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Abstract

The objective of this work is to represent tangles by calculable
functions which are invariant under ambient isotopies.

In the first chapters we focus on the case of planar tangles up
to planar isotopies. We construct a category using Boolean matrices
(to represent connectivity relations) and monoids in such a way as to
give us a representation of planar tangles. From this we can extract
a numerical invariant for embeddings of a finite collection of disjoint
circles and this invariant is, up to certain choices, complete.

In the final chapters we adapt the previous construction to the
study of spatial tangles. First we give a linear representation for
Temperley-Lieb algebras and then we use the Kauffman bracket skein
relation to give a representation for tangles by means of linear opera-
tors which generalizes the Jones polynomial. The whole construction
is quite distinct from the Turaev approach. We also give a represen-
tation for singular tangles using the Kauffman-Vogel polynomial for
embedded 4-valent graphs.

Keywords:
-Tangles;
-Boolean matrices;
-Monoids;
-Representations;
-Temperley-Lieb algebras;

-Polynomial link invariants.
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Resumo

O objectivo deste trabalho é representar emaranhados (“tangles”)
por funcoes calculdveis que sao invariantes por isotopias ambientes.

Nos primeiros capitulos é focado o caso dos “emaranhados” planares
a menos de isotopia planar. E construida uma categoria usando ma-
trizes booleanas (para representar as relagoes de conectividade) e mondides
de maneira a dar uma representacdo de emaranhados planares. Dessa
categoria é possivel extrair um invariante numérico para mergulhos
de uma colecgao finita de curvas fechadas disjuntas que é invariante,
sobre certas escolhas, completo.

Nos ultimos capitulos é adaptada a construcao anterior para es-
tudar emaranhados espaciais (os usuais na literatura especializada).
Primeiro damos uma representacao linear para as algebras de Temperley-
Lieb e usamos a “skein relation” do polinémio parénteses de Kauff-
man para obter uma representacao para emaranhados por operadores
lineares que generaliza o polinémio de Jones. Toda a construcdo é
bastante distinta da usada por Turaev. Também é dada uma repre-
sentacao para emaranhados com singularidades usando o polindmio
de Kauffman-Vogel para grafos 4-valentes mergulhados.

Palavras-chaves:

-Emaranhados;

-Matrizes booleanas;
-Mondides;

-Representacoes;

—Algebras de Temperley-Lieb;

-Invariantes polinomiais para enlaces.
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Resumo alargado em portugués

O objectivo deste trabalho é representar emaranhados (“tangles”) por
funcoes calculaveis que sao invariantes por isotopias ambientes.

No primeiro capitulo a seguir a introdugao é introduzido o conceito de
“emaranhado” planar a menos de isotopia planar, e com este conceito define-
se uma categoria (denominada PT) cujos morfismos sdo emaranhados planares.
E dada entdo uma apresentacao para tal categoria definindo os geradores e
as relacoes de modo a estudar uma possivel representagao de tal categoria. E
também introduzida ao de leve a categoria (denominada PIy) na qual serd
feita a representacao. Esta categoria depende da escolha de um mondide M.

No capitulo seguinte sao introduzidos os conceitos algébricos envolvidos
na categoria PIy e as propriedades destes necessdrias para estudar a rep-
resentacao que pretendemos introduzir para a categoria PT. Tais conceitos
incluem matrizes booleanas, relacoes de equivaléncia sobre a perspectiva das
matrizes booleanas, mondides e reticulados.

No quarto capitulo é definida a representacdo da categoria PT na cate-
goria PIy e sdo explicadas as motivacoes topolégicas por detrds desta. Para
isso, definimos os morfismos que representam os geradores da categoria PT
(esta representagao depende, para além do mondide M, da escolha de uma
fungao com dominio e contradominio M). De seguida é verificado com todo
o detalhe que tais morfismos estao bem definidos. Segue-se entao a demon-
stragdo de que tais morfismos satisfazem as relacoes da categoria PT, de
modo que fica demonstrado tratar-se de facto de uma representacdo (um
functor da categoria PT para a categoria PIy;). Cada emaranhado é repre-
sentado por uma aplicagao entre pares da forma (R, ¥) onde R é uma matriz
booleana descrevendo as relacoes de conectividade entre regides e ¢ é um
vector de valores em M capturando informagao sobre regioes enclausuradas.

No quinto capitulo é aplicada a representacao do capitulo anterior ao caso
particular de mergulhos de curvas fechadas disjuntas no plano de modo a
obter invariantes numéricos para isotopias planares. Para tal, é apresentado
um algoritmo que toma uma colec¢ao de curvas disjuntas no plano repre-
sentada por uma sequéncia de geradores da categoria PT, e simplifica tal
sequéncia através das relagoes da categoria. Deste modo torna-se mais facil
demonstrar que, escolhendo o mondide e a funcao apropriada, tais invariantes
numéricos podem ser completos.

No sexto capitulo é abordado o estudo de dlgebras de Temperley-Lieb sob
a perspectiva da teoria introduzida nos capitulos anteriores. E dada entdo
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uma representacao linear das algebras de Temperley-Lieb a partir de uma
adaptacao da representacao da categoria PT. Esta representacao também se
estende a emaranhados planares, embora com menor informacao que a dos
capitulos anteriores.

No sétimo capitulo é usada a representagao linear das dlgebras de Temperley-
Lieb para obter uma representacao linear para emaranhados espaciais ori-
entados (ou simplesmente emaranhados orientados, na literatura usual na
area de investigagao). Esta representagdo generaliza o polinémio de Jones
embora de uma maneira bastante distinta da abordada por Turaev. Isto é
feito decompondo um emaranhado espacial numa combinacao linear finita de
emaranhados planares através da “skein relation” do polinémio parénteses
de Kauffman, e depois representando estes por operadores lineares como é
feito no capitulo anterior.

No oitavo capitulo é usado o mesmo raciocinio do sétimo capitulo para
o polinémio de Kauffman-Vogel para grafos 4-valentes mergulhados. Para
tal define-se uma nova categoria cujos morfismos sao emaranhados planares
com um numero finito de singularidades transversais. E entdo estendida para
esta categoria a representacao linear dada no capitulo seis para a categoria
PT. No entanto para que a “skein relation” do polinémio de Kauffman-
Vogel possa ser usada é necessaria restringir as varidveis deste para um caso
particular.

Na conclusao sao apresentadas conjecturas assim como possiveis desen-
volvimentos.

