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Abstract. We will present a brief study of the homology of cubical sets, with two main purposes.

First, this combinatorial structure is viewed as representing directed spaces, breaking the intrinsic

symmetries of topological spaces. Cubical sets have a directed homology, consisting of preordered

abelian groups where the positive cone comes from the structural cubes.

But cubical sets can also express topological facts missed by ordinary topology. This happens, for

instance, in the study of group actions or foliations, where a topologically-trivial quotient (the orbit set

or the set of leaves) can be enriched with a natural cubical structure whose directed homology agrees

with Connes' analysis in noncommutative geometry [C1]. Thus, cubical sets can provide a sort of

'noncommutative topology', without the metric information of C*-algebras [G1].

This similarity can be made stricter by introducing normed cubical sets and their normed directed

homology, formed of normed preordered abelian groups. The normed cubical sets associated with

irrational rotations have thus the same classification up to isomorphism as the well-known irrational

rotation C*-algebras [G2].

Finally, we will see that part of these results can also be obtained with a different approach, based

on D. Scott's equilogical spaces [Sc] and developed in [G3, G4].

Comments printed in gray characters can be omitted. The index  α  takes values 0, 1, also written

as –, + (e.g. in superscripts).
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1. Singular homology by cubes [Ms]

1.0. Introduction

The singular homology of a topological space  X  can be equivalently defined as the homology of

the chain complex associated to the simplicial set  ∆X  (produced by all maps  ∆n = X  defined on

standard tetrahedra) or the homology of the chain complex associated to the cubical set  ∆X

(produced by all maps  In = X  defined on standard cubes).

The less usual cubical approach, followed in Massey's text [Ms], has various advantages, mainly

due to the fact that cubes are closed under products, while products of tetrahedra have to be 'covered'

with tetrahedra; thus, the proof of homotopy invariance and the study of cartesian products or

fibrations are easier and more natural in the cubical setting. Here, a more specific motivation for this

choice is our use of the natural order on  In,  in the sequel. The equivalence with the simplicial

construction can be proved by a technique called 'acyclic models' [EM, HW].

In this section we give a brief outline of the cubical construction of singular homology, as a

preparation to abstracting cubical sets and their homology.

1.1. The singular cubical set of a space

-  Top:  the category of topological spaces and continuous mappings (= maps).

-  I = [0, 1]:  the standard interval, with euclidean topology.

- Basic structure: two faces  (δ0, δ1)  and a degeneracy  (ε),  linking it with the singleton  I0 = {*}

(1) δα :  {*}       _£∞-)        I  : ε (α = 0, 1),

δ0(*)  =  0, δ1(*)  =  1, ε(t)  =  *.

- Faces and degeneracies of the standard cubes  In  (for  α = 0, 1;  i = 1,..., n)

(2) δαi   =  Ii–1×δα× In–i: In–1 =  In, δαi (t1,..., tn–1)  =  (t1,..., ti–1, α,..., tn–1),
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εi  =  Ii–1×ε×In–i: In =  In–1, εi(t1,..., tn)  =  (t1,..., t̂i,..., tn) .

- They satisfy the co-cubical relations (where  α, β = 0, 1)

(3) δβj  δ
α
i   =  δαi  δβj –1   (i < j), εi εj  =  εj–1 εi   (i < j),

εj δαi   =  δαi –1 εj   (j < i), or    id   (j = i), or    δαi  εj–1   (j > i).

- This produces, for every topological space  X,  a cubical set  ∆X

(4) ∆X  =  ((∆nX), (∂αi ), (ei)), the singular cubical set of  X,

∆nX  =  Top(In, X), the set of singular n-cubes  a: In = X  of the space  X,

∂αi   =  ∂αn i: ∆nX = ∆n–1X, ∂αi (a)  =  a δαi :  In–1 = X,

ei  =  eni: ∆n–1X = ∆ nX, ei(a)  =  a εi: In = X, (α = 0, 1;  i = 1,..., n).

- In general: a cubical set  K = ((Kn), (∂αi ), (ei))  is a sequence of sets  Kn  (n ≥ 0),  together with

mappings, called faces  (∂αi )  and degeneracies  (ei)

(5) ∂αi   =  ∂αn i: Kn = Kn–1, ei  =  eni: Kn–1 = Kn (α = 0, 1;  i = 1,..., n).

satisfying the cubical relations

(6) ∂αi  ∂βj   =  ∂βj –1 ∂αi    (i < j), ej ei  =  ei ej–1   (i < j),

∂αi  ej  =  ej ∂αi –1   (j < i), or    id   (j = i), or    ej–1 ∂αi    (j > i).

A morphism of cubical sets  f = (fn): K =  L  is a sequence of mappings  fn: Kn =  Ln

commuting with faces and degeneracies. Cubical sets and their morphisms form a category  Cub.

- The singular cubical set functor  ∆: Top = Cub  acts as follows on the map  f: X = Y

(7) ∆f: ∆X = ∆Y, (∆f)n: a ± f˚a: In = Y.

1.2. The singular chain complex of a space

- Degenerate elements of a cubical set  K:  all elements of type  ei(a)

(1) DegnK = ∪i Im(ei: Kn-1 = Kn), Deg0K = Ø.

- Because of the cubical relations, we have (for  i = 1,..., n)

(2) a ∈ DegnK    ⇒    (∂αi a ∈ Degn–1K   or   ∂–
i a = ∂+

i a), ei(Degn–1K)  ⊂  DegnK.

- The cubical set  K  determines a (normalised) chain complex  C*(K),  i.e. a sequence of abelian

groups and homomorphisms (called boundaries, or differentials)

   ∂n+1   ∂n   ∂1

(3) . . . -= Cn+1(K) -= Cn(K) -= Cn–1(K) -= . . .  -= C1(K) -= C0(K) -= 0

with  ∂n∂n+1  =  0,  defined as follows:

(4) Cn(K)  =  (ZKn)/(ZDegnK)  =  Z
−
Kn (

−
Kn = Kn \ DegnK),

∂n: Cn(K) = Cn–1(K), ∂n(â)  =  Σi,α (–1)i+α (∂αi a)^ (a ∈ Kn),

(ZS  is the free abelian group on the set  S;  â  is the class of the n-cube  a  up to degenerate cubes; but

we will write the normalised class  â  as  a,  identifying all degenerate cubes with 0.)
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- To prove that  ∂n∂n+1 = 0  one uses the cubical relations for faces:  ∂αi  ∂βj  = ∂βj –1 ∂αi    (i < j).

- In general: a chain complex  A = ((An), (∂n))  of abelian groups is a sequence as above, with  ∂n∂n+1

= 0.  A morphism  ϕ: A = B  of chain complexes is a sequence of homomorphisms  ϕn: An = Bn

commuting with differentials:  ∂nϕn = ϕn–1∂n.  They form the category  C*Ab  of chain complexes of

abelian groups.

- The functor  C*: Cub = C*Ab  acts on the morphism  f = (fn): K = L  by Z-linear extension

(5) f#  =  C*(f): C*(K) = C*(L), f#n(a)  =  fn(a).

- Composing with the functor  ∆ : Top = Cub,  we get the singular chain complex of a space, or

complex of singular chains (with integral coefficients), written again  C*

(6) C*: Top = C*Ab, C*(X)  =  C*(∆X), f#n(a)  =  f˚a (a: In = X).

1.3. Singular homology of spaces

- The homology functor of chain complexes: the group of n-cycles modulo the group of n-boundaries

(1) Hn: C*Ab = Ab (n ≥ 0),

Hn(A)  =  Ker∂n / Im∂n+1, Hn(ϕ)[z]  =  [ϕnz].

- Composing with the previous functors, we have the singular homology of a space (with integral

coefficients)

  ∆ C*  Hn

(2) Top -= Cub -= C*Ab -= Ab

Hn: Top = Ab Hn(X)  =  Hn(C*(∆X)) (n ≥ 0),

Hn(f)  =  f*n, f*n[Σi λiai]  =  [Σi λi(fai)].

1.4. Exercises

- Hn(X) © ⊕i∈I Hn(Xi),  where  (Xi)i∈I  is the family of path-connected components of the space  X.

- H0({*}) © Z, Hn({*})  =  0   (n > 0).

- If  X  is path-connected, non empty, there is an isomorphism  ϕ: H0(X) © Z,  ϕ[Σ λi.xi] = Σ λi.

Hint. Use the augmented chain complex  ... = C1(X) = C0(X) = Z  where  ∂0(Σ λi.xi) = Σ λi;

∂0  is surjective and  Ker(∂0) = Im(∂1).  Then  ϕ: H0(X) = Z  is the induced iso. ∆

1.5. Homotopy for topological spaces

- Two maps  f0, f1: X = Y  in  Top  are homotopic  (f0 √ f1)  if there is a map  F: I×X = Y  such

that  F(α, x) = fα(x),  for all  x∈X  (α = 0, 1).  This relation is a congruence of categories.

- Two spaces  X, Y  are homotopy equivalent  (X √ Y)  if there are maps  f: X       _£)        Y :g  with  gf √

idX,  fg √ idY.

- A space is said to be contractible if it is homotopy equivalent to  {*}.
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1.6. Homotopy for chain complexes of abelian groups

- Two maps  ϕ , ψ : A =  B  in  C*Ab   are homotopic   (ϕ  √  ψ)  if there is a sequence of

homomorphisms  Φn: An = Bn+1  (n ≥ 0)  such that  ∂n+1Φn + Φn–1∂n = – ϕn + ψn.

- This relation is a congruence of categories, in  C*Ab.

Proposition (Homotopy Invariance of algebraic homology). The functors  Hn: C*Ab = Ab  are

homotopy invariant:  if  ϕ √ ψ: A = B  then  Hn(ϕ) = Hn(ψ): Hn(A) =  Hn(B)  (for all  n ≥ 0).

1.7. Homotopy Invariance of singular homology

Theorem. The functors  Hn: Top = Ab  are homotopy invariant:  if  f √ g: X = Y  then  Hn(f) =

Hn(g): Hn(X) =  Hn(Y)  (for all  n ≥ 0).

Hint. Given a homotopy  F: I×X = Y  between  f, g: X = Y,  one constructs a homotopy between

the associated chain morphisms  C*(X) = C*(Y)

(1) Φn: Cn(X) = Cn+1(Y), Φn(a)  =  F.(I×a) (a: In = X),

∂n+1Φn + Φn–1∂n  =  – Cn(f) + Cn(g). ∆

Corollary. If the spaces  X, Y  are homotopy equivalent, then  Hn(X) © Hn(Y)  (for all  n ≥ 0).

Corollary. If the space  X  is contractible, then  Hn(X) © Hn({*})  (for all  n ≥ 0)  and  X  is path-

connected.

2. Cubical sets  [G1, Section 1; Ka; BH]

We shift now our interest from topological spaces to cubical sets. An abstract cubical set will

generally be denoted as  X  and viewed as a 'virtual directed space', with privileged directions in

every dimension. If  X  is the cubical singular set of a topological space  T,  then its direction is

undistinguished.

2.1. Remarks on Directed Algebraic Topology

We shall use cubical sets as a setting for developing directed homology. Directed Algebraic

Topology is a recent subject, whose present applications deal mainly with concurrency. Its domain

should be distinguished from classical Algebraic Topology by the principle that directed spaces have

privileged directions and their paths need not be reversible. Its homotopical and homological tools are

similarly 'non-reversible': directed homotopies, fundamental categories, directed homology. Its

applications can deal with domains where privileged directions appear, like concurrent processes,

traffic networks, space-time models, etc. See [GX, GY] and references there.

A topological space  T  has intrinsic symmetries, appearing - at the lowest level - in the reversion

of its paths. In higher dimension, the set  ∆nT = Top([0, 1]n, T)  of its singular cubes has an obvious

action of the hyperoctahedral group (the group of symmetries of the n-cube).

Now, bypassing topological spaces, an abstract cubical set  X = ((Xn), (∂αi ), (ei))  is a merely

combinatorial structure (see 1.1.5-6, or below). This structure will be used in two ways: to break the
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symmetries considered above and to perform constructions, namely quotients, which would be

useless in ordinary topology.

