Ficha 3

Análise Matemática II Cursos LESIM & LEIC-Taguspark, 1º Semestre de 2001/2002

Ι

1-[5 val] Calcule os seguintes integrais impróprios:

(a)
$$\int_{1}^{+\infty} \frac{x}{1+x^4} dx$$
 (b) $\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} dx$

(b)
$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} dx$$

2-[5 val] Diga, justificando, quais dos seguintes integrais impróprios são convergentes:

$$(a) \int_0^{+\infty} \frac{\sqrt{x}}{x(1+x^4)} dx$$

(a)
$$\int_0^{+\infty} \frac{\sqrt{x}}{x(1+x^4)} dx$$
 (b) $\int_1^{+\infty} \frac{x+sen(x)}{x-cos(x)} dx$

(a ser feito em casa)

1-[5 val] Diga, justificando com uma demonstração ou um contra-exemplo, se é verdadeira ou falsa cada uma das seguintes afirmações:

- (a) Se f é uma função contínua em $[0,+\infty[$ tal que o integral impróprio $\int_0^{+\infty} f(x) dx$ é convergente, então $f(x) \to 0$ quando $x \to +\infty$.
 - (b) Se o integral impróprio $\int_0^{+\infty} f(x)dx$ é convergente, então

$$\int_{x}^{2x} f(t)dt \to 0 \quad \text{quando} \quad x \to +\infty$$

2-[5 val] (a) Seja $\varphi: [\alpha, \beta] \to [a, b]$ uma função diferenciável com derivada positiva $(\varphi'(t) > 0)$ tal que $\varphi(\alpha) = a$ e $\varphi(\beta) = b$. Mostre que, conhecendo as funções φ e $g = f \circ \varphi$, é possível calcular o comprimento do gráfico da função diferenciável f, entre os pontos a e b, através da fórmula

$$\int_{\alpha}^{\beta} \sqrt{(g'(t))^2 + (\varphi'(t))^2} dt$$

SUGESTÃO: Utilize a substituição $x = \varphi(t)$ no integral

$$\int_a^b \sqrt{1 + (f'(x))^2} dx$$

(b) Utilize o resultado da alinea anterior para calcular o comprimento do gráfico da função f que satisfaz a identidade $f(\theta - sen(\theta)) = 1 - cos(\theta)$ definida no intervalo $[0, 2\pi]$.