No final da tese estao dois apéndices. O primeiro exemplifica varios
métodos de calculo com matrizes booleanas. No segundo é dado um exemplo
do célculo da representacao definida no quarto capitulo para um sistema de
curvas fechadas no plano, da qual se pode, de acordo com o que foi demon-
strado no quinto capitulo, extrair um invariante numérico para tal sistema.
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1 Introduction

Despite all we know about braids, links and the relations between them,
it is useful to work, sometimes, with tangles, which are generalizations of
both of these. One of the advantages is that we can decompose a link into
a composition of simpler tangles. In fact, tangles have the structure of a
category’ with a well-known presentation. Thus if we can represent the
generators by operators which satisfy the relations of the presentation, then
we will get a representation for all tangles (and in particular for all links).
In this way we obtain a calculable invariant for links.

This approach can be used to address another problem: how to decide
whether two embeddings of a collection of disjoint circles in the plane are
ambient isotopic or not? For example, the Jordan lemma tells us that a
single curve in the plane divides the plane into two regions (the outside and
the inside of the curve). Thus the embedding of two curves with one inside the
other is different, up to planar isotopy, to the embedding of two curves with
each in the outside of the other. We are going to start with the study of this
problem. Our approach is to take a Morse embedding and decompose it into
small planar tangles which we can represent by means of certain functions.
In this way an embedding of curves will be represented by a composition of
functions whose values will give us a lot of information about the embedding.

The idea that we are going to pursue comes from the fact that a planar
tangle divides a planar strip into finitely many regions (connected open sets
in the planar strip). Some of these regions are surrounded by others like
Russian dolls, so we should associate to the outer region a value that keeps
track of the information concerning such enclosed regions. When we compose
with another tangle some regions may glue, others may be enveloped by other
regions and new regions may appear, so we need to know how we can capture
all this information at the end of the process. That is what we are going to
analyze in concrete terms in the first part of this thesis.

Afterwards, we will use some ideas of the previous construction to give
a linear representation for Temperley-Lieb algebras via operators in a finite
dimensional linear space. This means that two words in the generators of
some Temperley-Lieb algebra which are the same element by the relations
of the Temperley-Lieb algebra are represented by the same linear operator
which may be determined by finite calculation. Fortunately, this linear rep-
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resentation also works for the linearization of the category of planar tangles
(which includes the Temperley-Lieb algebras as subcategories). Thus it is
possible to use the skein relation of the Kauffman-bracket polynomial to ob-
tain a linear representation for oriented tangles which generalizes the Jones
polynomial.

Finally we can use the same reasoning to obtain a linear representation
for singular tangles which generalizes the Kauffman-Vogel polynomial for 4-
valent graphs embedded in three-dimensional space. The idea is to generalize
the representation we got for the Temperley-Lieb algebras to the linearization
of the category of singular planar tangles and to use the skein relation of the
Kauffman-Vogel polynomial to extend the representation to singular (spatial)
tangles. However this construction only works when a specific condition holds
for the variables.

Our material is organized as follows. In chapter 2 we introduce the con-
cept of planar tangle up to planar isotopy, and with this concept we define
a category (called PT) whose morphisms are planar tangles. Next we give a
presentation for such category defining its generators and relations so as to
be able to study possible representations for this category. We also introduce
succinctly the category (called PIy) where the representation will be done.
This category depends on the choice of a monoid M.

In the following chapter we talk about the algebraic concepts involved in
the category PIy; and its properties needed for the study of the representa-
tion that we want to introduce for the category PT. Such concepts include
Boolean matrices, equivalence relations from the perspective of Boolean ma-
trix theory, monoids and lattices.

In chapter 4 we define a representation of the category PT in the category
PIy; and we explain the topological motivations for it. To do that, we define
the morphisms which represent the generators of PT (this representation
depends, not only on the monoid M, but also on the choice of a function
with domain and range in M). Next we verify in detail that such morphisms
are well-defined. Then follows the proof that such morphisms satisfy the
relations of the category PT, and therefore that the representation is well-
defined. Each tangle is represented by a map between pairs of the form
(R, ¥) where R is a Boolean matrix describing connectivity relations between
regions and ¢/ is an array of values in M capturing information about enclosed
regions.

In chapter 5 we apply the representation of the previous chapter to the
particular case of the embedding of disjoint closed curves in the plane so as



to obtain numerical invariants for planar isotopies. To do that, we present an
algorithm which simplifies an embedding of disjoint closed curves in the plane
using the relations of the category PT. This makes it easier to show that,
by choosing an appropriate monoid and function, such numerical invariants
can be complete.

In chapter 6 we study the Temperley-Lieb algebras from the perspec-
tive of the theory introduced in the previous chapters. We give a linear
representation for the Temperley-Lieb algebras from an adaptation of the
representation previously presented for the category PT. This linear repre-
sentation also extends to planar tangles, although with less information than
the original one.

In chapter 7 we use the linear representation for the Temperley-Lieb al-
gebras to obtain a linear representation for oriented tangles. This represen-
tation generalizes the Jones polynomial, though in a very different way to
the approach adopted by Turaev [10]. The way we do this is by decomposing
a tangle into a linear combination of planar tangles using the skein relation
of the Kauffman bracket polynomial, and then representing these by linear
operators like in the previous chapter. In the end we multiply by a factor
depending on the writhe of the tangle so as to satisfy the relation associated
to the first Reidemeister move.

In chapter 8 we use the same reasoning as in chapter 7 for the Kauffman-
Vogel polynomial for 4-valent embedded graphs. We define a new category
whose morphisms are planar tangles with a finite number of singular crossings
(4-valent vertices). Then we extend to this category the linear representation
given in chapter 6 for the category PT. Finally we use the skein relation of
the Kauffman-Vogel polynomial (with a certain restriction on its variables for
this to work) to decompose a tangle (which may be singular, with 4-valent
vertices) into a linear combination of singular planar tangles.

In the conclusions we present open problems as well as possible develop-
ments.

At the end of the thesis there are two appendices. In the first we give
examples of some methods of calculation with Boolean matrices. In the
second we give an example of the calculation of the representation defined in
chapter 4 for a system of non-singular planar curves.






