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Computability over the Reals?

Suppose f : R → R. When is f “computable”?

Let f (x) =

{
0, if x ≤ 0;
1, if x > 0.

Is it computable?

f is computable according to the BSS Model, and not according
to Computable Analysis.

Is ex computable?

ex is not computable according to the BSS Model, and is
computable according to Computable Analysis.
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Computable Analysis

f is computable according to “Naive” Computable Analysis iff:

There is a computable function F x(n) with an oracle
for the real number x such that F x(n) → f (x), as
n →∞.

Definition

f ∈ CR (Computable Analysis) iff:

There is a computable function F x(n) with an oracle
for the real number x such that |f (x)− F x(n)| ≤ 1/n.

Examples of functions in CR: ex , π, sin x , log x , ...
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Other Models

1 Shannon’s circuit model.
2 Neural Networks.
3 Hybrid systems.

There is not an agreed upon definition of computability over R.
There is no “basic theorem” for computability over R!

Our work: Showing certain models equivalent.
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Function Algebras and Real Recursive Functions

Definition

A Function Algebra FA[f1, . . . , fk ; op1, . . . , opn] is the smallest
set of functions containing f1, . . . , fk , and closed under the
operations op1, . . . , opn.

Example: FA[0, 1,+, . , P; comp,
∑

,
∏

, µ], which is equal to the
computable functions over the naturals.

Real Recursive Functions: Function algebras over the reals,
introduced by C. Moore 1996.
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Some basic functions over the reals

Constant functions: 0, 1,−1

Projection functions “P” (example: U(x , y) = x)

θk (x) =

{
0, x < 0;
xk , x ≥ 0.
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The Differential Equation Operation

Definition

ODE is the operation:

Input : g(x), f (y , u, x).

Output : The solution of the IVP

h(0, x) = g(x),
∂

∂y
h = f (y , h, x)

Definition

LI is the operation defined like ODE, except that f must be
linear in h.
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A real function algebra and some examples

Definition

Let ODE?
k be the total functions of

FA[0, 1,−1, θk , P; comp, ODE]

Some functions in ODE?
k : ex , (x + y), (xy), sin x , . . .
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The Limit Operation

Definition
LIM is the operation:

Input : f (t , x̄)

Output : F (x̄) = lim
t→∞

f (t , x̄), if the limit exists, and

|F (x̄)− f (t , x̄)| ≤ 1/t .

Definition

If F a set of functions, then F(LIM) is F closed under the
operation LIM.
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Our main theorem

Theorem (Main Theorem)

CR = ODE?
k (LIM) for k ≥ 2.
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A function algebra based on searching

Definition

The operation UMU takes as Input : f (t , x̄) such that

1 For any x̄ , f (t , x̄) increases in t , and
2 For any x̄ , there is a unique T such that f (T , x̄) = 0

(and at that T , ∂
∂t f > 0).

Output : Function F (x̄) = the unique T such that f (T , x̄) = 0.

Definition

Let UMUk be FA[0, 1, θk , P; comp, LI, UMU]

Ojakian, Campagnolo Characterizing Computable Analysis



Basic Background
Our model and our result

Discussion of the Proof
Conclusion

A function algebra based on searching

Definition

The operation UMU takes as Input : f (t , x̄) such that

1 For any x̄ , f (t , x̄) increases in t , and
2 For any x̄ , there is a unique T such that f (T , x̄) = 0

(and at that T , ∂
∂t f > 0).

Output : Function F (x̄) = the unique T such that f (T , x̄) = 0.

Definition

Let UMUk be FA[0, 1, θk , P; comp, LI, UMU]

Ojakian, Campagnolo Characterizing Computable Analysis



Basic Background
Our model and our result

Discussion of the Proof
Conclusion

Our mainer theorem

Theorem

For k ≥ 2, CR = ODE?
k (LIM) = UMUk (LIM).

Theorem ( Bournez and Hainry 2006 )

Roughly: C2 ∩ [CR] = [UMUk (LIM)], for k ≥ 3
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More Motivation

Results of the form “CA = FA”.

