Resolução problema 4 da ficha 2 de Programação Matemática

Problema: Mostre que se $C \subseteq \mathbb{R}^n$ é convexo e compacto então existe $X \subseteq \mathbb{R}^n$ tal que $C = \operatorname{conv}(X)$ e para qualquer outro conjunto $Y \subseteq \mathbb{R}^n$ tal que $C = \operatorname{conv}(Y)$ temos $X \subseteq Y$.

Resolução:

Definição auxiliar 1: Uma combinação convexa $x = \sum_{i=1}^{k} \lambda_i x_i$ diz-se irredutível se $\lambda_i > 0$ para todo o $i = 1, \dots, k$.

Definição auxiliar 2: Para cada $k \in \mathbb{N}$, F_k é o conjunto de elementos de C que não podem ser dados como combinações convexas irredutíveis de k+1 elementos de C afimente independentes. Ou seja,

$$F_k = \left\{ x \in C : \left(x = \sum_{i=1}^l \lambda_i x_i, \sum_{i=1}^l \lambda_i = 1, \lambda_i > 0 \forall_{i=1,\dots,l} \in x_1, \dots, x_l \text{ afim. ind.} \right) \Rightarrow l \leq k \right\}$$

pela definição dos F_k 's facilmente se vê que

Lema auxiliar 1: $F_k \subseteq F_{k+1} \forall k \in \mathbb{N}$.

Lema auxiliar 2: Se $x \in C \setminus F_1$ então existem $0 < \lambda < 1$ e $x_1, x_2 \in C$ tal que $x = \lambda x_1 + (1 - \lambda)x_2$ e $x_1 \neq x_2$.

Demonstração: Se $x \in C \setminus F_1$ então existe $\lambda_1, \ldots, \lambda_l \in]0, 1[e y_1, \ldots, y_l \in C]$ afimente independentes tais que

$$x = \sum_{i=1}^{l} \lambda_i y_i$$

com $l \ge 2$. Temos então que $x = \lambda x_1 + (1 - \lambda)x_2$ com $\lambda = \lambda_1$, $x_1 = y_1$ e $x_2 = \sum_{i=2}^{l} \mu_i y_i$ onde $\mu_i = \frac{\lambda_i}{1 - \lambda_1}$.

 $x_2 \in C$, pois é uma combinação convexa de elementos de C, e $x_1 \neq x_2$ pois y_1, \ldots, y_l são afimente independentes. Q.E.D.

Lema auxiliar 3: Para qualquer $k \geq 1$ temos que se $x \in F_{k+1}$ então existem $\lambda \in]0,1[$ e $x_1,x_2 \in F_k$ tais que $x=\lambda x_1+(1-\lambda)x_2$.

Demonstração: Se $x \in F_k$ então toma-se $x_1 = x_2 = x$ e $\lambda \in]0,1[$ e temos o que é pretendido.

Se $x \in F_{k+1} \setminus F_k$ então $x \notin F_1$ logo, pelo lema 2, existem $0 < \lambda < 1$ e $y_1, y_2 \in C$ tal que $x = \lambda y_1 + (1 - \lambda)y_2$ e $y_1 \neq y_2$. Tomemos a recta $r := \{\mu y_1 + (1 - \mu)y_2 : \mu \in \mathbb{R}\}$ que passa por y_1 e y_2 . Sendo C um conjunto convexo e compacto, a intersecção de r com C, $r \cap C$, terá de ser um conjunto convexo, compacto de dimensão 1 (pois está contido numa recta e contem pelos menos dois elementos y_1 e y_2), mais concretamente, $r \cap C = \{\mu y_1 + (1 - \mu)y_2 : \mu \in [a,b]\} = \operatorname{conv}(x_1,x_2)$ onde $x_1 = ay_1 + (1-a)y_2$ e $x_2 = by_1 + (1-b)y_2$ com $a \leq 0$ e $b \geq 1$. Um cálculo simples premite ver que $x = \tilde{\lambda}x_1 + (1 - \tilde{\lambda})x_2$ onde $\tilde{\lambda} = \frac{b-\lambda}{b-a} \in]0,1[$.