2 The category of non-singular planar tan-
gles

Let PT be the category of non-singular planar tangles whose objects are
finite sets of points in the real line identified up to 1-dimensional isotopies?,
and whose morphisms between two objects O; and O, are piecewise regular
1-dimensional manifolds, with boundary O; x {1} U O x {0}, embedded in
R X [0, 1] identified up to planar isotopies:

O

The composition of two morphisms ¢; and %, is defined by

N

t2 e} tl = g(f(tl) U tg)

where f(z,y) = (z,y + 1) and g(z,y) = (z,y/2).

tlz

b= U/

\_/
NI

In this paper, the downward direction composition is used, some authors
use the opposite direction.
This category has the following presentation:

Zthese objects can be regarded as finite ordinal numbers §, {0}, {0,1}, ...



The generators are morphisms #,; € hom({1,...,n — 1}, {1
connecting (7,1) to (4,0) if i < k —2, (i,1) t
(k—1,0) to (k,0):

sy + 1))
o(i+2,0)ifi >k —1 and

1 2 w0 k2 k1 - n2

. (\\

]

1 2 = k2k1k kel = n

n-1

S+

n+1

and #,x € hom({1,...,n+ 1},{1,...,n — 1}) connecting (i,1) to (3,0) if i <
k—2,(i+2,1) to (ZO)lfizk—land(k—l,l) (k,1):

1 2 « k2kik kil = n  n+
tn,k) = U
1 2 « k2 ki1 - n2 ni

for any k,n € Nwith 2 <k <n+1.
For the rest of this paper it is better to number the intervals instead of
the points:

1.2 .. k2, k1, k .. n1n

- T

+1 k+2 ... n+1‘n+2

1, 2 k-2 k-1, Kk, k+1k+2, ..., n+1 n+2
1 2 .. k- n 1 n

These generators satisfy the following relations:

12 k1 k- n1n 1.2 - k2 k1 n-1,n 1.2 k-1 k n-1n

112 - k1 k+1] k+2 - n+1] N+2 k-1 = 12 k-1] k n-1| n
k 112 - k2" Kk [kt nelne2

12 « k1 k n-1 n 12 k-2 k-1 = n-1 n 12 k-1 k n1n

tnk+1 Otnge = tng—1 0 lng = id,



where id, := {1, ...,n} x [0,1] is the identity morphism on {1, ...,n};

12
—
12~ [«
12« K
forl > k +2;
12 K
J
1]2
12
forl > k+2;
1.2~ k
N\
112
12

for l > k+ 2 and

12

112 -
k

12 . k

n-1 n 1.2 n-1n
= N
n+1| n+2 12 -2 | - n+1 n+2
/AR /)
I n+3 n+4 12 - k- | n+3 n+4
tn+2,l o tn,k - tn+2,k o tn,le
n+1 n+2 1.2 - ko e | - n+1 n+2
U/
-2 n-1jn — 1|2 Kk n-1l n
N \_/
n-3 n-2 12 n-3 n-2
ln_2420tnr =1th_2k0tny
n-1 n 1 2 - k n-1 n
n3|n2 — 1|2 - |k - n+1| n+2
N I
[
-2 - n1n 12 -2 . n1in
ln21 20ty ok =1tk Oty
I-2 n-1n 1 2 -2 ... n1n
I nsl|ns2 = 1]2 n-3| n-2
N
4
n-1n 12 . k n-in



tn,l o tn,k - tan,k o tn72,l72

forl > k + 2.
Now we want to represent non-singular planar tangles by functions. That
is, we want to find functions T}, , and T;,  satisfying the following relations:

~

Tn,k—|—1 o Tn,k = Tn,kfl o Tn,k =1id

Tn+2,l o Tn,k = Tn+2,lc o Tn,lf2

forl > k+2;

Tn—2,l—2 o Tn,k = Tn—2,k o Tn,l

forl > k+ 2;

~

Thooj20Ty o) =Tnr0Th,

for l > k+ 2 and

~. A

Tn,l o Tn,k = Tn—2,k o Tn—2,l—2

forl > k + 2.

Our proposal is to represent PT by the following category PIy whose
objects are Oy, 09,05, ... where O, is the set of pairs (R, 7) such that
R = [r;;] is a n x n Boolean matrix satisfying the following properties:

El. R > I (where I is the identity matrix);

E2. R' = R (the matrix is symmetric);

E3. R? = R (the matrix is idempotent);

T1. If 7, ; = 1 then |i — j]| is even;

T2. Forany a < 3 <y <94, 744785 < Ta 878475

T3. For any o < B if ro 3 = 1 then either rq415-1 = 1 or there exists
between o and 3 such that r,, = 1.

and ' is an array of n entries with values in a chosen lattice ordered monoid
M such that it is fixed by the action induced by R which we will define later:



EC. R+ v = 0.

Note: The properties E1, E2 and E3 represent an equivalence relation,
and the properties T1, T2 and T3 have topological motivations (see the
explanation in section 4.1).

A morphism between O,, and O, is just a set function between the sets
O,, and O,,.



10



3 Algebraic interlude

Definition 1 The canonical Boolean algebra B is the set {0,1} with two
binary operations: the sum + and the multiplication -, and a unary operation
the negation — such that ({0,1}, +, -) is the (unique) semi-ring with 1+1 =1,
-0=1 and -1 =0.

Definition 2 A Boolean matriz is a matriz with values in the canonical
Boolean algebra.

We define the operations sum, multiplication and transpose in the same
way as on real matrices:

Sum: [a; ;] + [b; ;] := [ci;] where ¢;; = a; j + b, j
Multiplication: [a; ;][b; ;] == [c;;] where ¢;; = Zaikb,”

Transpose: [a;;]" := [a;]

There is a natural partial order relation on these matrices given in the
following way:
[aig] < [bij] iff @iy < bij Vi

These matrices have many of the properties of real matrices.

Proposition 1 Let A, B and C be Boolean matrices with appropriate di-
mensions. We have:

1. (commutativity of the sum) A+ B = B + A;
2. (associativity) (A+ B)+C =A+ (B+C) and (AB)C = A(BC);
3. (distributivity) A(B+ C) = AB + AC and (A+ B)C = AC + BC;

4. (existence of the zero matriz) A+ O = A, AO = O and OA = O where
O 1s the matriz with all entries equal to zero;

5. (existence of the identity matriz) AI = A and IA = A where I = [0; ;]
with 61',]' =1&1=7;

7. (idempotency of the sum) A+ A = A;

11



8. A< B& A+ B=B;

9. (AB)! = B'A' and (A+ B)! = A’ + BY;

10 AKX B=A+C<B+C,CA<CB, AC < BC and A* < Bt;
11. A>Band A>C = A>B+C.

We can regard a square Boolean matrix R = [r;;] of dimension n as a
binary relation ~g on the set {1,...,n}:

t~p) e =1
Then:
Proposition 2 The binary relation ~g represented by the matriz R is:
i. reflezive iff I < R;
il. symmetric iff R = R;
iii. transitive iff R2 < R.

