Ficha 6

Análise Matemática II Cursos LESIM & LEIC-Taguspark, 1º Semestre de 2001/2002

Ι

1-[5 val] Indique o interior, o exterior, a fronteira e o fecho de cada um dos seguintes conjuntos:

- (a) $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1 \land xy \ne 0\};$
- (b) $B = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 3\};$
- (c) $C = \{(x, \cos(\frac{1}{x})) \in \mathbb{R}^2 : x \in \mathbb{R}^+\}.$

2-[5 val] Considere a função escalar f definida em $D = \mathbb{R}^2 \setminus \{(0,0)\}$ por

$$f(x,y) = \frac{x^2y}{x^2 + y^4}$$

- (a) Diga, justificando, se f é contínua no seu domínio D.
- (b) Diga, justificando, se f é prolongável por continuidade ao ponto (0,0). Se sim, que valor terá f nesse ponto.
 - (c) Calcule o gradiente de f no ponto (1,0).

\mathbf{II}

(a ser feito em casa)

- **1-[5 val]** (a) Mostre que, para qualquer conjunto $X \subseteq \mathbb{R}^n$, o seu interior é um conjunto aberto. Mostre também que, se A é um conjunto aberto contido em X então também está contido no interior de X.
- (b) Mostre que, para qualquer conjunto fechado $X \subseteq \mathbb{R}^n$, se (x_n) é uma sucessão convergente com termos em X então o seu limite também pertence a X.
- **2-[5 val]** (a) Um conjunto $X\subseteq \mathbb{R}^n$ diz-se conexo por arcos se para quaisquer dois elementos p e q de X existe uma função contínua

$$\phi:[0,1]\to{\rm I\!R}^n$$

tal que $\phi(0) = p$, $\phi(1) = q$ e $\phi(t) \in X$ para todo $t \in [0, 1]$.

Mostre que se $f: \mathbb{R}^n \to \mathbb{R}^m$ é uma função contínua então a imagem de qualquer conjunto conexo por arcos é um conjunto conexo por arcos.

(b) Definimos a pré-imagem de um conjunto $X\subseteq \mathbb{R}^m$ pela função $f:\mathbb{R}^n\to\mathbb{R}^m$ como sendo o conjunto $f^{-1}(X)=\{x\in\mathbb{R}^n:f(x)\in X\}.$

Mostre que se f é contínua então a pré-imagem de um conjunto aberto é aberto.