Verifique se o método de separação de variáveis pode ser usado nas seguintes equações às derivadas parciais para reescrevê-las à custa de um sistema de equações diferenciais ordinárias.

a)
$$xu_{xx} + u_t = 0$$
 b) $u_{xx} + u_{xt} + u_t = 0$ c) $[p(x)u_x]_x - r(x)u_{tt} = 0$

2. Encontre a solução do problema de condução de calor:

$$100u_{xx} = u_t \quad 0 < x < 1, \quad t > 0$$

$$u(0,t) = 0, \quad u(1,t) = 0, \quad t > 0$$

$$u(x,0) = \sin(2\pi x) - \sin(5\pi x), \quad 0 \le x \le 1$$

- 3. Um cilindro de alumínio de 20 cm é inicialmente uniformente aquecido a uma temperatura de 25°C. No instante t=0, um dos extremos do cilindro é arrefecido a 0°C enquanto que o outro extremo é aquecido a 60°C e ambos são depois mantidos a estas temperaturas. Encontre a distribuição de temperaturas em qualquer instante t>0 e a distribuição de temperaturas no regime estacionário.
- 4. Considere um cilindro de comprimento 40 cm e com uma distribuição de temperaturas inicial $u(x,0) = \sin(\pi x/40)$, 0 < x < 40. Suponha que $a^2 = 1$ e que ambos os extremos do cilindro estão termicamente isolados. Calcule a distribuição de temperaturas em qualquer instante t > 0 e a distribuição de temperaturas no regime estacionário.
- 5. Se uma corda elástica está solta numa das extremidades, a condição fronteira a ser aí satisfeita é $u_x = 0$. Encontre o deslocamento u(x,t) de uma corda elástica presa em x = 0 e solta em x = L, posta em movimento sem velocidade inicial a partir da posição inicial u(x,0) = f(x), onde f é uma função dada.
- 6. Encontre a solução da equação de Laplace no rectângulo 0 < x < a e 0 < y < b com as condições fronteira:

$$u(0,y) = k(y),$$
 $u(a,y) = f(y),$ $0 < y < b$
 $u(x,0) = h(x),$ $u(x,b) = g(x),$ $0 < x < a$

onde k, f, h e g são funções dadas.