Interesting to provide alternative models for Computable
Analysis.

Connects discrete-time and continuous-time.

“Basic Theorem” over the reals?
Church-Turing thesis over the reals?

Could alternative models facilitate technical work? (e.g.
like showing a function or operation is or is not computable)
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The “Main Step”

CR ⊆ UMUk (LIM)

By Turing Machine simulation (Bournez and Hainry 2006).

Difficulties with this approach ...

Forced into unnecessary restrictions.

Appears less general.

Our approach: Approximation ...
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Approximation

Definition

f (x̄) �t f ∗(x̄ , t) means: |f (x̄)− f ∗(x̄ , t)| < 1
t

For classes of functions A and B, A � B means:
For any f ∈ A there is f ∗ ∈ B such that f � f ∗.

Goal: CR � UMUk Implies: CR ⊆ UMUk (LIM)
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Breaking up the proof

Lemma (Transitivity)

Suppose A, B, and C are classes of functions and suppose C is
nice. Then A � B and B � C implies A � C.

Definition

Let CQ be {f|Q | f ∈ CR}

CQ � d̃CQ � d̃MUQ �MUQ � UMUk

Transitivity: CQ � UMUk

Implies: CR � UMUk
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A function algebra for the computable functions

Definition

Let MUN be FA[0, 1,+, . , P; comp,
∑

,
∏

, MU].

Definition

The operation MU. Input: f (t , x̄) (over N) satisfying:

For each x̄, there is a unique T ≥ 1 such that
f (T , x̄) = 0, and otherwise

f (t , x̄) =

{
−1, if t < T ;
1, if t > T .

Output: The function g(x̄) = the unique T such that
f (T , x̄) = 0.
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A function algebra over Q

Definition
Let MUQ be
FA[0, 1,−1,+, P, ∗, div, θ1; comp,

∑
Q,

∏
Q, MUQ, LinQ].

Definition

Suppose OP takes a function f : Nk → N and returns a function
g : Nm → N. Then OPQ is the following operation:

1 OPQ takes as input f : Qk → Q such that f|N : Nk → N.
2 OPQ then applies OP to f|N to get some g : Nm → N.
3 OPQ outputs LinQ(g).
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The inductive proof

Proof proceeds inductively on the function algebra MUQ:

Show the basic functions of MUQ are approximated by
UMUk .

Show that the operations of MUQ preserve the
approximation:

For f ∈MUQ and f ∗ ∈ UMUk , suppose
g = OP(f ), and f � f ∗. Then there is g∗ ∈ UMUk

such that g � g∗.

Ojakian, Campagnolo Characterizing Computable Analysis



Basic Background
Our model and our result

Discussion of the Proof
Conclusion

The inductive proof

Proof proceeds inductively on the function algebra MUQ:

Show the basic functions of MUQ are approximated by
UMUk .

Show that the operations of MUQ preserve the
approximation:

For f ∈MUQ and f ∗ ∈ UMUk , suppose
g = OP(f ), and f � f ∗. Then there is g∗ ∈ UMUk

such that g � g∗.

Ojakian, Campagnolo Characterizing Computable Analysis



Basic Background
Our model and our result

Discussion of the Proof
Conclusion

Basic Functions

0, 1,−1,+, P, ∗
θ1, div ...
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Composition

Generic and easy, but uses “modulus assumption” significantly
.......
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Linearization

Generic, but involved .......
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Sums and Products

Specific, but uses earlier results .......
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Search Operation MU

Specific and significant ....... Key Points:

Use the particular shape.

Need to process the approximation function.

Can approximate linearization in well-behaved way.
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1 Basic Background

2 Our model and our result

3 Discussion of the Proof
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Conclusion

We have a new characterization of Computable Analysis.
Further improvements?:

Show it is useful.

Simplify to “analytic version” by removing θk .
Does CR = ODE?(LIM)?

Develop a general theory.
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