Some New Approaches to Characterizing Computable Analysis by Analog Computation

Kerry Ojakian¹ (with Manuel L. Campagnolo²)

¹SQIG/IT Lisbon and IST, Portugal ojakian@math.ist.utl.pt

²DM/ISA, Lisbon University of Technology and SQIG/IT Lisbon

Computability in Europe, 2007

- 3 Results
 - Real Recursive Functions
 - General Purpose Analog Computer
- Aspects of the proofs

5 Conclusion

★ E ► ★ E ► E E

- Technical Framework
- 3 Results
 - Real Recursive Functions
 - General Purpose Analog Computer
- Aspects of the proofs
- 5 Conclusion

<□> < □> < □> < □> = □ = のへへ

Characterizing Computable Analysis. Previous Work

- Results of the form $\mathbf{C}(\mathbb{R}) =$ "Analog".
- Real Recursive Functions introduced by C. Moore 1996. Function algebras with operations like this:

Solve a differential equation and keep the result.

Modified by Bournez and Hainry 2005, 2006.

• General Purpose Analog Computer (GPAC) introduced by Shannon 1941.

Analog circuit model with gates that solve differential equations.

Extended by Graça, Bournez, Campagnolo, Hainry 2007.

Characterizing Computable Analysis. Previous Work

- Results of the form $C(\mathbb{R}) =$ "Analog".
- Real Recursive Functions introduced by C. Moore 1996. Function algebras with operations like this:

Solve a differential equation and keep the result.

Modified by Bournez and Hainry 2005, 2006.

• General Purpose Analog Computer (GPAC) introduced by Shannon 1941.

Analog circuit model with gates that solve differential equations.

Extended by Graça, Bournez, Campagnolo, Hainry 2007.

Characterizing Computable Analysis. Previous Work

- Results of the form $\mathbf{C}(\mathbb{R}) =$ "Analog".
- Real Recursive Functions introduced by C. Moore 1996. Function algebras with operations like this:

Solve a differential equation and keep the result.

Modified by Bournez and Hainry 2005, 2006.

• General Purpose Analog Computer (GPAC) introduced by Shannon 1941.

Analog circuit model with gates that solve differential equations.

Extended by Graça, Bournez, Campagnolo, Hainry 2007.

• Church-Turing style thesis.

- Many distinct models of computation on the reals: Computable Analysis, Real Recursive Functions, GPAC, BSS machines, Neural Networks, Dynamic Systems, ...
- How are the models distinct?
- What kinds of modifications make them equal?

Applications in discrete complexity theory.

- Can hard separation questions (e.g. P versus NP) be reduced to relevant questions in analysis?
- For example, can discrete separations be reduced to "analytic" separations?
- Work in this direction: Costa and Mycka 2006, 2007

• Church-Turing style thesis.

- Many distinct models of computation on the reals: Computable Analysis, Real Recursive Functions, GPAC, BSS machines, Neural Networks, Dynamic Systems, ...
- How are the models distinct?
- What kinds of modifications make them equal?
- Applications in discrete complexity theory.
 - Can hard separation questions (e.g. P versus NP) be reduced to relevant questions in analysis?
 - For example, can discrete separations be reduced to "analytic" separations?
 - Work in this direction: Costa and Mycka 2006, 2007

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● ● ●

B) Results

- Real Recursive Functions
- General Purpose Analog Computer
- Aspects of the proofs

5 Conclusion

<□> < □> < □> < □> = □ = のへへ

Computable Analysis

Definition

•
$$f(x) \in \mathbf{C}(\mathbb{R})$$
:

There is a computable function $F^{x}(n)$ with an oracle for the real number x such that $|f(x) - F^{x}(n)| \le 1/n$.

• **E**(**R**): Like **C**(**R**), replacing computable by elementary computable.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶

Computable Analysis

Definition

•
$$f(x) \in \mathbf{C}(\mathbb{R})$$
:

There is a computable function $F^{x}(n)$ with an oracle for the real number x such that $|f(x) - F^{x}(n)| \le 1/n$.

• E(R): Like C(R), replacing computable by elementary computable.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶

Approximation and Completion

Goal: $\mathbf{C}(\mathbb{R}) = A(\text{LIM})$, broken into 2 steps:

- (Approximation) $\mathbf{C}(\mathbb{R}) \approx \mathsf{A}$.
- (Completion) $\mathbf{C}(\mathbb{R}) = A(LIM)$.

