Resolução da Ficha 5

Análise Matemática II Cursos LESIM & LEIC-Taguspark, 1º Semestre de 2001/2002

Ι

1- (a) Como, para todo o $x \in \mathbb{R}$,

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

temos que

$$e^{x^2} = \sum_{n=0}^{\infty} \frac{(x^2)^n}{n!} = \sum_{n=0}^{\infty} \frac{x^{2n}}{n!}$$

Portanto,

$$f(x) = (x-1)e^{x^2} = (-1+x)\sum_{n=0}^{\infty} \frac{x^{2n}}{n!} = \sum_{n=0}^{\infty} -\frac{x^{2n}}{n!} + \frac{x^{2n+1}}{n!} = \sum_{k=0}^{\infty} a_k x^k$$

onde

$$a_k = \left\{ \begin{array}{ll} -\frac{1}{n!} & \text{se} & k = 2n \\ \frac{1}{n!} & \text{se} & k = 2n+1 \end{array} \right. = \frac{(-1)^{k+1}}{\left|\frac{k}{2}\right|!} \quad \text{onde} \quad \left\lfloor \frac{k}{2} \right\rfloor = \max\{n \in \mathbb{N} : n \leq \frac{k}{2}\}$$

Concluindo,

$$f(x) = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{|\frac{k}{2}|!} x^k$$

e este desenvolvimento é válido para todo o $x \in \mathbb{R}$.

(b) $\log(1+x^2)$ é uma primitiva de $\frac{2x}{1+x^2}$. Como, para $|x|<1, \frac{1}{1-x}=\sum_{n=0}^\infty x^n,$ temos que

$$\frac{2x}{1+x^2} = 2x \frac{1}{1-(-x^2)} = 2x \sum_{n=0}^{\infty} (-x^2)^n = \sum_{n=0}^{\infty} 2(-1)^n x^{2n+1}$$

para $|x^2| < 1$ (ou seja |x| < 1).

Assim

$$g(x) = \log(1+x^2) = \int \sum_{n=0}^{\infty} 2(-1)^n x^{2n+1} dx = c + \sum_{n=0}^{\infty} 2(-1)^n \frac{x^{2n+2}}{2n+2} = c + \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^{2n+2}$$

onde c é uma constante. Tomando x=0 deduzimos que $c=\log(1)=0$.

Portanto

$$g(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^{2n+2}$$

para |x| < 1.

2- Pelo teorema de Taylor sabemos que se f é n vezes diferenciável em a então existe um polinómio P_n de grau menor ou igual a n tal que

$$f(x) = P_n(x) + o(|x - a|^n)$$

ou seja

$$\lim_{x \to a} \frac{f(x) - P_n(x)}{(x - a)^n} = 0$$

Além disso tal polinómio é único e é dado por

$$P_n(x) = f(a) + f'(a)(x - a) + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n$$

Assim, tomando $f(x) = \cos(x^2 - 1)$ e n = 2 temos que

$$P(x) = f(1) + f'(1)(x - 1) + \frac{f''(1)}{2}(x - 1)^2 = 1 - 2(x - 1)^2$$

Note-se que $f(x)=\cos(x^2-1)$ é duas vezes diferenciável com $f'(x)=-\sin(x^2-1)2x$ e $f''(x)=-\cos(x^2-1)4x^2-2\sin(x^2-1)$.

f possui um máximo relativo em x=1 pois f'(1)=0 e f''(1)=-4<0.

\mathbf{II}

1- Vejamos por indução finita que, para qualquer natural $n,\,f$ é de classe C^n e

$$f^{(n)}(x) = \begin{cases} f(x) & \text{se } n \text{ \'e par} \\ f(x) + e^{-x} & \text{se } n \text{ \'e \'impar} \end{cases}$$

Para n=1 é dado pelas hipóteses do enunciado.

Hipótese de indução: f é de classe C^n e

$$f^{(n)}(x) = \begin{cases} f(x) & \text{se } n \text{ \'e par} \\ f(x) + e^{-x} & \text{se } n \text{ \'e \'impar} \end{cases}$$

Tese de indução: f é de classe C^{n+1} e

$$f^{(n+1)}(x) = \begin{cases} f(x) & \text{se } n+1 \text{ \'e par} \\ f(x) + e^{-x} & \text{se } n+1 \text{ \'e \'impar} \end{cases}$$

Demonstração: Como f e e^{-x} são funções diferenciáveis e, por hipótese de indução f é de classe C^n com

$$f^{(n)}(x) = \begin{cases} f(x) & \text{se } n \text{ \'e par} \\ f(x) + e^{-x} & \text{se } n \text{ \'e \'impar} \end{cases}$$

temos que $f^{(n)}$ é diferenciável, logo f é de classe C^{n+1} e

$$f^{(n+1)}(x) = \begin{cases} f'(x) & \text{se } n \text{ \'e par} \\ (f(x) + e^{-x})' & \text{se } n \text{ \'e \'impar} \end{cases} = \begin{cases} f(x) + e^{-x} & \text{se } n+1 \text{ \'e \'impar} \\ f(x) & \text{se } n+1 \text{ \'e par} \end{cases}$$

Com isto concluimos que f é de classe C^{∞} em \mathbb{R} . Sendo f e e^{-x} funções contínuas em \mathbb{R} , temos que f(x) e $f(x) + e^{-x}$ são limitadas em qualquer intervalo limitado. Assim existe uma constante que majora todas as derivadas de f em tal intervalo, pelo que f é analítica.

A sua série de Mac-Laurin é

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

onde

$$f^{(n)}(0) = \begin{cases} 1 & \text{se } n & \text{\'e par} \\ 2 & \text{se } n & \text{\'e impar} \end{cases} = \frac{3 - (-1)^n}{2}$$

e portanto o seu desenvolvimento de Mac-Laurin é

$$\sum_{n=0}^{\infty} \frac{3 - (-1)^n}{n!2} x^n$$

2-

$$\sum_{n=1}^{\infty} nx^n = x \sum_{n=1}^{\infty} nx^{n-1} = x(\sum_{n=0}^{\infty} x^n)' = x(\frac{1}{1-x})' = \frac{x}{(1-x)^2}$$

para $x \in]-1,1[$.

Como $x = \frac{1}{2} \in]-1,1[$, temos que o valor da série

$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$

é dado pelo valor da função racional $\frac{x}{(1-x)^2}$ no ponto $x=\frac{1}{2}$, ou seja 2.