Resolução do 1º exame de 2010/2011

Programação Matemática

1-

$$aff(S) = \mathbb{R}^3$$

$$\mathrm{conv}(S) = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1; x + y + z \ge 1; x \ge 0; y \ge 0; z \ge 0\}$$

$$cone(S) = \{(x, y, z) \in \mathbb{R}^3 : x \ge 0; y \ge 0; z \ge 0\}$$

2- O problema de programação linear:

Maximizar: $2x_1 + 2x_2 + x_3$ Sujeito a: $x_1 + x_2 + x_3 \le 7$ $x_1 - x_3 \le 1$ $2x_2 - x_3 \le 2$ Com: $x_1, x_2, x_3 \ge 0$

é equivalente, juntando variáveis de folga $x_4,\ x_5$ e $x_6,$ ao problema de programação linear:

 $\begin{array}{ll} \text{Maximizar:} & 2x_1+2x_2+x_3\\ \text{Sujeito a:} & x_1+x_2+x_3+x_4=7\\ & x_1-x_3+x_5=1\\ & 2x_2-x_3+x_6=2\\ \text{Com:} & x_1,x_2,x_3,x_4,x_5,x_6\geq 0 \end{array}$

		1				
1	0	-1	0	1	0	1
0	2	$-1 \\ -1$	0	0	1	2
2	2	1	0	0	0	0

Neste caso já temos $\bar{c} = c$ e $A_B = I$ (i.e. as colunas de A correspondentes às variáveis básicas formam a matriz identidade e as correspondentes

coordenadas de \overline{c} são zero) portanto não é necessário proceder ao passo 0 do algoritmo simplex:

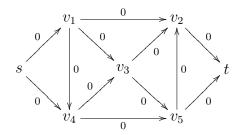
O termina no último tableau pois $\overline{c}^T=(0,0,0,-\frac{8}{5},-\frac{2}{5},-\frac{1}{5})\leq 0$. Portanto a solução básica obtida é $(x_1,x_2,x_3,x_4,x_5)=(3,2,2,0,0,0)$. Ou seja, no problema original, uma solução optimal é $(x_1,x_2,x_3)=(3,2,2)$ com valor optimal 12.

3- Usando o algoritmo de Dijkstra podemos construir a seguinte tabela:

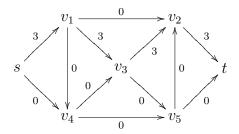
S	etiqueta	В	С	D	Е	F	G
A	0	(1)	∞	∞	∞	(4)	3
В	(1,A)	X	(1+2)	∞	∞	∞	(1+1)
G	(2,B)	X	2 + 2	(2+1)	2 + 5	2 + 4	X
С	(3,B)	X	X	3 + 1	∞	∞	X
D	(3,G)	X	X	X	(3+3)	∞	X
F	(4,A)	X	X	X	8	X	X
E	(6,D)	X	X	X	X	X	X

Donde se tira que o custo mínimo de ligação entre A e E é de 6 euros e um caminho de custo mínimo é A-B-G-D-E.

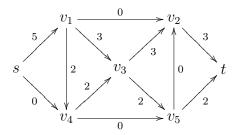
4- Iniciamos com o fluxo nulo:



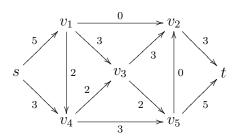
Determinamos o S(x), que neste caso é formados por todos os vértices incluindo t. Logo existe um caminho x-aumentador, por exemplo s, v_1, v_3, v_2, t , com $\varepsilon = \min\{5, 3, 9, 3\} = 3$, ficamos então com o novo fluxo:



 $S(x)=\{s,v_1,v_2,v_3,v_4,v_5,t\}$, tomamos novamente um caminho x-aumentador, por exemplo s,v_1,v_4,v_3,v_5,t , com $\varepsilon=\min\{5-3,2,6,2,6\}=2$, ficamos então com o novo fluxo:



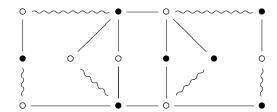
 $S(x) = \{s, v_1, v_2, v_3, v_4, v_5, t\}$, tomamos novamente um caminho x-aumentador, por exemplo s, v_4, v_5, t , com $\varepsilon = \min\{9, 3, 6 - 2\} = 3$, ficamos então com o novo fluxo:



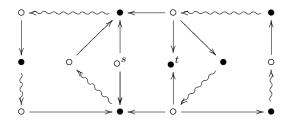
 $S(x) = \{s, v_1, v_2, v_3, v_4\} \not\ni t$, logo este fluxo-st é máximo, com valor f(x) = 3 + 5 = 8, e $C = \delta^+(S(x)) = \{(v_2, t), (v_3, v_5), (v_4, v_5)\}$ é corte-st de capacidade d(C) mínima pois d(C) = 3 + 2 + 3 = f(x).

5-

(a) Cosidere-se o seguinte candidato possível a matching de tamanho máximo:



Para verificar que este matching é de tamanho máximo basta ver que não existem caminhos de aumento de matching. Como o grafo é bipartido, tal equivale a não existir caminhos dirigidos entre dois vértices não cobertos pelo matching no seguinte digrafo:



onde as arestas são orientadas de • para ∘ se pertencem ao matching e de ∘ para • caso contrário.

É fácil ver que tal não pode existir pois teria que ser um caminho de s para t e tal teria que passar pelas duas arestas do meio no sentido oposto ao indicado.

Portanto o matching dado é um matching de tamanho máximo.

- (b) O índice cromático do grafo, sendo o grafo bipartido, é, pelo teorema de Kőnig, igual ao seu grau máximo que é 4.
- **6-** O número de 5-colorações possíveis para o grafo dado, C_4 , é dado por $P_{C_4}(5)$ onde P_{C_4} é o polinómio cromático de C_4 .

Usando a fórmula de recorrência para o polinómio cromático:

$$P_G = P_{G-e} - P_{G/e}$$

temos que

$$P_{C_4} = P_{P_4} - P_{K_3}$$

onde P_4 é o grafo-caminho com 4 vértices (\bullet — \bullet — \bullet — \bullet) e K_3 é o grafo completo com 3 vértices. $P_{P_4}(t) = t(t-1)^3$ pois colorindo da esquerda para a direita podemos escolher, sem mais restrições, t cores para o primeiro

vértice e t-1 para os restantes. Por outro lado $P_{K_3}(t) = t(t-1)(t-2)$, logo $P_{C_4} = t(t-1)^3 - t(t-1)(t-2) = t(t-1)(t^2 - 3t + 3)$.

Portanto o número de 5-colorações possíveis para C_4 é $P_{C_4}(5)=5\times 4\times 13=260.$

7- Como por hipótese $P=\{x\in\mathbb{R}^n:Ax\leq b\}$ é não-vazio temos que $\{c^Tx:x\in P\}$ é também não-vazio (logo se for majorado tem supremo). Suponhamos que por absurdo $\{c^Tx:Ax\leq b\}$ é majorado mas não tem máximo. Isso significa que o seu supremo, $s=\sup\{c^Tx:Ax\leq b\}$, não pertence ao conjunto. Logo, o sistema linear $Ax\leq b; c^Tx\geq s$ é inconsistente. Usando um corolário do lema de Farkas temos então que existem $y\geq 0$ e $\lambda\geq 0$ tal que $y^TA-\lambda c^T=0$ e $y^Tb-\lambda s<0$.

 λ não pode ser nulo pois nesse caso teriamos $y^TA=0$ e $y^Tb<0$ o que implicaria, pelo mesmo resultado, que o poliedro P seria vazio. Mas se $\lambda>0$ então existe $\varepsilon>0$ suficientemente pequeno para o qual $y^Tb-\lambda(s-\varepsilon)<0$ o que implica que o sistema $Ax\leq b; c^Tx\geq s-\varepsilon$ é inconsistente. Neste caso teríamos que $s-\varepsilon\not\in\{c^Tx:x\in P\}$ o que contradiz a definição de supremo.