Thus we can transpose the notions of reflexivity, symmetry and tran-
sitivity from the binary relations to square Boolean matrices. Notice that
reflexivity and transitivity imply idempotency of the product for Boolean
matrices.

Proposition 3 (definition) Let A be a square Boolean matriz and let

Z::iA”:A+A2+...

n=1
Then:
i. A is transitive;
ii. For any transitive matrir B, A< B= A< A< B;

iii. A< B= A< B;

aN|

_ A

iv.
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v. If A> I then A= A™ for some natural number n.3

A is called the transitive closure of A.

Next we will define a lattice ordered additive monoid to be a commutative
monoid (M, @, ), where @ is the binary operation of the monoid and
is the zero element, with a partial order relation < such that (M, <) is a
distributive lattice with minimum () and where the sum & is distributive
over the operations meet A and join V. Formally, it is a set M with three
binary operations @, V and A and an element () such that for any a, b, c € M:

M. (M, @) is a commutative monoid:

M1. (commutativity) a ®b="b® q;

M2. (associativity) (¢ ®b) ®c=a® (b® c);

M3. (existence of the zero element) () & a = q;
)

L. (M, V,A) is a distributive lattice:

(idempotency) a Va =a and a A a = a;
(commutativity) aVb=bVaand aAb=bA q;
L3. (associativity) (aVb)Ve=aV (bVe) and (aAb)Ac=aA(bAc);
(absorption) a A (a Vb) =a and a V (a A b) = q;

(distributivity) a A (bVe¢) = (aAb)V (aAc)and aV (bAc) =
(aVb)A(aVec);

C. The lattice and monoid structures of M are compatible by the following
axioms:

Cl. )Va=aand 0 Aa = 0;
C2. a®(bVe)=(a®b)V(a®c)and a® (bAc) = (a®b) A (a D c).
Remember that by definition a Vb = sup{a, b} and a Ab = inf{a, b}. Also

we have a < b aVb=0b< aAb=a. Using the axioms of such monoids*
we have the following properties:

3This is not true for matrices with infinite dimension.
4In this paper we will only consider monoids of this type and will refer to them simply
as monoids.
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Pl. a<a®b;
P2. (aVb)®(aAb)=adb.

The property P1 is very easy to prove and the proof of P2 follows from
the following inequalities:

(aVb)® (aNb) [a® (aAD)|VI[bd (aAb)]
[(a®a)A(a®b)|VIb®a)A(Deb)
(a®b)V (b®a)

a®b

Al

(aVb)® (aNb) [(aVbd)®alA[(aVDd)a® ]
[(a@a)V(bda)|Ala®b)V (b Db)]
bda)A(adb)

a®b

vl

Examples:

1. M =Ny ={0,1,2,...}, 0 :=0,a®b:=a+b, aVb:=max{a,b} and
a A b:= min{a, b};

2. M =N ={1,2,..}, 0 :=1,a® b := ab, a Vb := l.em.fa,b} and
aAb:=g.cd{a,b};

3. M a distributive lattice with minimum and @ := V.

Now we consider the following action of the canonical Boolean algebra BB
on a monoid M:
BxM-——M

(v,m)——=v*m

. mifv=1
VXM= 0ifv=0

where

Then we have:

i. (vive) *m = vy * (v * m) Yvi,ve € B;m € M

14



il. (vy +ve) *xm = (v *m)V (ve*m) Yvy,vs € Bym €M
iii. v x (Mg Vmy) = (vxmy) V (vkmgy) Yu € Bymy, my € M
iv. vx (my ®mg) = (vxmy) ® (v*mgy) Yo € B;my, my € ML

Now we can define an action of Boolean matrices on arrays with values
in the monoid M.

Definition 3 Let [v; j|lmxn be a Boolean matriz and (a;)j=1,. , be an array
in M". We define

[vi ;] * (aj) == (b;)i=1,..m where b; = \/ Vij * aj

j=1

Proposition 4 For any Boolean matrices A and B and any arrays = and

7 with values in M, we have:

1. (AB)+ T = Ax (BxT);

2. (A+B)« T =(AxT)V(Bx7T);
@)}.
4. Ax(ZVY)=AxT)V(AxT);

3. I+«7 =7 and O+ T =

5. Ax (T oY) < (Ax 7))@ (A% 7).

where I is the identity matriz, O is the zero matriz, the operators V and &
are defined coordinate by coordinate in M™ and O = (0, ...,0).
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4 Representation of the category PT on Ply

To each object of PT with cardinality n we associate the object O, of
Py

The motivation is the following. An object O of PT gives a decompo-
sition of the real line into intervals, and each planar tangle that ends on O
decomposes the strip R x [0, 1] into regions whose boundaries contain these
intervals. Ordering the intervals in the natural way we will store in a Boolean
matrix the information about which intervals are in the same region, that
is, the intervals 7 and j are in the same region if and only if the (7, j) entry
of the Boolean matrix is 1. Also to each interval we associate a value (in
the given monoid M) which is specific for the region to which the interval
belongs. Thus in this way, intervals in the same region have the same value
and therefore the array of values is fixed by the action of the matrix.

This should make clear the reason for the properties that the matrices
in O, have to satisfy. Indeed, the author conjectures that any matrix with
the properties E1, E2, E3, T1, T2 and T3 has a geometric realization in this
form.

To obtain a functor from the category PT to the category PIy we need to
associate to each elementary tangle fn,k and ,,  functions Tn,k :O0np — Opao
and Tn,k : Opyo — O, that satisfy the same relations as fn,k and £, .