(a) For the first aspect, note that an 'edge' in  X1  need not have any counterpart with reversed

vertices, nor a 'square' in  X2  any counterpart with horizontal and vertical faces interchanged. Thus,

our structure has 'privileged directions', in any dimension, and the (usual) combinatorial homology of

X  can be given a preorder, generated by taking the given cubes as positive. Now, the cubical set  X

has a geometric realisation  RX  as a topological space, obtained - loosely speaking - by pasting a copy

of the standard cube  In  for each n-cube  x∈Xn,  along faces and degeneracies (see 3.3); but let us

note from now that this construction loses any information on 'directions' we had in  X:  the homol-

ogy groups of  RX  have no useful preorder and only coincide algebraically with the ones of  X.

Thus, the obvious cubical model  ↑sn  of the n-dimensional sphere, with one non-degenerate cube

in dimension  n  (whose geometric realisation is the usual, topological sphere  Sn),  will have directed

homology  ↑Hn(↑sn) © ↑Z,  i.e. the group of integers with the natural order. Similarly, the model

↑t2 = ↑s1⊗↑s1  of the torus has  ↑H1(↑t2) © ↑Z2,  with the product order (4.6) and two obvious

positive generators (coming from each copy of  ↑s1);  this example also shows that direction should

not be confused with orientation, which plainly cannot select privileged generators in the 1-homology

group of a torus. We shall also see that our preorder on  ↑H1(X)  becomes trivial (coarse) for a

'symmetric' cubical set, like the singular cubical set of a topological space (4.1).

(b) Secondly, it may happen that a quotient  T/≈  of a topological space has a trivial topology, while

the corresponding quotient of its singular cubical set  ∆T  keeps a relevant topological information,

detected by its homology and agreeing with the interpretation of such a 'virtual space' in noncommuta-

tive geometry. This wil be dealt with below.

2.2. Cubical sets

- Recall that a cubical set  X = ((Xn), (∂αi ), (ei))  is a sequence of sets  Xn  (n ≥ 0),  together with

mappings, called faces  (∂αi )  and degeneracies  (ei)

(1) ∂αi  = ∂αn i: Xn = Xn–1, ei = eni: Xn–1 = Xn (α = ±;  i = 1,..., n),

satisfying the cubical relations

(2) ∂αi  ∂βj   =  ∂βj  ∂
α
i +1   (j ≤ i), ej ei  =  ei+1 ej   (j ≤ i),

∂αi  ej  =  ej ∂αi –1   (j < i), or    id   (j = i), or    ej–1 ∂αi    (j > i).

- Elements of  Xn  are called n-cubes; vertices and edges for  n = 0  or 1, respectively. Every n-cube

x∈Xn  has 2n vertices:  ∂α1∂
β
2∂

γ
3(x)  for  n = 3.

- A morphism  f = (fn): X = Y  of cubical sets is a sequence of mappings  fn: Xn = Yn  which

commute with faces and degeneracies. These objects and morphisms form the category  Cub.

-  Cub  has two involutions (covariant involutive endofunctors), reflection and exchange

(3) R: Cub = Cub, RX  =  Xop  =  ((Xn), (∂–
i
α), (ei)) (reflection),

(4) S: Cub = Cub, SX  =  ((Xn), (∂αn +1–i), (en+1–i)) (exchange),

the first reversing the 1-dimensional direction, the second the 2-dimensional one.

- We say that a cubical set  X  is reflexive if  RX © X  and symmetric if  SX © X.
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2.3. Subobjects and quotients

- Cub  has all limits and colimits (computed componentwise) and is cartesian closed.

- Some category-theoretical remarks.  Cub  is a category of presheaves: its objects are the functors  X:

Iop =  Set,  where  I   is the subcategory of  Set  consisting of the sets  2n  (where  2 = {0, 1})

together with the maps  2m =  2n  which delete some coordinates and insert some 0's and 1's,

without modifying the order of the remaining coordinates (cf. [GM]). The representable presheaves

are given by the Yoneda embedding  y: I  =  Cub,  y(2n) = I (–, 2n): I op =  Set;  the cubical set

y(2n)  can also be seen as the free cubical set generated by one element of degree  n,  according to the

adjunction  Fn: Set       _£)        Cub :(–)n.

- A cubical subset  Y ⊂ X  is a sequence of subsets  Yn ⊂ Xn,  stable under faces and degeneracies.

- An equivalence relation  E  in  X  is a cubical subset of  X×X  whose components  En ⊂ Xn×Xn  are

equivalence relations; then, the quotient  X/E  is the sequence of quotient sets  Xn/En,  with induced

faces and degeneracies. In particular, for  Y ⊂ X,  the quotient  X/Y  has components  Xn/Yn,  where

all cubes  y∈Yn  are identified.

- For a cubical set  X,  we define the homotopy set

(1) π0(X)  =  X0/√,

where  √  is the equivalence relation in  X0  generated by being vertices of a common edge.

- The connected component of  X  at an equivalence class  [x] ∈ π0(X)  is the cubical subset formed

by all cubes of  X  whose vertices lie in  [x];  X  is always the sum (or coproduct, disjoint union) of

its connected components. If  X  is not empty, we say that it is connected if it has one connected

component, or equivalently if  π0(X)  is a singleton.

- One can easily see that the forgetful functor  (–)0: Cub = Set  has a left adjoint, the discrete cubical

set on a set

(2) D: Set = Cub, DS  =  Set(1*, S),

where components are constant,  (DS)n = S  (n∈N),  faces and degeneracies are identities. Then, the

functor  π0: Cub = Set  is left adjoint to  D.  (The forgetful functor  (–)0  has also a right adjoint  CS

= Set(2*, S),  the codiscrete cubical set on  S.)

2.4. Tensor product of cubical sets [Ka, BH; G1]

- The category  Cub  has a monoidal structure

(1) (X⊗Y)n  =  (Σp+q=n Xp×Yq)/≈n,

where  ≈n   is the equivalence relation generated by identifying  (er+1x, y)  with  (x, e1y),  for all

(x, y) ∈ Xr×Ys  (for  r+s = n–1).

- We write  x⊗y  the equivalence class of  (x, y).  Faces and degeneracies are defined as

(2) ∂αi (x⊗y)  =  (∂αi x)⊗y (1 ≤ i ≤ p), ∂αi (x⊗y)  =  x⊗(∂αi –py) (p+1 ≤ i ≤ p+q),

(3) ei(x⊗y)  =  (eix)⊗y (1 ≤ i ≤ p+1), ei(x⊗y)  =  x⊗(ei–py) (p+1 ≤ i ≤ p+q+1),

(and  ep+1(x⊗y) = (ep+1x)⊗y = x⊗(e1y)  is well defined because of the equivalence relation  ≈n).
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- The identity of the tensor product is the singleton  {*},  i.e. the cubical set generated by one 0-

dimensional cube; it is reflexive and symmetric.

- The tensor product is not symmetric, but is linked with reversion and exchange as follows:

(4) R(X⊗Y)  =  RX⊗RY, S(X⊗Y)  ©  (SY)⊗(SX).

- Therefore, reflexive objects are stable under tensor product while symmetric objects are stable under

tensor powers: if  SX © X,  then  S(X⊗n) = (SX)⊗n © X⊗n.  (The construction of the internal homs

related with tensor products will be recalled in 3.1.7.)

2.5. Standard models

- The elementary directed interval  ↑i = 2  is freely generated by a 1-cube,  u

 u

(1) 0     -=      1 ∂–
1(u)  =  0,    ∂+

1(u)  =  1.

- The elementary directed n-cube is its n-th tensor power  ↑in = ↑i⊗...⊗↑i  (for  n ≥ 0),  freely

generated by one n-cube  u⊗n.  (It is the representable presheaf  y(2n) = I(–, 2n): Iop =  Set).

- The elementary directed square  ↑i2 = ↑i⊗↑i  can be represented as follows, showing the generator

u⊗u  and its faces

  0⊗u   2
 00 - -=   01 à -=

(2)  u⊗0 :ò   u⊗u :ò   u⊗1 :ò   1

 10 - -=  11
  1⊗u

where the face  ∂–
1(u⊗u) = 0⊗u  is drawn orthogonally to direction 1 (and directions are chosen so that

the labelling of vertices agrees with matrix indexing).

- Note that, for each cubical object  X,  Cub(↑in, X) = Xn.

- The directed (integral) line  ↑Z  is generated by (countably many) vertices  n∈Z  and edges  un,

from  ∂–
1(un) = n  to  ∂+

1(un) = n+1.  The directed integral interval  ↑[i, j]Z  is the obvious cubical

subset with vertices in the integral interval  [i, j]Z.  In particular,  ↑i = ↑[0, 1]Z.

- The elementary directed circle  ↑s1  is generated by one 1-cube  u  with equal faces

 u

(3) *     -=      * ∂–
1(u)  =  ∂+

1(u).

- The elementary directed n-sphere  ↑sn  (for  n > 1)  is generated by one n-cube  u  all whose faces are

totally degenerate (hence equal)

(4) ∂αi (u)  =  (e1)n–1(∂–
1)n(u) (α = ±;  i = 1,..., n).

- ↑s0 = s0  is generated by two vertices: it is the discrete cubical set  D{0, 1} (2.3.2).

- The elementary directed n-torus is a tensor power of  ↑s1

(5) ↑tn  =  (↑s1)⊗n.

- The ordered circle  ↑o1  is generated by two edges with the same faces
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u'

(6) v–     -=-=      v
+ ∂α1 (u')  =  ∂α1 (u").

   u"

- More generally the ordered spheres  ↑on,  generated by two n-cubes  u', u"  with the same

boundary:  ∂αi (u') = ∂αi (u").

- Starting from  s0,  the unpointed suspension provides all  ↑on  (3.2.5) while the pointed suspension

provides all  ↑sn;  of course, these models have the same geometric realisation  Sn  (as a topological

space) and the same homology; but their directed homology is different (4.2). The models  ↑sn  are

more interesting: for instance, their order in directed homology is not trivial.

- All these cubical sets are reflexive and symmetric.

3. Directed homotopy of cubical sets  [G1, Section 1]

3.1. Elementary directed homotopies

- Since the tensor product of cubical sets is not symmetric, the elementary directed interval produces a

left (elementary) cylinder  ↑i⊗X  and a right cylinder  X⊗↑i.  But each of these functors determines

the other, using the exchange  S  (2.4.4) and the property  S(↑i) = ↑i

(1) I: Cub = Cub, IX  =  ↑i⊗X,

SIS: Cub = Cub, SIS(X)  =  S(↑i⊗SX)  =  X⊗↑i.

- The left cylinder  I  has two faces and a degeneracy, the following natural transformations

(2) ∂α: X = IX,    ∂α(x)  =  α⊗x (α = 0, 1),

e: IX = X,    e(u⊗x)  =  e1(x).

-  I  has a right adjoint, the (elementary) left cocylinder or left path functor  P,  which shifts down all

components discarding the faces and degeneracies of index 1 (which are then used to build the faces

and degeneracy of  P,  as natural transformations)

(3) P: Cub = Cub, PY  =  ((Yn+1), (∂αi +1), (ei+1)),

∂α  =  ∂α1 : PY = Y, e  =  e1: Y = PY.

- An (elementary) left homotopy  f: f– =L f+: X = Y  is defined as a map  f: IX = Y  with  f∂α =

fα.  Or, equivalently (because of the adjunction), as a map  f: X = PY  with  ∂αf = fα.  This second

expression leads immediately to a simple expression of  f  as a family of mappings

(4)  fn: Xn = Yn+1, ∂αi +1 fn  =  fn–1 ∂αi , ei+1 fn–1  =  fn ei,

∂α1  fn  =  fα (α = ±;  i = 1,..., n).

- Dually, the right cylinder  SIS(X) = X⊗↑i  has a right adjoint  SPS,  the right cocylinder or right

path functor, which discards the faces and degeneracies of highest index (used again to build the

corresponding natural transformations)

(5) SPS: Cub = Cub, SPS(Y)  =  ((Yn+1), (∂αi ), (ei)),

∂α: SPS(Y) = Y, ∂α  =  (∂αn +1: Yn+1 = Yn)n≥0,
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e: Y = SPS(Y), e  =  (en+1: Yn = Yn+1)n≥0.

