(〈b1, . . . , bh〉) = (b1)(s− 1)(h−1) + gs−1(〈b′2, . . . , b′h〉), where b′i =





bi if bi < b1

bi − 1 if bi > b1

.

The definition of ρ is Σb
1 since the recursion is defined on short sequences. To show ρ is

injective with proper range it suffices to prove the following three claims in S1
2 (the parameters

h and s are small). The next two claims both follow by induction on the length, h, of the
sequence, similar to claims 10 and 11 of the last subsection.

Claim 14 gs(〈b1, . . . , bh〉) < (s)h, for 〈b1, . . . , bh〉 ∈ Good1,...,1 (s 1’s) of length h.

Claim 15 For any fixed h, gs is injective on the length h sequences in Good1,...,1 (s 1’s).

Now to check that the range is correct we use the following bound (note that we use 3, rather
than e since it allows for a simple inductive proof in S1

2).

Claim 16 For small r, (1/0! + 1/1! + . . . + 1/r!) < 3.

Proof

We show by induction on r show that (1/0! + 1/1! + . . . + 1/r!) < 3− 2
(r+1)!

. We note the
inductive step.

(1/0! + 1/1! + . . . + 1/r! + 1/(r + 1)!)≤ 3− 2

(r + 1)!
+

1

(r + 1)!

= 3− 1

(r + 1)!

≤ 3− 2

(r + 2)!

¤

So the range is [3(r!)] since

ρ(〈b1, . . . , br〉) < (r)0 + . . . + (r)r

= r!(1/0! + 1/1! + . . . 1/r!)

< 3(r!).
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4 The Reversals

We will consider two “reversals,” spending the bulk of the section on the first one. In the
first reversal we show how the Ramsey principle (for k = 3) implies the WPHP. We sketch
the idea behind the proof now. Suppose for contradiction that WPHP2n

n does not hold; in
fact we can replace 2n by a larger quantity, t(n) (a term defined in lemma 19). So we have
an injective function from t(n) to n. Assume that n = 2r for some r. We constructively
exhibit an r-coloring of the graph on n vertices with no size 3 monochromatic set. Using our
injective function we pull this coloring back to an isomorphic r-coloring for the graph on t(n)
vertices. Since the function is injective, this new coloring also has no size 3 monochromatic
set. We in fact have that t(n) > r3r, so since (r3r → (3)r) holds, we know there is a size 3
monochromatic set. We have arrived at a desired contradiction.

To prove our reversal we will formalize the constructive lower bound of Rr(3) > 2r. The proof,
as pointed out in [GRS 90] (p.145) goes through easily by induction on r. For the inductive
step we start with two (r−1) colored graphs, each with 2r−1 vertices and no monochromatic
sets of size 3. They are joined by edges of a new color, giving us the appropriate graph on 2r

vertices. The construction we give, based on this argument, essentially takes as its vertices
the binary strings of length r, and colors edges according to the first bit (from the right) at
which two strings differ (let 〈u〉i refer to the ith bit in the binary representation of u).

Definition 17 Let Low(x, y, k) be the ∆b
1 formula:

∀i < max(|x|, |y|)(i < k → 〈x〉i = 〈y〉i) ∧ 〈x〉k 6= 〈y〉k.

Now we can prove that Low really is a lower bound coloring.

Lemma 18 S1
2 proves ∀r ¬Ramsey(Low, 2r → (3)r).

Proof

Fix any small r. S1
2 proves for all X = {u, v, w} ⊆ [2r], ¬Monochromatic(Low, X, 2r, r).

Consider any color d < r, and we show that X is not colored just by d. If 〈u〉d = 〈v〉d then
edge {u, v} is not colored by d, so assume 〈u〉d 6= 〈v〉d. Then 〈w〉d has to equal one of 〈u〉d
or 〈v〉d, so not all the edges can be colored d.