We want these functions to preserve the motivation for the definition
of O,. Specifically if (R, 7) is an element of O,, and R is the matrix
of connectivity of the intervals for a specific tangle that ends on the object
associated with O, then the image (R', ") of (R, @) by T}, 4 (or T,, ) has R’
as the matrix of connectivity of the intervals which terminate the composition
of the tangle ¢, ; (or £, o) with the specific tangle. Furthermore, if o gives
the values assigned to the intervals, then o gives the values assigned to the
intervals after composition with the tangle fn,k (or tnok)-

We will define Tn,k and ka as follows

Tok(R, @) = (R, ")

where
R, == Bn,kRBfL’k + Dn+2,k

and

?I = Bn,k * 7
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B, x is a Boolean matrix with n + 2 rows and n columns defined by
By :=[bij] withb;; =1iffi=j<kori=j+2>k.
D, j, is the diagonal square Boolean matrix of dimension n defined by
D, :=[d; ] withd,; =1iff i =j = k.

We can regard the matrix B, as the connectivity relation between the
upper and lower intervals of the tangle fn,k, that is, b;; = 1 iff the upper
interval j and the lower interval i are in the same region for the tangle %,
(or equivalently, iff the upper interval ¢ and the lower interval j are in the
same region for the tangle tvn,k).

In this sense the formula R’ = Bn,kRBfL,k+Dn+2,k means that two distinct
intervals i and j are in the same region after the composition with %, if i # k
and j # k and the intervals k(i) and k(j) (k(i) =i if i < k, k(i) =i + 2 if
i > k) are in the same region before the composition by fn,k. In other words
two intervals which not k£ are in the same region if the respective intervals
above them in the tangle fn,k are in the same region before the composition
with fn,k-

The formula o' = B, * o means that the extended regions (after the
composition with the tangle %, ) preserve the old values and the new region
created over the interval k receives the value ().

Now we define Tn,k:

where

R = (sz,kRBn,k)?

and
?’ =R % [(Bz,k * ?) S¥ (en,kfl * xk)]

where e, ;1 is a 1-column Boolean matrix of dimension n defined by e, ;1 :=
le;] with ¢; = 1iff i = k — 1 and zj, is a monoid value which depends on R
and v’ (despite this, we normally use the symbol z; instead of z4(R, 7) to
simplify the notation), given by the following formula:

Tp = [Thorpr1 * Q(08)] © [(Frr—1h41) * (Vk—1 A Vgy1)]
(,0(’1)];) lf Tk—l,k—i—l = 1
Vg1 AVgg1 i Tp_1 k41 =0
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where 11 441 = €}, ;1 Req i1 (the (k—1,k+1) entry of R) and ¢ : M — M
is a fixed function (without structure) independent® of (R, ).

The idea behind the formula R’ = (B}, , RB,, x)* is the same as before. The
matrix B} ,RB, ; transfers the relation between two intervals of “belonging
to the same region” from the top of the tangle #, ) to the bottom, and we
need to take the square power because the matrix B} ; RB,; may not be
transitive, since {, joins the regions associated to the intervals k£ — 1 and
k + 1 (which may or may not be the same).

The formula 7' = R’ * (B} * ) @ (enk_1 * %) plays a crucial rule in
the construction and needs a more careful explanation. What it says is that
the interval £ — 1 receives the values of the old intervals ¥ — 1 and £+ 1 and
if these intervals are in distinct regions then we sum them by the operation

@ (since (vg—1 V Vg+1) ® (Vg1 A Vg41) = (vVk—1 D vg41) by P2).

O
O O

o O
O
N
d
If they are in the same region then we take their common value and sum to

it some modification (given by the function ¢) of the value of the interval &
corresponding to a region which is closed after the composition with Z, .

O
O
O O
O
Vic1 W Vi1 Z Vet

T T
Y, PP(v)

The other intervals receive their former value if they are not in the region
associated to the interval k£ — 1 or receive the new value of the interval £ — 1

5The representation depends on the choice of the function ¢ i.e. a different function ¢
gives a different representation.
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if they are in the same region as that interval. This is why we take the action
of the matrix R’ on the array (B}, * ) ® (en_1 * Tx) SO as to transfer the
value of the interval £ — 1 to others connected with it.

A better way of thinking about this may be that the array of values
describes the histories of the regions associated to each interval, which keep
track of the histories of any closed region inside them by means of the function
. The Boolean matrix essentially plays the role of an assistant storing the
information about which intervals are in the same region. For example, in
the case of closed planar curves, which are morphisms from the empty set to
itself, we get in the end a one-dimensional square matrix (which is unique by
the condition E1) and a one-dimensional array (or simply a monoid value). So
in this case the Boolean matrix doesn’t matter at all and the only significant
content is the monoid value.

See appendix B for an example of how to calculate the representation for
an embedding of disjoint circles.

So as to simplify the notation we will always substitute fn,k, by Tn,k,
Tn,k, B, k, Dy, and e, by tk, tr, Tk, Tk, By, Dy and e, when n is implicit.

4.1 The well-definedness of the functions Tn,k and Tn,k
Tn,k : On — 0n+2
(R, 7) — (R, 7’)

with R’ = ByRB + Dy and 0" = By * 0.
We need to check that if R = [r; ;] is an n-dimensional matrix that satisfies
the conditions:

El. R>1I:
E2. R' = R;
E3. R2=R;

T1. If r,; = 1 then |i — j]| is even;
T2. Forany oo < 3 <y <9, 704785 < Ta,878,4T,5:

T3. For any a < Bif rqp =1 then 744131 = 1 or there exists v between o
and 3 such that r,, = 1.
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then the matrix R' = ByRB! + Dy is an n + 2-dimensional matrix that
satisfies the same conditions.
Also we need to prove that if " is fixed by the action of R:

EC. R« v =70

then ¥’ = By, * ¥ is likewise fixed by the action of R'.
First we will check that R' satisfies the conditions E1, E2, E3, T1, T2
and T3.

E1l:
RZI:>RI=BkRB,tC+Dk ZBkIB,f:—f—Dk > (I—Dk)+Dk=I
The operation minus on Boolean matrices is defined in the following
way:
[ai,j] — [bi,j] = [ci,j] where Cij = 1 iff Qg 4 > bi,j(i.e. Qi = 1 and bi,j = 0)
It easy to see that, for any matrices A and B, (A — B) + B > A and
A> B = (A— B)+ B = A. To check the inequality BB} > I — Dy,
see appendix A.
E2:
R=R'= R" = (ByRB}, + Dy)' = ByR'B; + D, = ByRB} + D;, = R’
E3:

R*=R=R"

(BrRB! + Dy,)?