- An (elementary) right homotopy  f: f– =R f+: X = Y  is a map  f: X = SPS(Y)  with faces  ∂αf =

fα,  i.e. a family  (fn)  such that

(6) fn: Xn = Yn+1, ∂αi  fn  =  fn–1 ∂αi , ei fn–1  =  fn ei,

∂αn +1 fn  =  fα (α = ±;  i = 1,..., n).

- Elementary homotopies of cubical sets (without connections) are a very defective notion: one cannot

even contract the elementary interval  ↑i  to a vertex.

- Moreover, to obtain 'non-elementary' paths which can be concatenated and a fundamental category

↑Π1(X),  one should use - instead of the elementary interval  ↑i = ↑[0, 1]Z  - the directed integral line

↑Z  (2.5), as in [GX] for simplicial sets: paths are parametrised on  ↑Z  and eventually constant.

- But here we are interested in homology, where concatenation is surrogated by formal sums of cubes,

and we will restrain ourselves to proving its invariance up to elementary homotopies, right and left.

Also, we prefer not to rely on the geometric realisation, which would ignore the directed structure.

- The category  Cub  has left and right internal homs, which we shall not need (see [BH]). Let us

only recall that the right internal hom  CUB(A, Y)  can be constructed with the left cocylinder functor

P  and its natural transformations (which produce a cubical object  P*Y)

(7) –⊗A  –  CUB(A, –), CUBn(A, Y)  =  Cub(A, PnY).

3.2. Cones and suspension

- The left upper cone  C+X  is defined as the first pushout, below

∂+

  X - -=  IX   X - -= {*}

(1) :ò | – :ò
   γ  ∂– :ò | – :ò

   v–

{*} - -= C+X  IX - -= C–X
v+ γ

i.e., the quotient  (IX+{*})/(∂+X+{*}),  where the upper basis of the cylinder is collapsed to an

upper vertex  v+ = v+(*),  while the lower basis  ∂–: X = IX = C+X  'subsists'.  Dually, the left

lower cone  C-X  is defined as the second pushout, above, obtained by collapsing the lower basis of

IX  to a lower vertex  v– = v–(*).

- Analytically, we can describe  C+X  saying that it is generated by (n+1)-dimensional cubes  u⊗x ∈

IX  (x∈Xn)  plus a vertex  v+,  under the relations arising from  X  together with

(2) 1⊗x  =  en
1(v+) (x∈Xn).

- Similarly, the left suspension  ΣX  is defined as the colimit of the left diagram
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  X -= {*} ∂–

 
∂–

:ò  ∂+

:   X - -= C+X

(3)   X - -=  IX ::  v+  ∂+ :ò | – :ò
   j+

:ò ì$σ :ò  C–X - -= ΣX

{*} - - - -= ΣX
j–

v–

obtained by collapsing, independently, the bases of  IX  to a lower and an upper vertex,  v–  and  v+.

Equivalently, it is the right-hand pushout, above.

- Thus, the suspension of  s0 = D{0, 1}  yields the 'ordered circle'  ↑o1  (2.5.6)

  v+ _   v+

(4)   u' :! :!    u" u'  =  <0⊗u>, u"  =  <1⊗u>,

  v– _   v–

where  < – >  denotes equivalence classes in the pushout (3). More generally

(5) Σn(s0)  =  ↑on.

- The pointed suspension, studied in [G1, Section 5], yields the directed spheres  ↑sn.

3.3. Geometric realisation

- We have already recalled, in 1.1, the functor

(1) ∆ : Top = Cub, ∆T  =  Top(I*, T),

which assigns to a topological space  T  the singular cubical set of (continuous) n-cubes  In = T,

produced by the cocubical set of standard cubes  I* = ((In), (δαi ), (εi))  (1.1.2). As for simplicial sets,

the geometric realisation  RX  of a cubical set is given by the left adjoint functor  R – ∆

 R

(2) Cub      –-é   -–=       Top R(X)  =  (Σx In(x))/≈,
 ∆

which takes a cubical set  X  to a topological space, by pasting a copy of the standard cube  In(x)  for

each cube  x  (of dimension  n(x)),  along faces and degeneracies. More precisely, the equivalence

relation ≈ is generated by the pair of points which corresponds themselves, along the mappings

induced by faces  (δαi )  and degeneracies  (εi)

(3) δαi : In(y)  =   In(x)   (for  y = ∂αi x), εi: In(x)  =  In(y)   (for  x = eiy).

- This pasting (formally, the coend of the functor  X�I*: Iop×I  = Top)  comes thus with a family of

structural mappings, one for each cube  x,  coherent with faces and degeneracies (of  I*  and  X)

(4) x̂: In(x) = RX, x̂˚δ
α
i   =  (∂αi x)ˆ,      x̂˚εi  =  (eix)ˆ,

and  RX  has the finest topology making all the structural mappings continuous.

- This realisation is important, since it is well known that the combinatorial homology of a cubical set

X  coincides with the homology of the CW-space  RX  (cf. [Mu, 4.39], for the simplicial case). But
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there are finer 'directed realisations', keeping information about the privileged cubes of  X  (see 8.11

or [G1, 1.9]).

4. Directed homology of cubical sets  [G1, Section 2]

Combinatorial homology of cubical sets is a simple theory with evident proofs. We study its

enrichment with a natural preorder, showing that it is preserved and reflected by excision (4.4) and

tensor product (4.5), but not preserved by the differentials of the usual exact sequences (cf. 4.4).

4.1. Directed homology

- Every cubical set  X  determines a collection  DegnX = ∪ i Im(ei: Xn-1 =  Xn)  of subsets of

degenerate elements  (with  Deg0X = Ø);  this collection is not a cubical subset (unless  X  is empty),

but satisfies weaker conditions (for all  i = 1,..., n)

(1) x ∈ DegnX    ⇒    (∂αi x ∈ Degn–1X   or   ∂–
i x = ∂+

i x), ei(Degn–1X)  ⊂  DegnX.

- The cubical set  X  determines a (normalised) chain complex of free abelian groups

(2) Cn(X)  =  (ZXn)/(ZDegnX)  =  Z
−
Xn (

−
Xn = Xn \ DegnX),

∂n(x̂)  =  Σi,α (–1)i+α (∂αi x)^ (x ∈ Xn),

where  ZS  is the free abelian group on the set  S  and  x̂  is the class of the n-cube  x.  We often write

the normalised class  x̂  as  x,  identifying all degenerate cubes with 0.

- Each component can be preordered by the positive cone of positive chains  N
−
Xn,  and will be written

as  ↑Cn(X)  when thus enriched.

- The positive cone is not preserved by the differential  ∂n: ↑Cn(X) =; ↑Cn–1(X),  which is just a

homomorphism of the underlying abelian groups (as stressed by marking its arrow with a dot).

- A morphism of cubical sets  f: X = Y  induces a sequence of preorder-preserving homomorphisms

↑Cn(X) = ↑Cn(Y).  We have defined a covariant functor

(3) ↑C*: Cub = dC*Ab,

with values in the category  dC*Ab  of directed chain complexes of abelian groups (directed referring

to the preorder of components, preserved by chain homomorphisms).

- The directed homology of a cubical set is a sequence of preordered abelian groups

(4) ↑Hn: Cub = dAb, ↑Hn(X)  =  ↑Hn(↑C*X),

where the directed homology  ↑Hn(↑C*)  of a directed chain complex is its ordinary homology

equipped with the preorder induced on the subquotient  Ker∂n/Im∂n+1.

- When we forget preorders, the usual chain and homology functors will be written as usual

(5) C*: Cub = C*Ab, Hn: Cub = Ab.

- If  T  is a topological space, we have  Hn(T) = Hn(∆T). Here we are not likely losing any essential

information with respect to  ↑Hn(∆T).  In fact,  ↑H0(∆T)  has an obvious order generated by the

homology classes of points (4.2.1), while the preorder of  ↑H1(∆T)  is easily seen to be chaotic:
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every homology class belongs to the positive cone (for every 1-cube  a: I = T,  the reversed cube  aρ

produced by the reversion  ρ: I = I  is equivalent to  – a,  modulo boundaries).

4.2. Elementary computations

- The homology of a sum  X = Σ Xi  is a direct sum  ↑HnX = ⊕i ↑HnXi  (and every cubical set is the

sum of its connected components).

- Also here (as for spaces) it is easy to see that, if  X  is connected (non empty), then  ↑H0(X) © ↑Z
(via the augmentation  ∂0: ↑C0X = ↑ZX0 = ↑Z  taking each vertex  x∈X0  to  1∈Z).  Thus, for

every cubical set  X

(1) ↑H0(X)  =  ↑Z.π0X,

is the free ordered abelian group generated by the homotopy set  π0X  (2.3).

- In particular,  ↑H0(↑s0) = ↑Z2.  Now, it is easy to see that, for  n > 0

(2) ↑Hn(↑sn)  =  ↑Z,

is the group of integers with the natural order: a normalised n-chain  ku  (notation of 2.5) is positive if

and only if  k ≥ 0  (and is always a cycle).

- On the other hand,  ↑Hn(↑on) = ↑dZ  has the discrete order: the positive cone is reduced to 0. In fact,

a normalised n-chain  hu' + ku"  (notation of 2.5) is a cycle when  h+k = 0,  and a positive chain for

h ≥ 0,  k ≥ 0.  The directed homology of the elementary directed torus  ↑t2  is easy to determine; but

we shall compute it for all  ↑tn  (4.6.2).

4.3. Invariance Theorem

- The homology functor  ↑Hn: Cub = dAb  is invariant for left (or right) immediate homotopies:

given  f: f– =L f+: X = Y,  then  ↑Hn(f–) = ↑Hn(f+).

Proof. We can forget about preorders. By 3.1.4, the homotopy  f: f– =L f+: X = Y  has

(1)  fn: Xn = Yn+1, ∂αi +1 fn  =  fn–1 ∂αi ,      ∂α1  fn  =  fα,    fn ei  =  ei+1 fn–1 (1 ≤ i ≤ n),

and produces a homotopy of the associated (normalised) chain complexes

(2) fn: CnX = Cn+1Y, fn(DegnX)  ⊂  Degn+1Y,

∂n+1fn  =  ∂+
1 fn – ∂–

1 fn – Σiα (–1)i+α ∂αi +1 fn  =  f+
n – f–

n – fn–1 ∂n. ∆

4.4. Mayer-Vietoris and Excision

- Given two cubical subsets  U, V ⊂ X,  their union  U∪V  (resp. intersection  U∩V)  just consists of

the union (resp. intersection) of all components. Therefore,  ↑C*  takes subobjects of  X  to directed

chain subcomplexes of  ↑C*X,  preserving joins and meets

(1) ↑C*(U∪V)  =  ↑C*U + ↑C*V, ↑C*(U∩V)  =  ↑C*U ∩ ↑C*V.

These facts have two important consequences

Theorem (The Mayer-Vietoris sequence). Let the cubical set  X  be covered by its subobjects  U, V,

i.e. X = U∪V.  Then we have an exact sequence
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(i*, j*)  [u*, –v*]    ∆

(2) . . . -= ↑Hn(U∩V) - -= (↑HnU)⊕(↑HnV) - -= ↑Hn(X) à-=  ↑Hn–1(U∩V) -= . . .

with the obvious meaning of brackets; the maps  u: U = X,  v: V = X,  i: U∩V = U,  j: U∩V =

X  are inclusions and the connective  ∆  (which does not preserve preorder!) is:

(3) ∆[c]  =  [∂na], c  =  a + b (a ∈ ↑Cn(U),  b ∈ ↑Cn(V)).

The sequence is natural, in an obvious sense.

Theorem (Excision). Let a cubical set  X  be given, with subobjects  B ⊂ Y∩A.  The inclusion map

i: (Y, B) = (X, A)  is said to be excisive whenever  Yn \ Bn = Xn \ An,  for all  n  (or equivalently:

Y∪A = X,  Y∩A = B,  in the lattice of subobjects of  X).  Then  i  induces isomorphisms in

homology, preserving and reflecting preorder.