Approximation Relation

Definition

 $\mathcal{A} \preceq^{\mathcal{E}} \mathcal{B} \text{ iff}$ $For every } f(\bar{x}) \in \mathcal{A}, \text{ and every } \alpha(\bar{x}, \bar{y}) \in \mathcal{E}, \text{ there is} \\ f^*(\bar{x}, \bar{y}) \in \mathcal{B} \text{ such that } |f(\bar{x}) - f^*(\bar{x}, \bar{y}))| \leq \alpha(\bar{x}, \bar{y}). \\ \mathcal{A} \approx^{\mathcal{E}} \mathcal{B} \text{ iff } \mathcal{A} \prec^{\mathcal{E}} \mathcal{B} \text{ and } \mathcal{B} \prec^{\mathcal{E}} \mathcal{A}.$

Lemma (Transitivity)

If
$$\mathcal{A} \preceq^{\mathcal{E}} \mathcal{B}$$
 and $\mathcal{B} \preceq^{\mathcal{E}} \mathcal{C}$ then $\mathcal{A} \preceq^{\mathcal{E}} \mathcal{C}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶

Completion Operation

Definition

LIM is the operation:

- Input: $f(t, \bar{x})$
- Output: $F(\bar{x}) = \lim_{t\to\infty} f(t, \bar{x})$, if the limit exists and $F \leq 1/t$ f, for positive t

Definition

If OP is an operation and \mathcal{F} a set of functions, then $\mathcal{F}(OP)$ is:

$\mathcal{F} \cup \{\mathsf{OP}(f) \mid f \in \mathcal{F}\}$

Thus $\mathcal{F}(LIM)$ is a "completion" of \mathcal{F} .

Completion Operation

Definition

LIM is the operation:

- Input: $f(t, \bar{x})$
- Output: $F(\bar{x}) = \lim_{t\to\infty} f(t, \bar{x})$, if the limit exists and $F \leq 1/t f$, for positive t

Definition

If OP is an operation and \mathcal{F} a set of functions, then $\mathcal{F}(OP)$ is:

```
\mathcal{F} \cup \{\mathsf{OP}(f) \mid f \in \mathcal{F}\}
```

Thus $\mathcal{F}(LIM)$ is a "completion" of \mathcal{F} .

Introduction **Technical Framework** Results Conclusion

Outline

- 3

Results

- Real Recursive Functions
- General Purpose Analog Computer

Outline

- Technical Framework
- 3 Results
 - Real Recursive Functions
 - General Purpose Analog Computer
- Aspects of the proofs

5 Conclusion

Ojakian, Campagnolo Characterizing Computable Analysis

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のQ@

Real Recursive Functions

Real Recursive Functions General Purpose Analog Computer

Function Algebras

Definition

Suppose \mathcal{B} is a set of functions (i.e. the basic functions) and \mathcal{O} is a set of operations. Then FA[\mathcal{B} ; \mathcal{O}] is the smallest set of functions containing \mathcal{B} and closed under \mathcal{O} .

Basic Functions:

- Constant functions: $0, 1, -1, \pi$
- Projection functions "P" (example: U(x, y) = x)

•
$$\theta(x) = \begin{cases} 0, & x < 0; \\ x^3, & x \ge 0. \end{cases}$$

Real Recursive Functions General Purpose Analog Computer

Function Algebras

Definition

Suppose \mathcal{B} is a set of functions (i.e. the basic functions) and \mathcal{O} is a set of operations. Then FA[\mathcal{B} ; \mathcal{O}] is the smallest set of functions containing \mathcal{B} and closed under \mathcal{O} .

Basic Functions:

- Constant functions: $0, 1, -1, \pi$
- Projection functions "P" (example: U(x, y) = x)

•
$$\theta(\mathbf{x}) = \begin{cases} 0, & \mathbf{x} < 0; \\ \mathbf{x}^3, & \mathbf{x} \ge 0. \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Real Recursive Functions General Purpose Analog Computer

The Operations

"comp": Composes the given functions.

Definition

LI is the operation:

- Input: Functions: $\overrightarrow{\mathbf{g}}(\overline{x})$, $\overrightarrow{\mathbf{f}}(y, \overline{u}, \overline{x})$, linear in \overline{u} .
- Output: $h_1(y, \bar{x})$ where (h_1, \ldots, h_n) is the solution to the IVP:

$$\overrightarrow{\mathbf{h}}(0,\overline{x}) = \overrightarrow{\mathbf{g}}(\overline{x})$$
$$\frac{\partial}{\partial y}\overrightarrow{\mathbf{h}} = \overrightarrow{\mathbf{f}}(y,\overrightarrow{\mathbf{h}},\overline{x})$$

Real Recursive Functions General Purpose Analog Computer

The Operations

"comp": Composes the given functions.