ByRB!B,RB! + ByRB. Dy, + DyByRB}. + D3
ByLRIRB! + B,RO + ORBy, + Dy,

ByRB}, + Dy

= RI

We leave it to the reader to check that BiBy, = I, BiD, = O and
DBy, = O (or see appendix A for the first two equations).

T1: The condition
7'1,]:1:>Z—]€2Z
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is equivalent to the condition
R S C’nX’I’L

where C),x, is the chess board matriz of dimension m x n defined in
the following way:

It is easy to see that ClumCmxn < Cixn (see appendix A)(in fact,
this is an equality unless m = 1), and also we have B, ; < Clnt2)xn
and Dy < Cipio)x(nt2)- Thus R < Cpxn = R = ByRBj + D <

Clnt2)xnCrxnCnx(n+2) + Clnt2)xnt2) < Clni2)x(nt2)-
T2: Let [r;] = R and [rl,] = R = B.RB} + D.
Suppose that:
Hypothesis: Vo<gar<s  TanT8,6 < Ta,8T8,T,6-
We want to prove that:
Thesis: Vo<p<y<s TanTho < TopThAThs:

In the case a = 8 or B = or v = § this assertion is true if [r; ;] = R’
satisfies the conditions of an equivalence relation (E1, E2 and E3):

(1) r;; = 1 for any 4;

(2) ri; =}, for any 7 and j;

(3) ri 75k < 1iy for any i, j and k.
which we have already seen to be true.

In fact, if o« = 8 we have

and



and
TonThs <1 =100 =Ths
thus
TanT85 < TapT5, 70

if B =~ we have
! ot ' ! o i !
TanTg,6 = Ta,878,6 = Ta,878,878,6 = Ta,8784T 7,0
and if v = § we have

! ro_ o ! 1
TanTg6 = Tan"sy = TanTy, < Ta,p

and
rla,'yr,ﬂﬁ < TfIB,J = rlﬁn
and
rla,vr,lb’,ﬁ <1l= rim - r;,(;
thus

TanT8s S TasT 8y
So we are left with the case a < 8 <y < §. It easy to see that
, Thikg) L LI 7k
Ti: = 519,]' if 1=k
i if i<k 46 . = 1 if 1=k
i—2 if i>k MCORT Y0 if i£k
if k € {a,5,7,0} (with a < § <7 < d) then

where k(i) = {

Y A
TanTps = 0 < TasTh,7 s

if k & {a, B,7,0} we have k() < k(8) < k() < k(5) and then

! !

Tan"86 = Tha)k(n) ThB) ke = Th

1 ! !
k() ke(6) — T BATv,0
T3: Suppose by hypothesis that:

Hypothesis: Vocg Tap = 1 = Taqi,8-1 = 1 0r Jocyep -
Tay = 1.
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We want to prove

Thesis: Vocp 1o =1=714151=10r Jacyep: T4, =
1.

where [r; ;] = R and [rj ;] = R’ = ByRB} + Dy. If § = o+ 1 then the
thesis is true by the condition E2 or by the condition T1.

If 8 = a + 2 then the thesis is true by the condition E1.

Now, we consider 8 > o+ 3. If K = a or k = 3 we have r, ; = 0, so
the thesis is true. If k = a+ 1 then vy 1 =74 1 401 = Thg 1) kren) =
Tk—1k—1 = 1 and we have « = £k —1 < k+1 < 3, so the thesis is
true. If k=B —1thenry, | =71, 7%, 1 =T4 g k15 1 = Tap and we
have a < k —1 < k+ 1 = f3, so the thesis is true. Now suppose that
kg {o,a+1,8-1,8} Ifry, = Th(a)k(s) = 1 then, by hypothesis,

Tha)t1,h(s)-1 = 1 or there exists k(o) <+ < k(B) s.t. Tha)y = 1.
Since k € {a,a + 1,8 — 1, 8} we have that k(a) + 1 = k(o + 1) and

k(B)—1=k(B—1) (k& {a,a+1} = a+1<kork<a=k(a)+1=
a+1l=kla+1)ork(a)+1=a-2+1=k(a+1), and the same
argument for k(8) —1 = k(8—1)). Thus 14, 11 5(s)—1 = Tat1,5-1- Since
k- N\ {k} — N is surjective and monotone, for any 7' between k(a)
and k(8) there exists v between « and 3 such that v = k(). And

then 77,y » = 7q,,- Thus the thesis is true.

Now we only have to check the extra condition:
EC. R« V' = 0"
assuming that o is fixed by the action of R.

R W' = (BkRB!+ Dy)* (Byx )
= [(BykRBL + Dy)By] * ¥
(BxRBLB, + DyBy) x 0

Brx (Rx )

Bk*?
7/

Next we show that the function 7T} is well-defined. Recall that:
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with

and

where

Tk

R' = (BLRBy)?

7' =R x [(BE * 7) ® (ex_1 * )]

[Ph—1,6+1 * ©(Vk)] B [(77k—141) * (Ve—1 A Vg41)]
o(vr) if rpipp=1
Vg1 A Vg1 i Tp_1 k41 =0

Let us prove that R’ satisfies the six conditions in @, and that ¥’ is fixed
by the action of R'.

E1l:

E2:

R>I= R = (B'RB,)* > (BLIB,)*=I*=1

R=R'= R'=[BiRB.)| = (BLRBy)']" = (BLR'By)* = (BLRBy)* =

E3: To check the transitivity of R’ it is sufficient to prove that (BfRBy,)? <
(BLRBy)? (assuming that R? = R).

(BLRBy)®

We leave it

= B!RB,BLRB,B.RB;

< BIR(I + ByDy_1B})RB;B.RB,

— B!'RIRB,BLRB + BLRB, D, B! RB,B.RB,

< B!RBB!RBy + B.RByDy_BLR(I + ByD;_1B.)RB,

— B!RB,B'RBy + B.RB,D_,B!R*B,
+BLRByD,_\BtRB,Dy,_, B! RB

< B!RByBLRB, + B!RB,D; B.RB, + B'RB,D;_,B.RB,

— B!'RB,BLRB,

= (BjRBy)?

to the reader to check that ByBj < I + ByDy_1Bj}, and

Dy_1ByRByDy—1 < Dj_;.
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T1:

R < Clnyxny2) = R (BLRBy)? < (Crx(n+2)Clnt2)x(n+2)Clnt2)xn)’

S (Cnxn)2 = Cnxn

T2: Using the “equality” r;; = elRe; we need to check that:
Thesis: Va<g<y<s — €hR'ejejR'es < e R'egeyR'e el R'es.
assuming the hypothesis:
Hypothesis: Vo<g<y<s ey Re, e Res < e Regej Re, €, Res.