We prove Coloring(Low, 2r, r) by LIND up to r, noting that for x < y < 2r, the first bit
where they differ will be at a unique position d < r.

¤

Lemma 19 Let t(n) be the term (log 2n)3 log 2n. Let i ≥ 1. For any formula φ(R) of com-
plexity Σb

i(R), there is a formula ψ(R) of complexity Σb
i(R) such that

S1
2(R) + ∀rRamsey(ψ(R), r3r → (3)r) proves ∀nWPHPt(n)

n (φ(R)).
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Proof

Let ψ(x1, x2, k) be the Σb
i(R) formula ∃y1, y2 < 2rφ(R, x1, y1)∧φ(R, x2, y2)∧Low(y1, y2, k).

To show WPHPt(n)
n (φ(R)) fix some n and find the r such that 2r−1 ≤ n < 2r; note that r

is small. Assume ¬WPHPt(n)
n (φ(R)), so φ(R) is a total injective function from t(n) to n.

Showing ¬Ramsey(ψ, r3r → (3)r) finishes the proof, so it suffices to show the following 2
claims.
Claim 20 S1

2(R) proves Coloring(ψ, r3r, r).
Claim 21 S1

2(R) proves ∀x1 < x2 < x3 < r3r¬Monochromatic(ψ, {x1, x2, x3}, r3r, r).
To prove the first claim, consider any edge given by x1, x2 < r3r, x1 6= x2. Note that

x1 < r3r = t(2r−1) ≤ t(n), therefore, x1 is mapped by φ(R) to a number y1 < n < 2r.
Similarly, x2 is mapped to some y2 < 2r, y1 6= y2. By lemma 18, Low assigns a unique color
to the edge (y1, y2), so (x1, x2) is also assigned a unique color.

To prove the second claim, for j = 1, 2, 3, let yj < 2r be such that φ(R, xj, yj). The set
{y1, y2, y3} is not monochromatic by lemma 18, therefore neither is {x1, x2, x3}, since the
latter set is colored in the same manner as the former.

¤

Now, lemma 19 together with theorem 3 immediately yields the following theorem, the
reversal.

Theorem 22 (Reversal to WPHP) Let i ≥ 1. For any formula φ(R) of complexity Σb
i(R),

there is a formula ψ(R) of complexity Σb
i(R) such that

Si
2(R) + ∀rRamsey(ψ(R), r3r → (3)r) proves ∀nWPHP2n

n (φ(R)).

Note a special case of particular interest if we take φ(R) to be simply R; then the above
theorem tells us that there is a Σb

1(R) formula with the appropriate proof going through in
S1

2(R). From this fact we can obtain the following independence result.

Corollary 23 There is a Σb
1(R) formula ψ(R) such that S2

2(R) does not prove

Ramsey(ψ(R), r3r → (3)r).

Proof

We take the ψ from theorem 22, for i = 1, so that if S2
2(R) did prove the Ramsey statement,

it would also prove WPHP 2n
n (R) (in fact R can be replaced by Σb

1(R)). But as mentioned
earlier (see remarks following theorem 2), this is known to be unprovable in S2

2(R).
¤

However, the argument from [CK 99] can be applied to give a proof of the following stronger
result.
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Theorem 24 (essentially [CK 99]) S2
2(H) does not prove Ramsey(H, r3r → (3)r).

The reversal of theorem 22 can be mildly improved upon, using basically the same argument
and the same lower bound. As long as k (the size of the monochromatic set we are looking
for) is a constant larger than 2 (it was 3 above), or even a term rc for some standard c,
the lower bound used for k = 3 is good enough to get the reversal. However other reversals
of this kind seem difficult to obtain. For example, in the case of R2(k), we have an upper
bound of 22k, but the best known constructive lower bound is about R2(k) ≥ elog2 k/4 log log k,
from [FW 81]. The bounds are too far apart to obtain a reversal by these methods. For our
reversal, notice we had the bounds 2r < Rr(3) ≤ r3r, which are close enough that for the
term t(n) = (log 2n)3 log 2n (from lemma 19), we have r3r ≤ t(2r−1). For the existing bounds
on R2(k), we do not have such a term in the language. Thus we see that obtaining the reversal
in this manner requires two key ingredients: 1) The lower bound is constructive and 2) the
upper bound and the lower bound are related appropriately by a term in the language.