Hints. The proof is similar to the topological one, simplified by the fact that here no subdivision is

needed. For Mayer-Vietoris, it is sufficient to apply the algebraic theorem of the exact homology

sequence to the following sequence of directed chain complexes

   (i*, j*)  [u*, –v*]

(4) 0 -= ↑C*(U∩V) - - -= (↑C*U)⊕(↑C*V) - - -= ↑C*(X) -= 0

whose exactness needs one non-trivial verification. Take  a ∈ ↑CnU,  b ∈ ↑CnV  and assume that

u*(a) = v*(b);  therefore, each cube really appearing in  a  (and  b)  belongs to  U∩V;  globally, there

is (one) normalised chain  c ∈ ↑Cn(U∩V)  such that  i*(c) = a,  i*(c) = b.

- For Excision, the proof reduces to a Noether isomorphism for directed chain complexes

(5) ↑C*(Y, B)  =  (↑C*Y)/(C*(Y∩A))  =  (↑C*Y)/(C*Y ∩ C*A)

=  (↑C*Y + ↑C*A) / (C*A)  =  (↑C*(Y∪A)) / (C*A)  =  ↑C*(X, A). ∆

4.5. Theorem (Tensor products)

- Given two cubical sets  X, Y,  there is a natural isomorphism and a natural monomorphism

(1) ↑C*(X⊗Y)  =  ↑C*(X) ⊗ ↑C*(Y), ↑H*(X) ⊗ ↑H*(Y)  ≠  ↑H*(X⊗Y).

Proof. It suffices to prove the first part, and apply the Künneth formula. First, the canonical

(positive) basis of the preordered abelian group  ↑Cp(X)⊗↑Cq(Y)  is  
−
Xp×

−
Yq  (as in 4.1,  

−
Xp = Xp \

DegpX).

- Recall now that the set  (X⊗Y)n  is a quotient of  Σp+q=n Xp×Yq  modulo an equivalence relation

which only identifies pairs where a term is degenerate (2.4.1); moreover, a class  x⊗y  is degenerate if

and only if  x  or  y  is degenerate (2.4.3). Therefore, the canonical positive basis of  ↑Cn(X⊗Y)  is

precisely the sum (disjoint union) of the preceding sets  
−
Xp×

−
Yq,  for  p+q = n.  We can identify the

preordered abelian groups

(2) ↑Cn(X⊗Y)  =  ⊕p+q=n ↑Cp(X) ⊗ ↑Cq(Y),

respecting the canonical positive bases. Finally, the differential of an element  x⊗y,  with  (x, y) ∈
−
Xp×

−
Yq,  is the same in both chain complexes
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(3) Σiα (–1)i+α ∂αi (x⊗y)  =  Σi≤p,α (–1)i+α (∂αi x)⊗y + Σj≤q,α (–1)p+j+α x⊗(∂αj y)

=  (∂px)⊗y + (–1)p x⊗(∂qy). ∆

4.6. Elementary cubical tori

- The graded preordered abelian group of a cubical set  X  will be written as a formal polynomial

(1) ↑H*(X)  =  Σi σi.↑Hi(X),

whose coefficients are preordered abelian group, while  σi  shows the homology degree.

- One can think of  σi  as a power of the suspension operator of chain complexes (acting on a

preordered abelian group, embedded in  dC*Ab  in degree 0): then the expression (1) is a direct sum

of graded preordered abelian groups; and the direct sum of such objects amounts to the sum of the

corresponding polynomials (computed by means of the direct sum of the coefficients, in the obvious

way).

- Using 4.5, it is easy to see that the directed homology of the elementary torus  ↑tn = (↑s1)⊗n  is:

(2) ↑H*(↑tn)  =  (↑Z + σ.↑Z)⊗n  =  ↑Z +  σ.↑Z(n
1) +  σ2.↑Z(n

2) + ... + σn.↑Z,

where, of course, a power  ↑Zk  has the product order.

- In cohomology, one can show that multiplication need not preserve the positive cone [G1, 2.9].

4.7. Some hints at pointed homology and pointed suspension [G1, Section 5]

- A pointed cubical set  (X, x0)  is a cubical set with a distinguished vertex  x0 ∈ X0;  together with

the pointed morphisms (preserving the base-points), they form a category  Cub*.  One defines in the

obvious way pointed homotopies, the pointed suspension and pointed directed homology [G1,

Section 5]. (The latter only differs from the ordinary directed homology in degree zero; it is a sort of

reduced homology, better suited for ordering.)

- As proved in [G1, Thm. 5.4], there is a natural isomorphism of preordered abelian groups

(1) ↑Hn(X, x0) = ↑Hn+1(Σ(X, x0)), [Σ λkxk]  ±  [Σ λk<u⊗xk>] (n ≥ 0),

where  < – >  denotes equivalence classes in  Σ(X, x0)  as a quotient of  I(X, x0),  and  u  is the

generator of the elementary interval  ↑i.

5. Action of groups on cubical sets  [G1, Section 3]

The classical theory of proper actions on topological spaces, as developed in [Ma, IV.11], is

extended to free actions on cubical sets.  G  is a group, always written in additive notation

(independently of commutativity); the action of an operator  g∈G  on an element  x  is  written as  x+g.

5.1. Basics

- Take a cubical set  X  and a group  G  acting on it, on the right: we have an action  x+g  (x∈Xn,

g∈G)  on each component, consistently with faces and degeneracies (or, equivalently, a cubical object

in the category of G-sets).
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- The cubical set of orbits  X/G  has components  Xn/G  and the induced structure; there is a natural

projection  p: X = X/G.

- Say that the action is free if  G  acts freely on each component: if  x = x+g,  for some  x∈Xn  and

g∈G,  then  g = 0.  This is equivalent to saying that  G  acts freely on the set of vertices  X0  (because

x = x+g  implies that their first vertices coincide).

- We will extend to free actions on cubical sets the classical results of actions of groups on topological

spaces [Ma, IV.11], which hold for groups acting properly on a space, a much stronger condition

(every point has an open neighbourhood  U  such that all subsets  U+g  are disjoint). But note that all

results below which involve the homology of  G  ignore preorder, necessarily (6.5).

5.2. Lemma (Free actions)

(a) If  G  acts freely on the cubical set  X,  then  ↑C*(X)  is a complex of free right G-modules, with a

(positive) basis  Bn ⊂ Xn  which projects bijectively onto  Xn/G,  the canonical basis of  ↑Cn(X/G).

(b) The canonical projection  p: X = X/G  induces an isomorphism of directed chain complexes, and

hence an isomorphism in homology  (↑Z  is viewed as a trivial G-module)

(1) p*: ↑C*(X)⊗G↑Z = ↑C*(X/G), p*n: Hn(↑C*(X)⊗G↑Z) = ↑Hn(X/G).

Proof. (This Lemma adapts [Ma, IV.11.2-4]). It is sufficient to prove (a), which plainly implies (b).

The action of  G  on  Xn  extends to a right action on the free abelian group  ZXn,  consistent with

faces and degeneracies and preserving the canonical basis; it induces thus an obvious action on

↑Cn(X) = ↑Z
−
Xn,  consistent with the positive cone and the differential

(2) (Σ λixi) + g  =  Σ λi(xi + g), ∂(Σ λixi) + g  =  ∂(Σ λixi + g).

Thus  ↑Cn(X)  is a complex of G-modules, whose components are preordered G-modules. Take

now a subset  B0 ⊂ X0  choosing exactly one point in each orbit;  then  B0  is a G-basis of  ↑C0(X).

Letting  Bn ⊂ Xn  be the subset of those non-degenerate n-cubes  x  whose 'initial vertex'  ∂–
1...∂–

nx

belongs to  B0,  we have more generally a G-basis of  ↑Cn(X)  which satisfies our requirements. ∆

5.3. Theorem (Free actions on acyclic cubical sets)

Let  X  be an acyclic (connected) cubical set and  G  a group acting freely on it. Then, forgetting

preorder in combinatorial homology

(1) H*(X/G)  ©  H*(G).

Proof. As in [Ma, IV.11.5], the augmented sequence

(2) ... = C1(X) = C0(X) = Z = 0

is exact, since  X  is acyclic (has the homology of the point). By 5.2a, this sequence forms a G-free

resolution of the G-trivial module  Z.  Therefore, applying the definition of  Hn(G)  and the

isomorphism 5.2.1, we get the thesis for homology (and cohomology as well)

(3) Hn(G)  =  Hn(C*(X)⊗GZ)  ©  Hn(X/G). ∆
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5.4. Corollary (Free actions on acyclic spaces)

Let  T  be an acyclic (path connected) topological space and  G  a group acting freely on it. Then

H*((∆T)/G) © H*(G),  and  ↑H1((∆T)/G)  has a chaotic preorder.  (The same holds in cohomol-

ogy.)

Proof. It suffices to apply the preceding theorem to the singular cubical set  ∆T  of continuous cubes

of  T.  This cubical set has the same homology as  T,  and  G  acts obviously on it, by  (x+g)(t) =

x(t) + g  (for  t∈In).  Moreover, the action is free because so it is on the set of vertices,  T.  Finally,

the remark on preorder is proved as for  ↑H1(∆T),  in  4.1. ∆

6. Noncommutative tori, Kronecker foliations and cubical sets  [G1, Section 4]

We compute the directed homology of various cubical sets, related with 'virtual spaces' of

noncommutative geometry: irrational rotation algebras and noncommutative tori of dimension ≥ 2;  ϑ

and  ζ  will always denote irrational real numbers.

6.1. Rotation algebras

- Let us begin recalling some well-known 'noncommutative spaces'.

- First, take the line  R  and its (dense) additive subgroup  Gϑ = Z+ϑZ,  acting on the former by

translations. In  Top,  the orbit space  R/Gϑ = S1/ϑZ  is trivial: an uncountable set with the coarse

topology.

- Second, consider the Kronecker foliation  F'  of the torus  T2 = R2/Z2,  with slope  ϑ  (recalled in

6.3), and the set  T2
ϑ = T2/≡F'  of its leaves. It is well known, and easy to see, that the sets  R/Gϑ  and

T2
ϑ  are in bijection (cf. 6.3). Again, ordinary topology gives no information on  T2

ϑ,  since the

quotient  T2/≡F'  in  Top  is coarse (every leaf being dense).

- In noncommutative geometry, both these sets are 'interpreted' as the (noncommutative) C*-algebra

Aϑ,  generated by two unitary elements  u, v  under the relation  vu = exp(2πiϑ).uv,  and called the

irrational rotation algebra associated with  ϑ,  or also a noncommutative torus [C1, C2, Ri, Bl]. Both

its complex K-theory groups are two-dimensional.

- A relevant achievement of K-theory [PV, Ri] classifies these algebras, by proving that  K0(Aϑ) ©

Z+ϑZ  as an ordered subgroup of  R;  more precisely, the traces of the projections of  Aϑ  cover the

set  Gϑ∩[0, 1]. Therefore [Ri, Thm. 2 and Thm. 4]:

- (a)  Aϑ  and  Aζ  are isomorphic if and only if  ζ ∈ ± ϑ + Z;

- (b)  Aϑ  and  Aζ  are strongly Morita equivalent if and only if  ϑ  and  ζ  are equivalent modulo the

fractional action (on the irrationals) of the group  GL(2, Z)  of invertible integral 2×2 matrices

(1) ( )a b
c d

.t  =  
at + b
ct + d (a, b, c, d ∈ Z;  ad – bc = ± 1),

(or the action of the projective general linear group  PGL(2, Z)  on the projective line).

- Since  GL(2, Z)  is generated by the matrices

(2) R  =  ( )0 1
1 0

, T  =  ( )1 1
0 1

,

the orbit of  ϑ  is its closure  {ϑ}RT  under the transformations  R(t) = t–1  and  T±1(t) = t±1  (on  R\Q)
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- We show now how one can obtain similar results with cubical sets naturally arising from the

previous situations: the point is to replace a topologically-trivial orbit space  T/G  with the correspond-

ing quotient of the singular cubical set  ∆T,  identifying the cubes  In = T  modulo the action of  G.

6.2. Irrational rotation structures

(a) Now, instead of considering the trivial quotient  R/Gϑ  of topological spaces, we replace  R  with

the singular cubical set  ∆R  (on which  Gϑ  acts freely) and consider the cubical set  (∆R)/Gϑ.