Definition

LI is the operation:

- Input: Functions: $\overrightarrow{\mathbf{g}}(\overline{x})$, $\overrightarrow{\mathbf{f}}(y, \overline{u}, \overline{x})$, linear in \overline{u} .
- Output: $h_1(y, \bar{x})$ where $(h_1, ..., h_n)$ is the solution to the IVP:

$$\overrightarrow{\mathbf{h}}(0, \overline{x}) = \overrightarrow{\mathbf{g}}(\overline{x})$$

 $rac{\partial}{\partial y} \overrightarrow{\mathbf{h}} = \overrightarrow{\mathbf{f}}(y, \overrightarrow{\mathbf{h}}, \overline{x})$

Real Recursive Functions General Purpose Analog Computer

Elementary Computability.

Let \mathcal{L} abbreviate FA[0, 1, -1, π , θ , P; comp, LI]. Let \mathcal{L}^a abbreviate FA[0, 1, -1, P; comp, LI].

Theorem

- (Approximation) $\mathbf{E}(\mathbb{R}) \approx \mathcal{L} \approx \mathcal{L}^a$
- (Completion) $\mathbf{E}(\mathbb{R}) = \mathcal{L}(LIM) = \mathcal{L}^{a}(LIM)$
- (Alternative Completion) $\mathbf{E}(\mathbb{R}) = \mathcal{L}(dLIM)$

Definition

dLIM is the operation:

- Input: $f(t, \bar{x})$
- Output: $F(\bar{x}) = \lim_{t\to\infty} f(t,\bar{x})$, if $|\frac{\partial}{\partial t}f| \le 1/2^t$ for $t \ge 1$.

Real Recursive Functions General Purpose Analog Computer

Elementary Computability.

Let \mathcal{L} abbreviate FA[0, 1, -1, π , θ , P; comp, LI]. Let \mathcal{L}^a abbreviate FA[0, 1, -1, P; comp, LI].

Theorem

- (Approximation) $\mathbf{E}(\mathbb{R}) \approx \mathcal{L} \approx \mathcal{L}^a$
- (Completion) $\mathbf{E}(\mathbb{R}) = \mathcal{L}(LIM) = \mathcal{L}^{a}(LIM)$
- (Alternative Completion) $\mathbf{E}(\mathbb{R}) = \mathcal{L}(dLIM)$

Definition

dLIM is the operation:

- Input: $f(t, \bar{x})$
- Output: $F(\bar{x}) = \lim_{t \to \infty} f(t, \bar{x})$, if $|\frac{\partial}{\partial t}f| \le 1/2^t$ for $t \ge 1$.

Real Recursive Functions General Purpose Analog Computer

Elementary Computability.

Let \mathcal{L} abbreviate FA[0, 1, -1, π , θ , P; comp, LI]. Let \mathcal{L}^a abbreviate FA[0, 1, -1, P; comp, LI].

Theorem

- (Approximation) $\mathsf{E}(\mathbb{R}) \approx \mathcal{L} \approx \mathcal{L}^a$
- (Completion) $\mathbf{E}(\mathbb{R}) = \mathcal{L}(LIM) = \mathcal{L}^{a}(LIM)$
- (Alternative Completion) $E(\mathbb{R}) = \mathcal{L}(dLIM)$

Definition

dLIM is the operation:

- Input: $f(t, \bar{x})$
- Output: $F(\bar{x}) = \lim_{t\to\infty} f(t,\bar{x})$, if $|\frac{\partial}{\partial t}f| \le 1/2^t$ for $t \ge 1$.

Real Recursive Functions General Purpose Analog Computer

Computability.

Bournez and Hainry 2005, 2006.

Theorem

- (Approximation) $C(\mathbb{R}) \approx FA[0, 1, \theta, P; comp, CLI, UMU]$
- (Completion)
 - $\mathbf{C}(\mathbb{R}) = FA[0, 1, \theta, P; comp, CLI, UMU](LIM)$ $= FA[0, 1, \theta, P; comp, CLI, UMU](dLIM)$

Outline

- Technical Framework
- 3 Results
 - Real Recursive Functions
 - General Purpose Analog Computer
- Aspects of the proofs

5 Conclusion

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ = 𝒴 𝔅 𝔅

General Purpose Analog Computer

Real Recursive Functions General Purpose Analog Computer

GPAC Generability

Definition

Let PI be the operation:

- Input: n − 1 polynomials: p
 (y
 , t), a polynomial q(x), and numbers α₁,..., α_{n−1} ∈ ℝ.
- Output: $y_1(t, x)$ where: $(y_1, ..., y_n)$ is the solution of IVP: $\overrightarrow{\mathbf{y}}(0) = (\alpha_1, ..., \alpha_{n-1}, q(x))$ $\frac{\partial}{\partial t} \overrightarrow{\mathbf{y}} = \overrightarrow{\mathbf{p}}(\overrightarrow{\mathbf{y}}, t)$

Definition

For $X \subseteq \mathbb{R}$, let GPAC_X be the set of functions generated by PI using polynomials with coefficients from X and initial conditions from X.