Since R’ satisfies the equivalence relation conditions (E1, E2 and E3)
the thesis is satisfied for « = f or § = v or 7 = §. So we can assume
that a < < v < 4.

We will substitute the hypothesis by a more appropriate hypothesis.
But for that we need to introduce a new definition and same properties.
Let v and v be two one-column non-zero matrices. We define:

u < v iff max{i:u; =1} <min{i:v; =1}.
Proposition 5 < defines a strict order relation on the set of non-zero
one-column matrices with the following properties:

1. u<v,eq <uandeg <u=a<f;

2. (Va<per<s ehReyejRes < e RegegRe el Res) =
(Vu<v<w<e U'Rwv'Rz < u'Rvv'Rww'Rz);

3. a < = Brey < BkEﬂ.

Now we take a new (weaker) hypothesis:

NH va<ﬂ<7<5
en Bl RBye e B RBye; < e, ByRByese By RBye, e, By RByes.
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enRejesRles en B RByB; RBye. e B{ RB;. By RByes

el BIR(I + Ak)RBkeyetﬂB};R(I + Ay)RBges
eaB}iRBkeve’fBB,tRBke(s + ele,ﬁRAkRBke,yetﬁB}iRBkeg
+€gB,ZRBk€7€tﬂB,€RAkRBk€5
+eaB,iRAkRBkeve%B,tcRAkRBkeJ

Al

where
Ak = Blec—lB]f; = Bkek_lefc_lB,i

Now, we only need to prove that:
(i) e, BiRBye,esBiRByes < €/, R'egeR'e el R'es;
(ii) e, BiRA,RBye,e3B;RBye; < el R'ege R'e el R'es;
(iii) egB,’;RBkeﬂyetﬁB};RAkRBke(g < EZRIB/@G%RIG,YGFYRIBJ;
(iv) e,B{RARBye e ByRA RByes < e, R'ege R'e e’ R'es.
For that it is useful to observe that, for arbitrary square matrices,
elXe;etYe = elYeelXe;,
eiXej = e X'e
and
(eiXe;)” = efXey,
since el Xe; and e},Y'e; are one-dimensional square matrices.
(i)

ey, Bl RBye e Bf RBye; ey, Bi. RBrege, Bl RBye, el B RBye;

<
< etaR'egetﬂR'eqefyR'eg
Observe that

B,iRBk S (B,ZRB]C)2 = RI = GEBERB]C@]' S 62R’€j
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(ii) e}, BjRA,RBye 3B} RBye; = e, ByRByey 1¢;,_, B RBye e By RBye;.
If £k—1< [ then
ey, B RByey 1€}, BiRBye,e}, B, RByes
< etaB,tcRBkek_le};_lB,tcRBkege%B,tcRBke7e§B£RBke(;
< e, R'egelR'e el Rles
If k — 1= 73 then
ey, B RBye_1¢},_ BiRBye,e; B RByes
= ¢!, B, RByese); By RBye. e B, RByes
< e RegesReeyRes
= el Rlegey R'e ey Re ey R'e;
= el R'egelR'e el Rlege R'e;
< e, R'egesR'eel Rles
If < k—1<6 then
ey, B RByey, 1e},_, By RBye,e; By RBye;
= e}, B} RByey_1¢;3 B} RByese),_ B, RBye,
< el B{ RByege By RByey 1¢},_, B RByese},_ B{ RBye,
enRegesR'ep 1€), Rlese), R'e,
efo’eﬂeng’ek_lefc_lR’evefyR'ek_lefc_lR’e(;
e, RegesRe el Rles
If k—1=4 then
etaB}‘;RBkek_lefe_lB}éRBkeA,etﬂB,iRBke(s
= ¢!, B, RByese; B} RBye, ey B; RBye;
et B; RBye;s(e; B RByeg)’€!, Bi. RByes
eh,R'egelR'e; (el Rles)”
e, R'egesRlesesRe el R'e;
enReses R'eel Rles
If k—1> 6 then
e, B RByey_¢},_ B RBye e} B RByes
= el Bj RByey, 1¢B] RByesel B RByey, 1
< e}, B} RByey_1e, B; RBye el By RByese; Bf, RByey_1
< el Re 1epRe el ResesR'ey,
enRep 16, ResehRe el Rles
e' R 656% R'e, efyR’ es

L pt t pf t pr
e RegegRejer Res

IA I IA

IA I IA

A I
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(iii) €., B;RBye e By RARByes = e;Bj RA,RByege! B RBye,.
Since all arguments in case (ii) are valid reversing the order of
«, 8,7 and 6, we have that:

ele,';RBke,,etﬂB,iRAkRBkeg < eZR'egetBR'eA,efyR'eg.

(iv)

egB,’éRAkRBkevetﬁB}éRAkRBkeg

= ele,tcRBkek_1efc_lB};RBkevetﬂB,ﬁRBkek_lefc_lB,ﬁRBke(;
< eLR'ey 16, RejegRe; 1€ Res

= e, R'ep 16, RegepRley 1e;_R'ejel Rley 1ef  Rles

< eflR’e,ge%R'evefyR'etg

T3: Lemma 6 If R = [r; ;| represents an equivalence relation, then the fol-
lowing statements are equivalent:

(i) Vacg Tap=1=7Tay18-1=10r3ocycp: Tay=1;

(ii) Vo< Tap=1=TFocr<g: Tay =Tat1y-1=1;

(iii) Vacp Tap=1=rar1p-1=10rJocqicp: ryp=1;

(iv) Va<pg Tap=1= acycp: Typ =Ty = L.