We now consider a different kind of reversal, obtained from a different Ramsey principle. Up
to this point we have considered Ramsey principles in which the upper bound is explicitly
given. Now we consider the case in which the appropriate number is only asserted to exist,
namely ∀r∃nRamsey(H,n → (3)r). This can easily be proven if we are given a principle
stating that the exponentiation function is total, since the usual proof of Ramsey’s theorem
can be carried out directly, coding any objects in the proof using the exponentiation function.
Let Exp abbreviate ∀x∃y x = |y|, and we have the following result.

Claim 25 S1
2(H) + Exp proves ∀r∃nRamsey(H,n → (3)r).

The reversal is something like a converse, where the Ramsey principle is replaced by a schema
(we put Σb

0 in place of the relation symbol H to indicate that the principle holds for all Σb
0

formulae).

Theorem 26 (Reversal to Exp) S1
2 + ∀r∃n Ramsey(∆b

1, n → (3)r) proves Exp.

Proof

We actually only use the Ramsey principle for the formula Low (a ∆b
1 formula). Given r

there is an n such that Ramsey(Low, n → (3)r). To show Exp it suffices to show r < |n|. It is
a general fact that for b ≥ a, Ramsey(H, n → (k)b) → Ramsey(H,n → (k)a). So if r ≥ |n|,
we would arrive at Ramsey(Low, n → (3)|n|), but we in fact have that ¬Ramsey(Low, n →
(3)|n|) (basically by the argument of lemma 18). Thus r < |n| as desired.

¤

This is not an unexpected result, however note the significance of the constructive lower
bound. It would seem difficult to prove related results with different Ramsey principles in
which the constructive lower bounds are not good enough.
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5 Formalizing The Probabilistic Method

The Probabilistic Method is used (in [Prob 92]) to show that there exists a 2-coloring of the
complete graph on n = 2k/2 vertices with no size k monochromatic set, or in other words
R2(k) > 2k/2. Since this is an existence argument, to formalize this claim we will need to
change our orientation so that we can assert the existence of graph colorings. Thus we will
now consider colorings coded as numbers, rather than given by a predicate symbol. A graph
coloring on n vertices will be coded by a number G < exp(2,

(
n
2

)
) (recall exp(x, y) means

xy) , which can be interpreted as a binary string of length
(

n
2

)
, so each of the

(
n
2

)
edges is

colored “0” or “1” accordingly; note that the number of vertices n must be small, which will
be implicit throughout our discussion. We will use the same formula “Ramsey” as before,
except that now we will use the number G in place of the predicate symbol H. Finally we
formalize the claim by proving the following.

Theorem 27 T 2
2 proves ∃G < exp(2,

(
2k/2

2

)
)¬Ramsey(G, 2k/2 → (k)2)

To prove the theorem first consider the informal probabilistic argument restated as a counting
argument. Call a coloring “bad” if it has a size k monochromatic set, and “good” otherwise.
So our goal is to show that a good coloring exists. There are

(
n
k

)
size k subsets of vertices and

for each such fixed subset there are exp(2,
(

n
2

)
−

(
k
2

)
+ 1) colorings that make it monochro-

matic. Thus the number of bad colorings is bounded by
(

n
k

)
exp(2, 1−

(
k
2

)
) exp(2,

(
n
2

)
). Since

n = 2k/2, a calculation shows that
(

n
k

)
exp(2, 1−

(
k
2

)
) < 1, so the number of bad colorings

is less than exp(2,
(

n
2

)
), which is the total number of colorings. So there must be a good

coloring.