- Applying Corollary 5.4, we find that the cubical set  (∆R)/Gϑ  has the same homology as the group

Gϑ © Z2,  which coincides with the ordinary homology of the torus  T2

(1) H*((∆R)/Gϑ)  =  H*(Gϑ)  =  H*(T2)  =  Z + σ.Z2 + σ2.Z;

(the last fact follows, for instance, from the classical version of Theorem 5.3 [Ma, IV.11.5], applied

to the proper action of the group  Z2  on the acyclic space  R2).  We also know that directed homology

only gives the chaotic preorder on  ↑H1((∆R)/Gϑ)  (again by 5.4).

- In cohomology, we have the same graded group. Algebraically, this is in accord with the K-theory

of the rotation algebra  Aϑ,  since both  Heven((∆R)/Gϑ)  and  Hodd((∆R)/Gϑ)  are two-dimensional.

(b) A much more interesting result (and accord) can be obtained from the cubical sets

(2) ∆↑R ⊂ ∆R, the cubical set of the ordered line,

∆n↑R  =  the set of continuous order-preserving mappings  In = R;

(3) ∆↑S1  =  (∆↑R)/Z, the cubical set of the directed circle.

- We want to classify the isomorphism classes of the cubical sets

(4) Cϑ  =  (∆↑R)/Gϑ  =  (∆↑S1)/ϑZ, the irrational rotation cubical set (associated to  ϑ ∉ Q).

- We prove below (Theorems 6.7, 6.8) that  ↑H1(Cϑ) © ↑Gϑ,  as an ordered subgroup of the line and

that the cubical sets  Cϑ  have the same classification up to isomorphism as the rotation algebras  Aϑ

up to strong Morita equivalence: while the algebraic homology of  Cϑ  is the same as in (a),

independent of  ϑ,  the (pre)order of directed homology determines  ϑ  up to the equivalence relation

↑Gϑ © ↑Gζ,  which amounts to  ϑ  and  ζ  being conjugate under the action of the group  GL(2, Z).

- Note that the stronger classification of rotation algebras up to isomorphism (recalled in 6.1) has no

analogue here: cubical sets lack the 'metric information' contained in C*-algebras.

- Note also the role of the ordered cube  In  (with its faces and degeneracies) for defining  ∆↑R .

Presumably, this cannot be easily transferred to a simplicial approach: the standard realisations of  ∆n

in  Rn+1  or  Rn  are of no use (the former inherits the discrete order while the latter has a 'diagonal'

face not consistent with ordering). Other realisations in  Rn  have complicated faces. Not to mention

the problem of having a subdivision consistent with ordering (which has an obvious solution in  In).

6.3. The noncommutative two-dimensional torus

Consider now the Kronecker foliation  F'  of the torus  T2 = R2/Z2,  with irrational slope  ϑ,  and

the set  T2
ϑ = T2/≡F'  of its leaves.  F'  and  ≡F'  are induced, respectively, from the following foliation

F = (Fλ)  and equivalence relation  ≡  on the plane
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(1) Fλ  =  {(x, y) ∈ R2  |  y = ϑx + λ} (λ ∈ R),

(x, y)  ≡  (x', y')   ⇔   y + k – ϑ(x+h)  =  y' + k' – ϑ(x'+h') (for some  h, k, h', k' ∈ Z).

Now, we interpret  T2
ϑ  as the quotient cubical set  (∆T2)/≡F',  i.e. the cubical set of the torus (or of

the plane) modulo the equivalence relation induced by projecting cubes modulo  ≡F'  (or modulo  ≡).

This can be proved to be isomorphic to the previous cubical set  K = (∆R)/Gϑ  [G1, 4.3]; the

isomorphism is induced by the following maps:

(2) i: R = R2,   i(t)  =  (0, t), p: R2 = R,   p(x, y)  =  y – ϑx.

6.4. Higher foliations of codimension 1

(a) Extending 6.2a and 6.3, take an n-tuple of real numbers  ϑ = (ϑ1,..., ϑn),  linearly independent on

the rationals, and consider the additive subgroup  Gϑ = Σj ϑjZ © Zn,  acting freely on  R.  (The

previous case corresponds to the pair  (1, ϑ).)

- Now, the cubical set  (∆R)/Gϑ  has the homology (or cohomology) of the n-dimensional torus  Tn

(notation as in 4.6)

(1) H*((∆R)/Gϑ)  =  H*(Gϑ)  =  H*(Tn)  =  Z +  σ.Z(n1) +  σ2.Z(n
2) + ... + σn.Z.

- Again, this coincides with the homology of a cubical set arising from the foliation  F'  of the n-

dimensional torus  Tn = Rn/Zn  induced by the hyperplanes  Σj ϑjxj = λ  of  Rn.

(b) Extending now 6.2b (and Theorem 6.7), the cubical set  (∆↑R)/Gϑ  has a more interesting

directed homology, with a relevant total order in degree 1:

(2) ↑H1((∆↑R)/Gϑ)  =  ↑Gϑ  =  ↑(Σj ϑjZ) (G+
ϑ = Gϑ ∩ R+).

6.5. Remarks

- The previous results show also that it is not possible to preorder group-homology so that the

isomorphism  H*(G) © H*(X/G)  (5.3.1) be extended to  ↑H*(X/G):  a group  G  can act freely on

two acyclic cubical sets  Xi  producing different preorders on some  ↑Hn(Xi/Gϑ).

- In fact, it is sufficient to take  Gϑ = Z+ϑZ,  as above, and recall that  ↑H1((∆R)/Gϑ)  has a chaotic

preorder (5.4) while  ↑H1((∆↑R)/Gϑ) = ↑Gϑ  is totally ordered (6.7).

6.6. Lemma

Let  ϑ, ζ  be irrationals. Then  Gϑ = Gζ,  as subsets of  R,  if and only if  ζ ∈ ± ϑ + Z.  Moreover

the following conditions are equivalent

(a)  ↑Gϑ © ↑Gζ  as ordered groups,

(b)  ϑ  and  ζ  are conjugate under the action of  GL(2, Z)  (6.1.1),

(c)  ζ  belongs to the closure {ϑ}RT  of  {ϑ}  under the transformations  R(t) = t–1  and  T±1(t) = t±1.

Further, these conditions imply the following one (which will be proved to be equivalent in 6.7)

(d)  (∆↑R)/Gϑ © (∆↑R)/Gζ  as cubical sets.
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6.7. Theorem (Directed homology of the irrational rotation cubical sets)

The cubical set  ∆↑R  (6.2b) is acyclic. The directed homology of  Cϑ = (∆ ↑R)/Gϑ  is the

homology of  T2,  with a total order on  ↑H1  and a chaotic preorder on  ↑H2

(1) ↑H1(Cϑ)  =  ↑Gϑ  =  ↑(Z + ϑZ) (G+
ϑ = Gϑ ∩ R+),

↑H2(Cϑ)  =  ↑cZ,

and obviously  ↑H0(Cϑ) = ↑Z.  The first isomorphism above has a simple description on the positive

cone  Gϑ ∩ R+  (p: ∆↑R = Cϑ  is the canonical projection)

(2) ϕ: ↑Gϑ = ↑H1(Cϑ), ϕ(ρ)  =  [paρ] (ρ ∈ Gϑ ∩ R+),

aρ: I = R, aρ(t)  =  ρt.

6.8. Classification Theorem (For the cubical sets of irrational rotation)

The cubical sets  (∆↑R)/Gϑ  and  (∆↑R)/Gζ  are isomorphic if and only if the ordered groups

↑Gϑ  and  ↑Gζ  are isomorphic, if and only if  ϑ  and  ζ  are conjugate under the action of  GL(2, Z)

(6.1.1), if and only if  ζ  belongs to the closure  {ϑ}RT  (6.1.2).

Proof. From Lemma 6.6 and Theorem 6.7. ∆

7. Metric aspects by normed cubical sets [G2]

7.0. Introduction

- Enriching cubical sets and their homology groups with a norm, we get stronger results.

- First, let us note that this homology norm can distinguish between metrically-different realisations of

the same homotopy type, the one of the circle. Thus, applying the normed directed 1-homology group

N↑H1  to the standard normed directed circle  N∆↑S1,  where the length of a homology generator is

2π,  we get  2π.↑Z  as a normed ordered subgroup of the line. Similarly, the normed directed 1-torus

N∆↑T = (∆↑R)/Z  gives the group of integers  ↑Z  with natural norm and order, since now the

length of a homology generator is 1. Finally, the (naturally normed) singular cubical set of the

punctured plane  R2
 \ {0}  assigns to the group  Z  the coarse preorder and the zero (semi)norm,

making manifest the existence of (reversible) 1-cycles of arbitrarily small length (7.6).

- These rather obvious aspects become of interest for the cubical set,  Cϑ = (∆↑R)/Gϑ.  We have seen

(6.8) that the classification of the cubical sets  Cϑ  up to isomorphism coincides with that of the

algebras  Aϑ  up to strong Morita equivalence. The stricter classification of the latter up to

isomorphism suggests that cubical sets provide a sort of 'noncommutative topology', without the

metric character of noncommutative geometry.

- To account for this character, we enrich  Cϑ  with a natural normed structure  NCϑ,  essentially

produced by the length of (increasing) paths  I = R  (7.3). Now, normed directed 1-homology gives

N↑H1(NCϑ) © ↑Gϑ  as a normed ordered subgroup of  R  (Thm. 7.7). It follows easily that the

normed cubical sets  NCϑ  have precisely the same classification up to isomorphism as the C*-

algebras  Aϑ  (Thm. 7.8).

- We end this introduction with some technical remarks. Norms for cubical sets (7.1) and abelian

groups (7.4) will take values in  [0, +∞],  so that these categories have all products (and some useful
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left adjoints); morphisms in these categories are always assumed to be (weakly) contracting, so that

isomorphisms are isometrical. Moreover, in an abelian group,  ||x|| = 0  will not imply  x = 0:  this

assumption would annihilate useful information, as for the punctured plane recalled above.

- Preorder of homology groups does not play a relevant role here, since the metric information is

sufficient for our main goals; however, preorder is an independent aspect, which might be of use in

other cases. It is also interesting to note that, in the present proofs, the arguments concerning norms

are similar to the ones concerning preorders in the preceding sections, if more complicated; this is

likely related with the fact that preorder is a simplified, two-valued generalised metric [G2, 1.5].

7.1. Normed cubical sets [G2, 1.1]

- A normed cubical set will be a cubical set  X  equipped with a sequence of 'norms' which annihilate

on degenerate elements

(1) || – ||: Xn = [0, +∞], ||ei(a)||  =  0 (for  all  a ∈ Xn).

- We do not require any coherence condition for faces, nor any restriction on the norm of a point; for

instance, a degenerate edge must have norm zero, but its vertices can have any norm. The category

NCub  of normed cubical sets has, for morphisms, the (weakly) contracting morphisms of cubical

sets  f: X = Y,  with  ||fn(x)|| ≤ ||x||,  for all  x∈Xn.

7.2. Elementary models [G2, 1.2]

- A normal cubical set has norm 1 on all non-degenerate entries (and 0 on the degenerate ones). All the

'elementary' cubical sets considered in 2.5 will be equipped with this normal norm and denoted with

the same symbols (in this section).

- ↑i = 2:  the normal directed elementary interval, freely gen. (as a normal cubical set) by a 1-cube  u

 u

(1) 0     -=      1 ∂–
1(u)  =  0,    ∂+

1(u)  =  1,      ||u||  =  ||0||  =  ||1||  =  1.

- The normed directed elementary n-cube  ↑in:  the normal object generated by one n-cube, for  n ≥ 0.

- The normed directed elementary circle  ↑s1:  the normal object gen. by a 1-cube  u  with equal faces

 u

(2) *     -=      * ∂–
1(u)  =  ∂+

1(u),      ||u||  =  ||*||  =  1.

- The normed directed elementary n-sphere  ↑sn  (n > 1): the normal object generated by an n-cube  u,

all whose faces are totally degenerate (hence equal)

(3) ∂αi (u)  =  (e1)n–1(∂–
1)n(u), ||u||  =  ||*||  =  1 (α = ±;  i = 1,..., n),

-  ↑s0 = s0:  the normal object generated by two vertices.

- The n-dimensional torus  ↑tn  can be defined as a tensor power of  ↑s1 [G2, 2.3].