Real Recursive Functions General Purpose Analog Computer

Let \mathcal{CR} be the set of computable reals. Graça, Bournez, Campagnolo and Hainry 2007.

Theorem

- (Approximation) $\mathbf{C}(\mathbb{R}) \approx^{\mathcal{E}} GPAC_{CR}$
- (Completion) $\mathbf{C}(\mathbb{R}) = GPAC_{CR}(\mathcal{E}-LIM)$

- Technical Framework
- 3 Results
 - Real Recursive Functions
 - General Purpose Analog Computer
- Aspects of the proofs
 - 5 Conclusion

★ E ► ★ E ► E E • O Q O

< 🗇 ▶

Example: $\mathbf{E}(\mathbb{R}) \approx \mathcal{L}$.

- Reduce to the classic claim: $\mathbf{E}(\mathbb{N}) = FA_{\mathbb{N}}$. How?
- Define function classes on Q, as bridges:
 - Continuous layer: FA_Q(ctn)
 - Discontinuous layer: FA_Q(disctn), E(Q)
- $FA_{\mathbb{Q}}(ctn) \approx \mathcal{L}$. { $E(\mathbb{Q}), FA_{\mathbb{Q}}(disctn)$ } relates to { $E(\mathbb{N}), FA_{\mathbb{N}}$ }.
- $\{E(\mathbb{R}), FA_{\mathbb{Q}}(ctn)\} \approx \{E(\mathbb{Q}), FA_{\mathbb{Q}}(disctn)\}$, for functions with modulus.
- Apply transitivity of approximation.

Example: $\mathbf{E}(\mathbb{R}) \approx \mathcal{L}$.

Reduce to the classic claim: E(ℕ) = FA_ℕ. How?

- Define function classes on Q, as bridges:
 - Continuous layer: $FA_{\mathbb{Q}}(ctn)$
 - Discontinuous layer: FA_Q(disctn), E(Q)
- $FA_{\mathbb{Q}}(ctn) \approx \mathcal{L}$. { $E(\mathbb{Q}), FA_{\mathbb{Q}}(disctn)$ } relates to { $E(\mathbb{N}), FA_{\mathbb{N}}$ }.
- $\{E(\mathbb{R}), FA_{\mathbb{Q}}(ctn)\} \approx \{E(\mathbb{Q}), FA_{\mathbb{Q}}(disctn)\}$, for functions with modulus.
- Apply transitivity of approximation.

Lifting.

Example: $\mathbf{E}(\mathbb{R}) \approx \mathcal{L}$.

- Reduce to the classic claim: $E(\mathbb{N}) = FA_{\mathbb{N}}$. How?
- Define function classes on \mathbb{Q} , as bridges:
 - Continuous layer: FA_Q(ctn)
 - Discontinuous layer: FA_Q(disctn), E(Q)
- $FA_{\mathbb{Q}}(ctn) \approx \mathcal{L}$. { $E(\mathbb{Q}), FA_{\mathbb{Q}}(disctn)$ } relates to { $E(\mathbb{N}), FA_{\mathbb{N}}$ }.
- $\{E(\mathbb{R}), FA_{\mathbb{Q}}(ctn)\} \approx \{E(\mathbb{Q}), FA_{\mathbb{Q}}(disctn)\}$, for functions with modulus.
- Apply transitivity of approximation.

Lifting.

Example: $\mathbf{E}(\mathbb{R}) \approx \mathcal{L}$.

- Reduce to the classic claim: $E(\mathbb{N}) = FA_{\mathbb{N}}$. How?
- Define function classes on \mathbb{Q} , as bridges:
 - Continuous layer: $FA_{\mathbb{Q}}(ctn)$
 - Discontinuous layer: FA_Q(disctn), E(Q)
- $FA_{\mathbb{Q}}(ctn) \approx \mathcal{L}$. { $E(\mathbb{Q}), FA_{\mathbb{Q}}(disctn)$ } relates to { $E(\mathbb{N}), FA_{\mathbb{N}}$ }.
- $\{E(\mathbb{R}), FA_{\mathbb{Q}}(ctn)\} \approx \{E(\mathbb{Q}), FA_{\mathbb{Q}}(disctn)\}$, for functions with modulus.
- Apply transitivity of approximation.