The lack of exponentiation in bounded arithmetic precludes formalizing this argument di-
rectly since the above proof involves counting large sets of colorings. To formalize the theorem
we reformulate the proof, using the structure of the counting argument to define a function
on the set of all colorings, simulating the argument using the rWPHP.

Suppose for sake of contradiction that the theorem does not hold. So for some small k and n,
where we let n = 2k/2, every coloring G < exp(2,

(
n
2

)
) is bad. We now define a multi-function,

F , from the set of all colorings (i.e. numbers < exp(2,
(

n
2

)
)) to a set which counts all the bad

colorings (numbers bounded by (1/2) exp(2,
(

n
2

)
)). F will be an injective multi-function and

so violate rWPHP, which holds in T 2
2 .

First we sketch the definition of F . Given a coloring G < exp(2,
(

n
2

)
), F will take G and find

a size k monochromatic set X. The function “SetNumber” (to be defined) will map the set

X to s, 0 ≤ s <
(

n
k

)
; each set is mapped to a different number. Many colorings have X as its
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monochromatic set, so to uniquely identify G, we indicate which of the 2 colors X has, and
for the remaining

(
n
2

)
−

(
k
2

)
edges, we choose the appropriate coloring of the edges. This can

be seen as a binary string of length
(

n
2

)
−

(
k
2

)
+ 1, so we arrive at a number, say v, where

v < exp(2,
(

n
2

)
−

(
k
2

)
+ 1). We can obtain this v by a Σb

1 definable (in S1
2) function Rest, so

Rest(G,X) = v. G is then mapped to s · exp(2,
(

n
2

)
−

(
k
2

)
+ 1) + v.

Now we define the function SetNumber, a sort of lexicographic ordering which assigns set
{0, 1, . . . , k− 1} to 0, {n− k, . . . , n− 1} to

(
n
k

)
− 1, and other sets to intermediary numbers

in an injective manner.

Definition 28 For X ⊆ [n], let SetNumber(X) = f0(X), where

• fa({}) = 0 for 0 ≤ a ≤ n

• fa(X) =





fa+1(X − {a}) if a ∈ X,(
n−a−1

size(X)−1

)
+ fa+1(X) otherwise.

This recursively defined function can be given by a Σb
1 formula using sequences of small size

n. We now prove some properties about it in S1
2 .

Claim 29 fa(X) <
(

n−a
size(X)

)
, for X ⊆ {a, . . . , n− 1}.

Proof

We show this by induction on a from n down to 0. For the inductive step we assume the
claim for a + 1 and then need to show fa(X) <

(
n−a

size(X)

)
, where X ⊆ {a, . . . , n− 1}.

If a ∈ X, then fa(X) = fa+1(X − {a}) <
(

n−a−1
size(X)−1

)
≤

(
n−a

size(X)

)
.

Otherwise, a 6∈ X. For X = {} we are done, otherwise we carry out the following
calculation.

fa(X) =
(

n−a−1
size(X)−1

)
+ fa+1(X) <

(
n−a−1

size(X)−1

)
+

(
n−a−1
size(X)

)
=

(
n−a

size(X)

)
.

¤

This claim shows that the range of SetNumber (for a = 0) really is [
(

n
k

)
]. We can also see

that it is injective on size k subsets of [n]. Consider two distinct sets X,Y ⊆ [n], both of size
k. Let b be the smallest element in one set, but not in the other; suppose b ∈ X, and b 6∈ Y .
Since the recursive procedure will be the same up to b, we get that f0(X) = m + fb(X

′)
and f0(Y ) = m + fb(Y

′), for some number m; the sets X ′ and Y ′ come from X and Y ,
respectively, with the same elements from {0, . . . , b− 1} removed by the recursive procedure
(so in particular, the size of the primed sets are also the same). It now suffices to show that
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fb(X
′) < fb(Y

′). We have fb(X
′) = fb+1(X

′ − {b}) <
(

n−b−1
size(X′)−1

)
≤ fb+1(Y

′) +
(

n−b−1
size(X′)−1

)
=

fb(Y
′). We can now define the multi-function F , with the coloring G as input, and y as the

output.