- The normed ordered circle  ↑o1:  the normal object generated by two edges with the same faces

u'

(4) v–     -=-=      v
+ ∂α1 (u')  =  ∂α1 (u"),         ||u'||  =  ||u"||  =  ||v–||  =  ||v+||  =  1.

   u"
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- More generally, the normed ordered sphere  ↑on  is the normal object generated by two n-cubes  u',

u"  with the same boundary:  ∂αi (u') = ∂αi (u").

- For the links of these objects with suspension, pointed or not, see 3.2 and [G1, 5.2].

7.3. Normed circles and irrational rotation structures [G2, 1.3-1.4]

- Here, we distinguish between the standard circle  S1,  equipped with the natural geodetic metric, and

the standard 1-torus  T,  with the metric induced by the line

(1) S1  ©  R/2πZ, T  =  R/Z,

so that a simple loop has, respectively, a length of  2π  and 1.

- The normed directed line  N∆↑R  will be the cubical directed line  ∆↑R (6.2.2), with the following,

obvious norm on the n-cube  a: In = R

(2) n  =  0:   ||a||  =  1, n  =  1:   ||a||  =  a(1) – a(0), n > 1:   ||a||  =  0;

note that, in degree 1,  a  is an increasing path and  ||a||  is its length.

- Now, the groups  Z  and  2πZ  act (isometrically) on the line, by translations, as well as on  N∆↑R .

The quotient cubical sets are, by definition

(3) N∆↑S1  =  (N∆↑R)/(2πZ), the normed directed circle,

N∆↑T  =  (N∆↑R)/Z, the normed directed 1-torus ,

the quotient norm is obviously  || [a] || = ||a||.  (For quotient norms see  [G2, 2.1].)

- Similarly, to enrich the cubical set  Cϑ = (∆↑R)/Gϑ  with a norm, it suffices to replace the cubical

set  ∆↑R  with the normed analogue  N∆↑R .  The group  Gϑ = Z+ϑZ  acts isometrically on it, and

(4) NCϑ  =  (N∆↑R)/Gϑ, || [a] ||  =  ||a||.

7.4. Normed abelian groups and chain complexes [G2, 3.1-3.2]

- Normed directed homology will take values in normed preordered abelian groups, a 'metric' version

of the category  dAb  of preordered abelian groups.

- Here, a normed abelian group  L  is equipped with a norm  ||λ|| ∈ [0, ∞]  such that

(1) ||0||  =  0, || – λ||  =  ||λ||, ||λ + µ||  ≤  ||λ|| + ||µ||.

- Note that, for  n∈N,  we only have  ||n.λ|| ≤ n.||λ||  (requiring equality would make quotients difficult

to handle).

- For a normed preordered abelian group  ↑L,  no coherence conditions between preorder and norm

are required. In the category  NdAb  of such objects, a morphism is a contracting homomorphism

(||f(λ)|| ≤ ||λ||)  which respects preorder. But also the purely algebraic homomorphisms of the underly-

ing abelian groups will intervene, denoted by arrows with a dot,  =;  .

- NdAb  has all limits and colimits, computed as in  Ab  and equipped with a suitable norm and

preorder. The tensor product  ↑L⊗↑M  of  dAb  (with positive cone generated by the tensors of

positive elements) can be lifted to  NdAb,  with a norm

(2) ||ξ||  =  inf{Σi ||λi||.||µi||  |  ξ = Σi λi⊗µi} (ξ ∈ ↑L⊗↑M),
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which solves the universal problem for preorder-preserving bi-homomorphisms  ϕ: ↑L×↑M = ↑N

such that  ||ϕ(λ, µ)|| ≤ ||λ||.||µ||.

- This makes a closed symmetric monoidal structure: the internal hom  ↑Hom(↑M, ↑N)  is the abelian

group of all homomorphisms of the underlying abelian groups, with the positive cone of preorder

preserving homomorphisms and the Lipschitz norm [G2, 2.2].

- The unit of the tensor product is the ordered group of integers  ↑Z  with the natural norm,  |k|.

Again, the representable functor  NdAb(↑Z, –),  applied to the internal Hom, gives back the set of

morphisms

(3) NdAb(↑Z, ↑L)  =  B1(L+), B1(Hom+(↑M, ↑N))  =  NdAb(↑M, ↑N).

- The forgetful functor  NdAb = dAb  has a left adjoint  N∞↑L  and right adjoint  N0↑L,  respec-

tively giving to a preordered abelian group  ↑L  its discrete ∞-norm  (||λ|| = ∞  for  λ ≠ 0)  or the coarse

one  (||λ|| = 0).

- The forgetful functor  NdAb = NSet  has a left adjoint, associating to a normed set  S  the free

normed ordered abelian group  ↑ZS,  which is the free abelian group generated by the underlying set,

equipped with the obvious norm

(4) ||Σx kx.x||  =  Σx |kx|.||x||,

((kx)x∈S  is a quasi-null family of integers) and with the order whose positive cone is the monoid  NS

of positive combinations, with  kx∈N.

- NdC*Ab  will denote the category of normed directed chain complexes: their components are

normed preordered abelian groups, differentials are not assumed to respect norms or preorders, but

chain morphisms are: they must be contracting and preorder-preserving.

- The normed directed homology of such a complex  ↑C*  is a sequence of normed preordered abelian

groups, consisting of the ordinary homology subquotients

(5) N↑Hn: NdC*Ab = NdAb, N↑Hn(↑C*)  =  Ker∂n/Im∂n+1,

with the induced norm and preorder. (To forget about preorder, we take out the prefixes  d, ↑.)

7.5. Normed directed homology [G2, 3.3]

- The normed cubical set  X  determines a chain complex of free normed ordered abelian groups

(1) N↑Cn(X)  =  (↑ZXn)/(↑ZDegnX)  =  ↑Z
−
Xn (

−
Xn = Xn \ DegnX),

∂n(x̂)  =  Σi,α (–1)i+α (∂αi x)^ (x ∈ Xn).

- Again, we shall write the class  x̂  as  x,  identifying all degenerate cubes with 0. This is consistent

with the norm, since all degenerate chains have norm 0 and all representatives of  x̂  have the same

norm in  ↑ZXn. (For this chain complex, we shall avoid the usual term 'normalised', which might

give rise to confusion with norms.)

- Also here (cf. 4.1), the positive cone and the norm are not respected by the differential  ∂n: N↑Cn(X)

=; N↑Cn–1(X),  which is just a homomorphism of the underlying abelian groups, as stressed by

marking its arrow with a dot.
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- On the other hand, a morphism of normed cubical sets  f: X = Y  induces a sequence of morphisms

N↑Cn(X) = N↑Cn(Y),  which do preserve preorder and respect norms. We have defined a functor

(2) N↑C*: NCub = NdC*Ab,

with values in the category  NdC*Ab  of normed directed chain complexes of abelian groups (7.4).

- This produces the normed directed homology of a cubical set

(3) N↑Hn: NCub = NdAb, N↑Hn(X)  =  N↑Hn(N↑C*X),

given by the ordinary homology subquotient, with the induced preorder and norm. When we forget

preorder, the normed chain and homology functors will be written as  NC*X  and  NH*X.

7.6. Normed homology of circles and tori  [G2, 3.5-3.7]

- The normed directed 1-homology group of the normed directed circle  N∆↑S1  and 1-torus  N∆ ↑T
(7.3) are easy to compute, taking into account the length of the standard generating 1-cycle:

(1) N↑H1(N∆↑S1)  =  2π.↑Z, N↑H1(N∆↑T)  =  ↑Z,

with the natural norm and order.

- The punctured plane  R2
 \ {0}  (with the euclidean metric) gets the coarse preorder and the zero

'norm', since the homology generator contains arbitrarily small cycles

(2) N↑H1(N∆(R2
 \ {0}))  =  N0↑cZ.

(Of course, in all these cases,  N↑H0  is the normed ordered abelian group  ↑Z.)

- Also because of a theorem on the tensor product of normed cubical sets [G2, 3.6], the normed

directed homology of the normed torus  ↑tn = (↑s1)⊗n  is expressed as in 4.6

(3) N↑Hk(↑tn)  =  ↑Z(n
k) (0 ≤ k ≤ n),

but now  ↑Z  is the normed ordered abelian group of integers.

7.7. Theorem (Normed homology of the normed cubical sets of irrational rotation)  [G2, 4.1]

For any irrational number  ϑ,  the normed homology groups of  NCϑ = (N∆↑R)/Gϑ  (7.3) are:

(1) NH1(NCϑ)  =  Gϑ  =  Z+ϑZ  ⊂  R,

NH0(NCϑ)  =  Z  ⊂  R, NH2(NCϑ)  =  N0Z,

(with the norm induced by the reals in degrees 0 and 1; and null in degree 2). The first isomorphism

acts on the positive cone  Gϑ ∩ R+  as in 6.7.2.

7.8. Classification Theorem (For the normed cubical sets of irrational rotation) [G2, 4.2]

The normed cubical sets  (N∆↑R)/Gϑ  and  (N∆↑R)/Gζ  are (isometrically) isomorphic if and

only if  Gϑ = Gζ  as subsets of  R,  if and only if  ζ ∈ ± ϑ + Z.

Proof. By Theorem 7.7, if our normed cubical sets are isomorphic, also their normed groups  NH1

are, and  Gϑ © Gζ  (isometrically). Since the values of the norm  || – ||: Gϑ =  R  form the set
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Gϑ∩R+,  it follows that  Gϑ  coincides with  Gζ.  Finally, if this is the case, then  ϑ = a + bζ  and  ζ =

c + dϑ,  whence  ϑ = a + bc + bdϑ  and  d = ±1. ∆

7.9. An extension [G2, 4.3]

- Extending the previous case (and enriching 6.4b), take an n-tuple of real numbers  ϑ = (ϑ1,..., ϑn),

linearly independent on the rationals, and consider the normed additive subgroup  Gϑ = Σj ϑjZ ⊂ R,

acting freely and isometrically on the line. (The previous case corresponds to the pair  (1, ϑ).)

- Again, the normed cubical set  (N∆↑R)/Gϑ  has a normed directed homology, isomorphic to the

normed ordered abelian group  ↑Gϑ

(1) N↑H1((N∆↑R)/Gϑ)  =  ↑Gϑ  =  ↑(Σj ϑjZ) (G+
ϑ = Gϑ ∩ R+).

8. Similar models by equilogical and inequilogical spaces [G3, G4]

After introducing singular homology for D. Scott's equilogical spaces [Sc], we show how these

structures can express 'formal quotients' of topological spaces, which do not exist as ordinary spaces

and are related with well-known noncommutative C*-algebras. This study also uses a wider notion of

local maps between equilogical spaces, which might be of interest for the general theory of the latter.

8.1. Equilogical spaces [Sc; G3, 1.1-1.2]

- Equilogical spaces are sort of 'formal quotients' of topological spaces.

- An equilogical space  X = (X#, ≈X)  will be a topological space  X#  provided with an equivalence

relation, written  ≈X  or  ≈.  The space  X#  will be called the support of  X,  while the quotient  |X| =

X#/≈  is the underlying space (or set, according to convenience). One can think of the object  X  as a

set  |X|  covered with a chart   p: X# = |X|  containing the topological information.

- A map of equilogical spaces  f: X = Y  (also called an equivariant mapping [Sc]) is a mapping  f:

|X| = |Y|  which admits some continuous lifting  f': X# = Y#.  It can also be defined as an equi-

valence class of continuous mappings  f': X# = Y#  coherent with the equivalence relations

(1) ∀ x, x' ∈ X:   x ≈X x'  .⇒.  f'(x) ≈Y f'(x'),

under the associated pointwise equivalence relation

(2) f' ≈ f"   if   (∀ x ∈ X,  f'(x) ≈Y f"(x)).

- The category  Eql  thus obtained contains  Top  as a full subcategory, identifying the space  X  with

the obvious pair  (X, =X).  An equilogical space  X  is isomorphic to a topological space  A  if and

only if  A  is a retract of  X,  with a retraction  p: X = A  whose equivalence relation is precisely

≈X.  We shall see that the new category has relevant new objects.

- The terminal object of  Eql  is the singleton space  {*}.  Therefore, a point  x: {*} = X  is an

element of the underlying set  |X| = X#/≈  (not an element of the support  X#).  The (faithful) forgetful

functor, with values in  Top  (or in  Set,  when convenient)

(3) | – |: Eql = Top, |X|  =  X#/≈,

sends  f: X = Y  to the underlying mapping  f: |X| = |Y|  (also written  |f|,  to be more precise).
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- The 'function'  X ± X#  is not part of a functor, as it does not preserve isomorphic objects.