Agora só falta ver que $x_1, x_2 \in F_k$. Vamos supor por absurdo que um deles não pertence a F_k . Sem perda de generalidade suponhamos que é x_1 . Se $x_1 \notin F_k$ então existem $z_1, \ldots, z_{k+1} \in C$ afimente independentes, tais que

$$x = \sum_{i=1}^{k+1} \lambda_i z_i$$

com $\sum_{i=1}^{k+1} \lambda_i = 1$ e $\lambda_i > 0$ para todo $i = 1, \dots, k+1$.

Se $x_2 \notin \text{aff}(\{z_1, \ldots, z_{k+1}\})$ então teríamos que x seria igual a uma combinac cão convexa irredutível de k+2 elementos de C afimente independentes $z_1, \ldots, z_{k+1}, x_2$. De facto,

$$x = \tilde{\lambda}x_1 + (1 - \tilde{\lambda})x_2 = \sum_{i=1}^{k+2} \mu_i w_i$$

com $w_i = z_i$ e $\mu_i = \tilde{\lambda}\lambda_i$ para $i = 1, \dots, k+1$ e $w_{k+2} = x_2$ e $\mu_{k+2} = 1 - \tilde{\lambda}$. Logo $x \notin F_{k+1}$ o que contradiria a hipótese do lema.

Se $x_2 \in \text{aff}(\{z_1, \dots, z_{k+1}\})$ então teríamos que x_2 seria igual a uma combinação afim de z_1, \dots, z_{k+1} ,

$$x_2 = \sum_{i=1}^{k+1} \mu_i z_i$$

com $\sum_{i=1}^{k+1} \mu_i = 1$. Tomando um $\varepsilon > 0$ suficientemente pequeno para que $(1+\varepsilon)\lambda_i - \varepsilon\mu_i \geq 0$ para todo o $i=1,\ldots,k+1$ (basta tomar $\varepsilon = \min\{\frac{\lambda_i}{|\mu_i|}:\mu_i \neq 0\}$), teríamos que $(1+\varepsilon)x_1 - \varepsilon x_2 \in r$, $(1+\varepsilon)x_1 - \varepsilon x_2 \notin \operatorname{conv}(x_1,x_2)$ e

$$(1+\varepsilon)x_1 - \varepsilon x_2 = \sum_{i=1}^{k+1} ((1+\varepsilon)\lambda_i - \varepsilon \mu_i)z_i \in C$$

o que contradiria $\operatorname{conv}(x_1, x_2) = r \cap C$. Q.E.D.

Lema auxiliar 4: Para qualquer $k \ge 1$ temos $\operatorname{conv}(F_k) = \operatorname{conv}(F_{k+1})$.

Demonstração: Pelo lema 1, $F_k \subseteq F_{k+1}$, logo $\operatorname{conv}(F_k) \subseteq \operatorname{conv}(F_{k+1})$. Pelo lema 3, $F_{k+1} \subseteq \operatorname{conv}(F_k)$, logo $\operatorname{conv}(F_{k+1}) \subseteq \operatorname{conv}(F_k)$. Q.E.D.

Proposição (Resultado final): $C=\mathrm{conv}(F_1)$ e se $C=\mathrm{conv}(Y)$ então $F_1\subseteq Y.$

Demonstração: Como não existem n+2 elementos de \mathbb{R}^n afimente independentes temos que $C=F_{n+1}$, logo usando o lema 4 temos que $C=\operatorname{conv}(F_{n+1})=\operatorname{conv}(F_n)=\cdots=\operatorname{conv}(F_1)$.

Se $C=\operatorname{conv}(Y)$ então $F_1\subseteq\operatorname{conv}(Y)$. Se $x\in F_1\subseteq\operatorname{conv}(Y)$ então, pelo teorema de Carathéodory x pode ser escrito como uma combinação convexa (irredutível) de um número finito, k, de elementos de Y afimente indepententes. Como $x\in F_1$ então $k\le 1$, logo $x\in Y$. Q.E.D.