Definition 30 Let F (G, y) be the following Σb
1 formula

∃X ⊆ [n] size(X) = k ∧
Monochromatic(G,X, n, 2) ∧
SetNumber(X) = s ∧
Rest(G, X) = v ∧
y = s · exp(2,

(
n
2

)
−

(
k
2

)
+ 1) + v

By the assumption there exists such X, so F is a multi-function. F is injective, since
SetNumber and Rest are injective and v < exp(2,

(
n
2

)
−

(
k
2

)
+ 1). To show that the range

of F is (1/2) exp(2,
(

n
2

)
) we prove the following bound (essentially from [Prob 92]).

Claim 31 y ≤ (1/2) exp(2,
(

n
2

)
).

Proof

By claim 29 and the definition of s and v, s ≤
(

n
k

)
−1 and v < exp(2,

(
n
2

)
−

(
k
2

)
+ 1). Thus

y < (
(

n
k

)
− 1) exp(2,

(
n
2

)
−

(
k
2

)
+ 1) + exp(2,

(
n
2

)
−

(
k
2

)
+ 1)

=
(

n
k

)
exp(2,

(
n
2

)
−

(
k
2

)
+ 1)

= exp(2,
(

n
2

)
)
(

n
k

)
exp(2, 1−

(
k
2

)
).

We are done when we show that
(

n
k

)
exp(2, 1−

(
k
2

)
) < 1/2.

(
n

k

)
exp(2, 1−

(
k

2

)
) <

nk

k!

exp(2, 1 + k/2)

exp(2, k2/2)
≤ exp(2, 1 + k/2)

k!

(exp(2, k/2))k

exp(2, k2/2)
,

substituting 2k/2 for n.
The last expression is bounded by 1/2 for most k (k ≥ 4).
¤

That finishes the entire proof since we have now arrived at a contradiction, namely, a multi-
function F violating the weak pigeonhole principle. Since F is given by a Σb

1 formula, theo-
rem 2 shows that this proof goes through in T 2

2 .
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The technique used in this proof provides a recipe for formalizing such non-constructive
counting arguments, as long as the counting argument is constructive enough to allow such a
function to be defined. The complexity of the function definition affects what theory suffices.

6 Conclusion

We now review what we have done and present some thoughts on future work. We have seen
another application of the weak pigeonhole principle in formalizing mathematics in bounded
arithmetic (originally it was introduced in [PWW 88] in order to prove the infinitude of
primes). In the reversal to WPHP we have shown a kind of formal equivalence between
Ramsey and pigeonhole principles, thus making precise some of our informal connection
between principles of these two kinds. We showed how to use the weak pigeonhole principle to
simulate the probabilistic method, thus obtaining a non-constructive lower bound. However
to obtain the reversals we found that constructive lower bounds were a crucial ingredient to
our approach.

Proving constructive lower bounds in bounded arithmetic has inherent interest and in some
cases, can be applied to obtain reversals. Many such lower bounds use set systems and
the linear algebraic method (discussed in [BF 92]). Thus the formalization would require
formalizing the appropriate aspects of linear algebra or somehow avoiding it. An example
of this is the well known constructive lower bound of R2(k) ≥ elog2 k/4 log log k (from Frankl
and Wilson, [FW 81]), mentioned at the end of section 4. When stated appropriately, such
a lower bound looks hard, or perhaps impossible to prove in bounded arithmetic. If linear
algebra plays a key role, the work of [SC 2003] on provably feasible matrix theorems could
be of use.
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[Kraj 95] J. Kraj́ıček, Bounded Arithmetic, Propositional Logic, and Complexity Theory
(Cambridge University Press, 1995).
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