Remarks. Equilogical spaces have been introduced in [Sc] using T0-spaces as supports, so that they

can be viewed as subspaces of algebraic lattices with the Scott topology (which is always T0). The

category so obtained - a full subcategory of the category  Eql  we are using here - is generally written

as  Equ.  As a relevant, non obvious fact,  Equ  is cartesian closed (while  Top  is not): one can

define an 'internal hom'  ZY  satisfying the exponential law  Equ(X×Y, Z) = Equ(X, ZY);  this has

been proved in [BBS]; for other references, see [G3].

- Here, we prefer to drop the condition  T0,  so that every topological space be an equilogical one. The

category  Eql  can be obtained from  Top  by a general construction, as its regular completion

Topreg  [CV]. This fact can be used to prove that also  Eql  is cartesian closed [Rs, p. 161].

- Cartesian closedness is crucial in the theory of data types, where equilogical spaces originated; but

here it only plays a marginal role: we are essentially interested in the (easy) fact that the path space  XI

exists in  Eql,  and coincides with the topological one when  X  is in  Top  [G3, 1.5].

8.2. Limits [BBS; G3, 1.3]

- The category  Eql  has all limits and colimits.

- The construction of products and sums is obvious: a product  Π Xi  is the product of the supports

X#
i ,  equipped with the product of all equivalence relations; a sum (or coproduct)  Σ Xi  is the sum of

the spaces  X#
i ,  with the sum of their equivalences.

- Now, take two maps  f, g: X = Y.  For their equaliser  E = (E#, ≈),  take first the (set-theoretical

or topological) equaliser  E0  of the underlying mappings  f, g: |X| = |Y|;  then, the space  E#  is the

counterimage of  E0  in  X#,  with the restricted topology and equivalence relation; the map  E = X

is induced by the inclusion  E# = X#.

- For the coequaliser  C  of the same maps, let us begin forming the set-theoretical coequaliser of the

underlying mappings  f, g: |X| = |Y|:  it is a quotient  |Y|/R,  which can be rewritten as  Y#/≈C  by a

suitable equivalence relation coarser than  ≈Y  (namely, the counterimage of  R  along the projection

Y# = |Y| = Y/≈Y).  Then  C = (Y#, ≈C),  with the map  Y = C  induced by the identity of  Y#  (and

represented by the canonical projection  |Y| =  |C|).  Notice that coequalisers in  Top  (whose

disagreement with products precludes cartesian closedness) are not used.

- An (equilogical) subspace, or regular subobject  A = (A#, ≈)  of  X  is a topological subspace  A# ⊂

X#  saturated with respect to  ≈X,  with the restricted equivalence relation. The order relation  A ⊂ B

(of regular subobjects) amounts to  A# ⊂ B#,  or equivalently to  |A| ⊂ |B|.  We say that the equilogical

subspace  A  is open (resp. closed) in  X  if  A#  is open (resp. closed) in  X#;  or, equivalently, if the

underlying set  |A|  is open (resp. closed) in  |X|.

- An (equilogical) quotient, or regular quotient of  X  is the space  X#  itself, equipped with a coarser

equivalence relation. A map  f: X = Y  has a canonical factorisation through its coimage (a quotient

of  X)  and its image (a subspace of  Y)

(1) X = Coim(f) = Im(f) = Y,

where  Coim(f) = (X#, R)  is determined by the equivalence relation associated to the composed

mapping  X# = |Y|,  while  (Im(f))#  is the counterimage of  f(|X|)  in  Y#.
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- The (faithful) forgetful functor  | – |: Eql = Top  (8.1.3) is left adjoint to the (full) embedding  Top
⊂ Eql

(2) Top(|X|, T)  =  Eql(X, T) (X  in  Eql;  T  in  Top),

since every map  |X| = T  can be lifted to  X#. The left adjoint  | – |  preserves colimits (obviously)

and equalisers, but not products, while the embedding  Top ⊂ Eql  preserves limits (obviously) and

sums, but not coequalisers (see 8.3).

8.3. Equilogical circles and spheres [G3, 1.4]

- The category  Eql  has various (non isomorphic) models of the circle, i.e., objects whose associated

space is homeomorphic to  S1.  Similar facts happen with other structures of common use in algebraic

topology: simplicial complexes, simplicial sets, cubical sets. We will see that the models we consider

here are equivalent up to 'local homotopy' (8.4).

- First, we have the topological circle itself:  S1  is the coequaliser in  Top  of the faces of  I = [0, 1]

(1) ∂α: {*}       _£∞        I, ∂α(*)  =  α (α = 0, 1),

and represents loops in  Top  (as maps  S1 = X);  it also lives in  Eql.

- But the coequaliser in  Eql  of the faces of the interval is produced by the equivalence relation  R∂I

which identifies the endpoints

(2) S1
e  =  (I, R∂I), the standard equilogical circle;

(RA  will often denote the equivalence relation which identifies the points of a subset  A).

- A third model is the orbit quotient of the action of the group  Z  on the line, in  Eql

(3)
−
S1

e  =  (R, ≡Z).

- Finally, we consider a sequence of models

(4) Ck  =  (kI, Rk), the k-gonal equilogical circle,

where  kI = I + ... + I  (the sum of  k  copies) and  Rk  is the equivalence relation identifying the

terminal point of any addendum with the initial point of the following one, circularly. This can be

pictured as a polygon for  k ≥ 3;  but the definition makes sense for  k ≥ 1,  and  C1 = S1
e.

- There are obvious maps

(5)   ...  =  Ck+1  =  Ck  =  ...  =  C2  =  C1  =  S1
e  =  

−
S1

e  =  S1

(where  Ck+1 = Ck  collapses the last 'edge'); their underlying map is (at least) a homotopy equiva-

lence. But it is easy to see that any morphism in the opposite direction has an underlying map which is

homotopically trivial. This situation will be further analysed below (8.4).

- Similarly, in dimension  n > 0,  we have the topological n-sphere  Sn  and

(6) Sn
e  =  (In, R∂In) (the standard equilogical n-sphere),

(7)
−
Sn

e  =  (Rn, ≈n),

where the equivalence relation  ≈n  is generated by the congruence modulo  Zn  and by identifying all

points  (t1,..., tn)  where at least one coordinate belongs to  Z.
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- Of course,  S0 = S0
e = ({0, 1}, =)  has the discrete topology. All the standard equilogical spheres are

pointed suspensions of  S0  [G3, 1.6].

8.4. Local maps [G3; 2.1, 2.3, 2.4]

- An important feature of topology is the local character of continuity: a mapping between two spaces

is continuous if and only if it is on a convenient neighbourhood of every point. This local character

fails in  Eql:  for instance, the canonical map  (R, ≡Z) = S1  has a topological inverse  S1 = R/ ≡Z

which cannot be lifted to a map  S1 = R,  even though it can be locally lifted.

- This suggests us to extend  Eql  to the category  EqL  of equilogical spaces and locally liftable

mappings, or local maps. A local map  f: X =; Y  (the arrow is marked with a dot) is a mapping  f:

|X| = |Y|  between the underlying sets which admits an open saturated cover  (Ui)i∈I  of the space  X#

(by open subsets, saturated for  ≈X),  so that the mapping  f  has a partial (continuous) lifting  fi:

Ui = Y#,  for all  i

(1) f[x]  =  [fi(x)],  for  x∈Ui  and  i∈I.

- Equivalently, for every point  [x] ∈ |X|,  the mapping  f  restricts to a map of equilogical spaces on a

suitable saturated neighbourhood  U  of  x  in  X#.  The previous remark on the local character of

continuity in  Top  has two consequences: the embedding  Top ⊂ EqL  is (still) full and reflective,

with reflector (left adjoint)  | – |: EqL = Top.

- Finite limits and arbitrary colimits of  Eql  (as constructed in 8.2) still 'work' in the extension.

- A local isomorphism will be an isomorphism of  EqL;  a local path will be a local map  I =; X;  a

local homotopy will be a local map  X×I =; Y,  etc. Items of  Eql  will be called global (or

elementary, for paths) when we want to distinguish them from the corresponding local ones.

- Coming back to our models of the circle (8.3), the canonical map  
−
S1

e = (R, ≡Z) =  S1  is easily

seen to be locally invertible, and these models are locally isomorphic. This is not true, in the strict

sense, of the canonical map  p: S1
e =  

−
S1

e:  the topological inverse  R/Z = I/∂I  cannot be locally

lifted at  [0];  but we see below that a local inverse up to homotopy exists (8.4).

- The fact that  S1
e  and  S1  be not locally isomorphic can be interpreted viewing  S1

e = (I, R∂I)  as a

'circle with a corner point' (at [0]), which elementary paths are not allowed to cross; similarly,  Ck

would have  k  corner points. Thus, elementary paths are able to capture properties of equilogical

spaces which can be of interest, but are missed by local paths, fundamental groups [G3, 2.6] and

singular homology [G3, 3.7], as well as by any functor invariant up to local homotopy.

- Also in higher dimension, the canonical map  (Rn, ≈n) = Sn  is locally invertible, while this is not

true, in the strict sense, for  (In, R∂In) = Sn  (n > 0).

Proposition [Local homotopy equivalences of spheres]. All the canonical maps linking the models

of the circle (8.3.5)

(2)   ...  =  Ck+1  =  Ck  =  ...  =  C2  =  C1  =  S1
e  =  

−
S1

e  =  S1

are local homotopy equivalences. The same holds for the higher spheres

(3)
−
Sn

e  =  Sn
e  =  Sn (

−
Sn

e = (Rn, ≈n),    Sn
e = (In, R∂In)).
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8.5. Singular homology of equilogical spaces [G3, Section 3]

- Singular homology can be easily extended to equilogical spaces and used to study the new objects.

Less trivially, we prove that singular homology can be equivalently computed by local cubes and

deduce that it is also invariant under local homotopy equivalence.

- An equilogical space  X  has a cubical set of singular cubes  ∆X,  constructed in the category  Eql

(1) ∆X  =  ((∆nX), (∂αi ), (ei)), ∆nX  =  Eql(In,  X)  =  (∆ nX#)/≈n.

- Therefore, a cube  In = X  is a mapping  In = |X|  which can be (continuously) lifted to  X#;  or

also an equivalence class in the quotient of the set  ∆n(X#) = Top(In, X#)  (the n-cubes of the support

X#),  modulo the associated equivalence relation  ≈n  obtained by projecting such cubes along the

canonical projection  X#
 = |X| = X#/≈.

- We have defined in (1) a canonical embedding  ∆: Eql =  Cub,  acting on a map  f: X =  Y  of

equilogical spaces in the obvious way

(2) (∆nf): ∆nX = ∆nY, (∆nf)(a)  =  f˚a (for  a: In = X).

- This embedding produces the (normalised) singular chain complex of equilogical spaces and their

singular homology:

(3) C*: Eql = C*Ab, C*(X)  =  C*(∆X),

Hn: Eql = Ab, Hn(X)  =  Hn(∆X)  =  Hn(C*(X)),

which extends the singular homology of topological spaces; but we shall see that  Hn(X)  does not

reduce to the homology of the underlying space,  Hn(|X|).

- Using the wider category  EqL  of local maps (8.4), we have the local cubes  a: In =; X,  the

complex of local chains  CL*(X)  and the local homology groups  HLn(X)

(4) ∆LnX  =  EqL(In,  X), CL*(X)  =  C*(∆LX),

HLn: EqL = Ab, HLn(X)  =  Hn(CL*(X)).

- One can prove that  HLn(X)  always coincides with the global homology  Hn(X)  [G3, Thm. 3.5].

Then, the classical (cubical) proof of homotopy invariance (1.7) can be extended to show that:

Theorem [Homotopy Invariance]

Homotopic maps of equilogical spaces induce the same homomorphisms in homology. The same

holds for local homotopy and local homology. Because of the coincidence previously recalled, global

homology is also invariant for local homotopy.

8.6. Actions of groups [G3, 4.1-4.3]

- Let  X  be a topological space and  G  a group acting on it. Under appropriate hypotheses, the orbit

cubical set  (∆X)/G  used above can be replaced with the orbit equilogical space  (X, ≡G).