Lifting.

Example: $\mathbf{E}(\mathbb{R}) \approx \mathcal{L}$.

- Reduce to the classic claim: $\mathbf{E}(\mathbb{N}) = FA_{\mathbb{N}}$. How?
- Define function classes on \mathbb{Q} , as bridges:
 - Continuous layer: $FA_{\mathbb{Q}}(ctn)$
 - Discontinuous layer: FA_Q(disctn), E(Q)
- $FA_{\mathbb{Q}}(ctn) \approx \mathcal{L}$. { $E(\mathbb{Q}), FA_{\mathbb{Q}}(disctn)$ } relates to { $E(\mathbb{N}), FA_{\mathbb{N}}$ }.
- $\{E(\mathbb{R}), FA_{\mathbb{Q}}(ctn)\} \approx \{E(\mathbb{Q}), FA_{\mathbb{Q}}(disctn)\}$, for functions with modulus.
- Apply transitivity of approximation.

Exploiting Approximation.

Transitivity:

- A basic point in Lifting.
- A way to break down an argument into simpler pieces.
 Ex: Elimination of non-analytic functions:
 E(ℝ) ≈ L ≈ L^a implies E(ℝ) ≈ L^a.

Recall: \mathcal{L} is FA[0, 1, -1, π , θ , P; comp, L[]. \mathcal{L}^{a} is FA[0, 1, -1, P; comp, L[]. To show $\mathcal{L} \preceq \mathcal{L}^{a}$:

•
$$\theta, \pi \preceq \mathcal{L}^{a}$$

• comp, $LI \preceq \mathcal{L}^{a}$

General tools:

Re-usable tools

Ex: Approximating an operation.

Exploiting Approximation.

Transitivity:

- A basic point in Lifting.
- A way to break down an argument into simpler pieces.
 Ex: Elimination of non-analytic functions:

 $\textbf{E}(\mathbb{R}) \approx \mathcal{L} \approx \mathcal{L}^a \text{ implies } \textbf{E}(\mathbb{R}) \approx \mathcal{L}^a.$

Recall: \mathcal{L} is FA[0, 1, -1, π , θ , P; comp, Ll]. \mathcal{L}^{a} is FA[0, 1, -1, P; comp, Ll]. To show $\mathcal{L} \preceq \mathcal{L}^{a}$:

- $\theta, \pi \preceq \mathcal{L}^{a}$
- comp, $LI \preceq \mathcal{L}^a$

General tools:

Re-usable tools

Ex: Approximating an operation.

Exploiting Approximation.

Transitivity:

- A basic point in Lifting.
- A way to break down an argument into simpler pieces.
 Ex: Elimination of non-analytic functions:

 $\textbf{E}(\mathbb{R}) \approx \mathcal{L} \approx \mathcal{L}^a \text{ implies } \textbf{E}(\mathbb{R}) \approx \mathcal{L}^a.$

Recall: \mathcal{L} is FA[0, 1, -1, π , θ , P; comp, Ll]. \mathcal{L}^{a} is FA[0, 1, -1, P; comp, Ll]. To show $\mathcal{L} \preceq \mathcal{L}^{a}$:

•
$$\theta, \pi \preceq \mathcal{L}^{a}$$

• comp,
$$LI \preceq \mathcal{L}^a$$

General tools:

Re-usable tools

Ex: Approximating an operation.

4 Aspects of the proofs

5 Conclusion

<□> < □> < □> < □> = □ = のへへ

Conclusion

- Approximation and Completion as a way to organize the characterizations of computable analysis.
- Technical uses of approximation: Transitivity, eliminating non-analytic functions, lifting.
- Future Work:
 - Other complexity classes (e.g. polynomial time?).
 - Other modes of completion.
 - Discussed: LIM and dLIM.
 - Myca 2003: limits = zero-finding
 - With no explicit completion operation.

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Conclusion

- Approximation and Completion as a way to organize the characterizations of computable analysis.
- Technical uses of approximation: Transitivity, eliminating non-analytic functions, lifting.
- Future Work:
 - Other complexity classes (e.g. polynomial time?).
 - Other modes of completion.
 - Discussed: LIM and dLIM.
 - Myca 2003: limits = zero-finding
 - With no explicit completion operation.

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● ● ●

For Further Reading I

See http://www.math.ist.utl.pt/~ ojakian/ :

M.L. Campagnolo and K. Ojakian. Using approximation to relate computational classes over the reals.

To appear.

M. L. Campagnolo and K. Ojakian. The elementary computable functions over the real numbers: Applying two new techniques. To appear.

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● ● ●