- We say that  G  acts pathwise freely on  X  if, whenever two paths  a, b: I = X  have the same

projection to the orbit space  X/G,  there is precisely one  g∈G  such that  a = b + g.  Then, the same

works for all pairs of n-cubes  a, b: In = X,  and the 0-dimensional case shows that the action is

free. On the other hand, a proper action is always pathwise free.
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- If the action is pathwise free and the space  X  is acyclic, then the canonical surjection  (∆X)/G =

∆(X, ≡G) = (∆X)/(≡G)*  is a bijection and (applying 5.4) we have:

(1) H*(X, ≡G)  =  H*((∆X)/G) ©  H*(G).

(a) Various pathwise free (non proper) actions will be obtained as follows: the space  X  is an

(additive) topological group and  G  is a totally disconnected subgroup, acting on  X  by translations

x+g.  Indeed, if the paths  a, b: I = X  have the same projection to  X/G,  their difference  a – b: I
= G  must be constant. (And the action is proper if and only if  G  is discrete.)

(b) As an example of a free action which is not pathwise free, take a (non trivial) group  G  acting on

its underlying set  X,  equipped with the coarse topology.

8.7. Equilogical spaces and irrational rotations [G3, 4.5]

- The group  Gϑ ⊂ R  is totally disconnected, so that its action on the line is also pathwise free (8.6)

and the homology of the orbit equilogical space  (R, ≡Gϑ
)  is

(1) H*(R, ≡Gϑ
)  =  H*((∆R)/Gϑ)  ©  H*(T2).

- Two generators  [a], [b] ∈ H1(R, ≡Gϑ
) © Z2  and a generator  [A] ∈ H2(R, ≡Gϑ

) © Z  are given by

the following cycles (as it follows from 6.7, or from its proof for the second case)

(2) a, b: I = R, a(t)  =  t,      b(t)  =  ϑt,

(3) A: [0, 1]2 = R/Gϑ, A(t, t')  =  tϑ + t';

this yields a sort of 'homological correspondence' between the virtual space  (R, ≡Gϑ
)  and the torus

T2,  together with some geometric intuition of the former.

- Algebraically, all this is in accord with the 'interpretation' of  R/Gϑ  as the C*-algebra  Aϑ,  which

has the same K-theory groups as the torus; but note that here we lose the order information, and we

cannot recover  ϑ,  at any extent. This can be obtained enriching equilogical spaces with preorders.

8.8. Inequilogical spaces [G4]

- The new category is built on the category  pTop  of preordered topological spaces (and preorder-

preserving maps), in the same way as the category of equilogical spaces is built on  Top.

- An inequilogical space, or preordered equilogical space  X = (X#, ≈X)  will be a preordered

topological space  X#  endowed with an equivalence relation  ≈X  (or  ≈);  the preorder relation will

generally be written as  <X.  The quotient  |X| = X#/≈  will be viewed as a preordered topological

space (with the induced preorder and topology), or a topological space, or a set, as convenient. A map

f: X = Y  'is' a mapping  f: |X| = |Y|  which admits some continuous preorder-preserving lifting  f':

X# = Y#.  Equivalently, a map is an equivalence class of maps  f'  in  pTop  which respect the

equivalence relations (8.1.1), under the equivalence relation  f' ≈ f"  (8.1.2). Note that there are no

mutual conditions among topology, preorder and equivalence relation.

- This category will be denoted as  pEql.  The forgetful functor

(1) | – |: pEql = pTop, |X|  =  X#/≈X,
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with values in preordered topological spaces (or spaces, or sets, when convenient) sends the map  f:

X = Y  to the underlying mapping  f: |X| = |Y|  (also written  |f|).  A point  x: {*} = X  is an

element of the underlying space  |X|.

- The following embeddings will be viewed as inclusions  (≈  is again the chaotic preorder on a set)

J2

  Top - -=   pTop J1(T)  =  (T, =T), J2(T)  =  (T, ≈T),

(2)  J1 :ò :ò   J3 J3(T, <)  =  (T, <, =T),

 Eql - -=  pEql J4(T, ≈)  =  (T, ≈T, ≈).
J4

8.9. Directed homology of inequilogical spaces [G4, 3.2]

- Now, an inequilogical space  X  (on a preordered space  X# = (T, <))  has a singular cubical set

(1) ∆ : pEql = Cub, ∆nX  =  pEql(↑In, X)  =  (∆ nX#)/≈n,

whose n-component 'is' the quotient of  ∆nX# = pTop(↑In, X#)  modulo the equivalence relation  ≈n

obtained by projecting cubes along the canonical projection  X# = |X| = X#/≈.  Notice that  ∆X  is a

subobject of the cubical set of the underlying equilogical space  (T, ≈)

(2) ∆nX  ⊂  ∆n(T, ≈)  =  Eql(In, (T, ≈)).

- This canonical embedding of  pEql  in  Cub  defines the singular homology of an inequilogical

space, again as a sequence of preordered abelian groups:

(3) ↑Hn: pEql = dAb, ↑Hn(X)  =  ↑Hn(∆X),

and a pEql-map induces preorder-preserving homomorphisms. This functor is homotopy invariant.

- If  X  is an equilogical space (with the coarse preorder), the cubical set  ∆X  is precisely the one

already considered in 8.5, and the singular homology groups are - algebraically - the same, while their

preorder is likely of no interest.

- In the general case, the groups  ↑Hn(X)  can differ - even algebraically - from the groups  Hn(T, ≈)

of the underlying equilogical space; as a trivial example, if the preorder  <X  is discrete (the equality),

all directed cubes  ↑In = X  are constant and  ↑Hn(X) = 0  for  n > 0.

8.10. Classification of the inequilogical spaces of irrational rotation [G4, Section 4]

- The irrational rotation inequilogical space:

(1) C'ϑ  =  (↑R, ≡Gϑ
)  =  (R, ≤, ≡Gϑ

),

- Since  Gϑ  is a totally disconnected subgroup of  R,  and its action on the (ordered) line is pathwise

free, the directed homolgy of  C'ϑ  coincides with the one of the cubical set  Cϑ = (∆↑R)/Gϑ

(2) ↑H1(C'ϑ)  =  ↑H1((∆↑R)/Gϑ)  ©  ↑Gϑ.

- It follows easily:

Classification Theorem (For the inequilogical spaces of irrational rotation)

The inequilogical spaces  C'ϑ  have the same classification up to isomorphism as the cubical sets

Cϑ  (6.8). ∆
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- More generally, let us take (as in 6.4 and 7.9) an n-tuple of real numbers  ϑ = (ϑ1,..., ϑn),  linearly

independent on  Q,  and consider the additive subgroup  Gϑ = Σj ϑjZ © Zn  of the line. Again, the

(totally disconnected) group  Gϑ  acts pathwise freely on  ↑R  and on the cubical set  ∆↑R,  whence

(3) ↑H1(↑R, ≡Gϑ
)  =  ↑H1((∆↑R)/Gϑ)  =  ↑Gϑ  =  ↑(Σj ϑjZ).

- The classification theorem can also be extended to this case.

8.11. Inequilogical realisation [G4, 3.7]

- We end with remarking that a cubical set  K  can be given a realisation in  pEql  which, in contrast

with the classical geometric realisation  R(K)  in  Top  (recalled in 3.3), does not lose priviliged

directions. The inequilogical realisation  is the functor

(1) ↑E: Cub = pEql, ↑E(K)  =  (Σx ↑In(x), ≈),

left adjoint to  ∆: pEql = Cub  (8.9.1). As in the geometric realisation  R(K) = (Σx In(x))/≈  (3.3),

the sum is indexed on the cubes  x  of  K,  and the equivalence relation ≈ is the same (see 3.3.3);

thus, the geometric realisation is precisely the topological space underlying the inequilogical

realisation.

- It is easy to prove that  ↑E(K⊗L) © ↑E(K)×↑E(L),  putting together the following facts:

(a)  this is obviously true when  K = ↑im,  L = ↑in  and  K⊗L = ↑im+n  (representable presheaves),

(b)  each cubical set is a colimit of representable ones (say  K = colimx ↑in(x),  L = colimy ↑in(y)),

(c)  left adjoints preserve colimits,

(3) ↑E(K⊗L)  =  ↑E((colimx ↑in(x)) ⊗ (colimy ↑in(y))))  =  ↑E (colimxy (↑in(x)⊗↑in(y)))

=  colimxy (↑E(↑in(x)⊗↑in(y)))  =  colimxy (↑E(↑in(x))×↑E(↑in(y)))

=  (colimx ↑E(↑in(x))) × (colimy ↑E(↑in(y)))  =  ↑E(K)×↑E(L). ∆

References

[BBS] A. Bauer - L. Birkedal - D.S. Scott, Equilogical spaces, Theoretical Computer Science, to appear.

[BH] R. Brown - P.J. Higgins, Tensor products and homotopies for ω-groupoids and crossed complexes,
J. Pure Appl. Algebra 47 (1987), 1–33.

[Bl] B. Blackadar, K-theory for operator algebras, Springer, Berlin 1986.

[C1] A. Connes, Noncommutative geometry, Academic Press, San Diego CA 1994.

[C2] A. Connes, A short survey of noncommutative geometry, J. Math. Physics 41 (2000), 3832-3866.

[CV] A. Carboni - E. Vitale, Regular and exact completions, J. Pure Appl. Algebra 125 (1998), 79-116.

[EM] S. Eilenberg - S. Mac Lane, Acyclic models, Amer. J. Math. 75 (1953), 189-199.

[GX] M. Grandis, Higher fundamental functors for simplicial sets, Cahiers Topologie Géom.
Différentielle Catég. 42 (2001), 101-136.

[GY] M. Grandis, Directed homotopy theory, I. The fundamental category, Cahiers Topologie Géom.
Différentielle Catég. 44  (2003), to appear. [Dip. Mat. Univ. Genova, Preprint 443  (2001).]
http://www.dima.unige.it/~grandis/

[G1] M. Grandis, Directed combinatorial homology and noncommutative tori (The breaking of
symmetries in algebraic topology), Math. Proc. Cambridge Philos. Soc., to appear.



33

[Dip. Mat. Univ. Genova, Preprint 480 (2003).]  http://www.dima.unige.it/~grandis/Bsy.pdf

[G2] M. Grandis, Normed combinatorial homology and noncommutative tori, Dip. Mat. Univ. Genova,
Preprint 484 (2003).  http://www.dima.unige.it/~grandis/Bsy2.pdf

[G3] M. Grandis, Equilogical spaces, homology and noncommutative geometry, Dip. Mat. Univ. Genova,
Preprint 493 (2003).  http://www.dima.unige.it/~grandis/Eql.pdf

[G4] M. Grandis, Inequilogical spaces, directed homology and noncommutative geometry, Dip. Mat.
Univ. Genova, Preprint 494 (2004).  http://www.dima.unige.it/~grandis/pEql.pdf

[GM] M. Grandis - L. Mauri, Cubical sets and their site, Theory Appl. Categ. 11 (2003), No. 8, 185-211
(electronic).  http://tac.mta.ca/tac/

[HW] P.J. Hilton - S. Wylie, Homology theory, Cambridge University Press, Cambridge 1962.

[Ka] D.M. Kan, Abstract homotopy I, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 1092-1096.

[Ma] S. Mac Lane, Homology, Springer, Berlin 1963.

[Ms] W. Massey, Singular homology theory, Springer, Berlin 1980.

[Mu] J.R. Munkres, Elements of algebraic topology, Perseus Publ., Cambridge MA, 1984.

[PV] M. Pimsner - D. Voiculescu, Imbedding the irrational rotation C*-algebra into an AF-algebra, J.
Operator Th. 4 (1980), 93-118.

[Ri] M.A. Rieffel, C*-algebras associated with irrational rotations, Pacific J. Math. 93 (1981), 415-429.

[Rs] G. Rosolini, Equilogical spaces and filter spaces, Categorical studies in Italy (Perugia, 1997). Rend.
Circ. Mat. Palermo (2) Suppl. No. 64, (2000), 157-175.

[Sc] D. Scott, A new category? Domains, spaces and equivalence relations, Unpublished manuscript
(1996). http://www.cs.cmu.edu/Groups/LTC/