Proof. It easy to see that (i7) = (i) and (iv) = (éii). To see
that (i) = (it) we take v = inf{d <  : ros = 1} and to see that
(i73) = (iv) we take v =sup{d > a : 155 = 1}. (i) < (¢i¢) results from
the transitivity of [r;;]. W

Now we want to see that [r} ;] = (BjRBj)* satisfies one of the state-
ments of the lemma (assuming that R = [r; ;| also satisfies the same

statements and the remaining conditions on O,2). Using the prop-
erties of R = [ry;] and the relation R' = [r;,] = (B;{RB;)* we can

set:
Ta,8 t Tak+1Tk-1,8 if k—1>p
Tak—1 T Tak+1 if k—1=2¢
T;,ﬂ =19 Tap+2 T Tak—1Tk+1,5+2 if a<k—-1<p
Tk—1,+2 T Tk+1,6+2 if k—1=«

Tat+2,6+2 t Tat2k+1Tk-1,8+2 I k—1<a
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Case A: k—=1> . 14,53 =TaptTakt1Tk- 1,8 =1=Tap =100 Tqpy1 =
Tk—1,8 = 1.
A.l: Tap = 1 = 3a<’yl§ﬁ D Tatly, -1 = Tapy, = 1 = 3a<71§ﬂ :
’r,a+1,71*1 - T;:’Yl =1
A2 ropi1 =Tro18 =1 = Jacyy<htl D Tatlyy—1 = Tay, = 1.
A.2.1: If v, < B then we have 7, | =1, = 1 with
a <7y <P
A.2.2: If B <y, <k—1 we can use the condition T2 to get
Ta,p = 1 (case A.1) since r4,, =1 and rg4_1 = 1.
A.23: If v, = k we have rq; = 1 which together with
Ta,k+1 = 1 contradicts the condition T1.
A.2.4: Tfy, =k+1thenroiip = 1= dagi<y,<k @ Tygiih—1 =
Togk = L.
A.2.4.1: If 8 <73 <k —1 we can use the condition T2
to get 741 = 1 (which contradicts the condition T1)
since rg-1 =1 and ry , = 1.
A24.2: Ifa+1<y;<p—1wehaver, ,;,=1 (since
Tystih—1 = 1 and 7411, = 1) and 7y, 411 = 1 (since
Tysk = 1 and 7y o1 = 1). Taking vy, = 73 + 1 we have

/! — —_ 3
Tatiy,—1 = Tay, = 1 With a <7, < B.
Case B: k—1=0. 71, 3=Takr 1+ Taks1 =1 = a1 =101 Tap41 =
1.
B.1: Tak—1 = 1= Ela<'yl§k—1 “Tatly, -1 = Tay, = 1= E|a<'yl§k—1 :
r! =r =1
a+1571_1 - a,Yq - '

B.2: o1 = 1= Jacy,<kit I Tatiyy—1 = Tay, = L.
B.2.1: If v, <k — 1 then we have 1,1, 1 =7,
a<y,<k-1=53.
B.2.2: If 7, = k we have r,); = 1 which together with
Tak+1 = 1 contradicts the condition T1.

vy = 1 with

B.2.3: If"}/2 = k+1 then Tatlk = 1= 3a+1§73<k STyl k—1 =
Tk = 1.
B.2.3.1: If Y3 = k — 1 then Tys+1,k—1 = Thk—1 = 1 which
contradicts the condition T1.
B.2.3.2: Ifa+1<y; <k-—2wehaver] ., ,=1 (since
Tys+1,k—1 = 1 and Tk+1,0 = 1) and Tygat+l = 1 (since
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Tk = 1 and 1y o1 = 1). Taking v, = 73 + 1 we have
: Ty, = 1 With o <9y <k — 1.
Case C: a<k—1<f. 1,5="apr2+Takt1Tk 1,642 = 1 = Tapra =
1 or Tak+1 = Tk—1,8+2 = 1.

Tatly,—1 =

C.1: rap10=1= Jacy,<+2 I Tatly,—1 = Tay, = 1 and Ja<qy, <42 :

TyyB42 = Typ41,841 = L.

C.1.1: If 74 > 5 + 1 we can use the condition T2 to get
Ta,p+1 = lsince ro,, = land r,,11,341 = 1. This together
with 74 g+2 = 1 contradicts the condition T1.

C.1.2: If v, <y then v, <kory,>korvy, =v,=k.

C.1.2.1: Ify, < kthenrg i, 1 = Tay, =1 =710,
Tany, =1 with a <y, <k < B

C.1.2.2: If v, > k then 7y,810 = r,q1841 = 1 =
Ty 42 = Thyr1pp1 = L With a <k =2 <y, =2 < 8.

’71_1 =

C.1.2.3: If v, = vy = k then ro414,-1 = Taq16-1 = 1
and 7., 41,811 = Tky1,641 = 1 which implies rj, ;5 | =
1.

C.2t rop1=Tpr1p2=1=14,  =1witha<k-1<p8.
Case D: k — 1 = «. This case is analogous to case B.

Case E: k£ — 1 < . This case is analogous to case A.
Now we only have to check the condition:
EC. R+ 0" ="

which is obvious from the definition of @’ because R’ is idempotent.

4.2 Checking the relations on Tk, and T}

Now we are going to prove that T, and T} satisfy the following relations:
1. Tk+1 0T, =T, 10T, = 1d;

2. TyoTy=TyoT, o for I > k+ 2;

3. ThoTy=T, 90T, and Tyo Ty = Ty o T)_o for [ > k+ 2;

4. Ty oTy =T, 50T, for I >k + 2.
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We begin by checking the first relation.

1. Tk+1OTk :Tk loTk = 1d.
. —
Let (R, @ )€ Ona (Ra, b ) =Ti(Ry, @) and (R3, @) = Tjy1(Re, V') =
Tk+1 OTk(Rla )
We want to show that (Rs, ©) = (Ry, @).

{ Ry, = ByRiB!+ Dy = ByRBL+1

Ry = (BItC—I—lRQBIc+1)2 = R3 = [B,tc_i_l(BleB};-}-[)BlH_l]Q

Ry = (Bj41BeRi By By + Byy Bri)’ = (R +1)? = Rt = Ry

We leave it to the reader to check the identities Bf,,By = I and
B} By =1.

E: = R3*[(_l>3k+1* b)) (ex * Tpy1)] N
b = Bipxa
= T =Ry + (Bl * (Bp* @)) ® (eg * Tp41)]

where Ty1 = [Tk pr2 * ©(bet1)] @ [(F7kks2) * (b A bgio)] With

Thhro = € Roegyo = €k (BrRiBi+Dg)egro = et BrRiBlegote,Diegia = 0
thus Tp1 = b Abpyo =0 A ap = 0.

Then we have

T =Ry* (Bl Br)*x @)@ (exx0)]=Rix (@O0 =Rixd =7

To check the identity Tj_1 o T, = id we use the same procedure.

2. j}OTk:TkOﬂ 2f01"l>k+2.

Let (Ri, @ )e Oy, (Ro, b)_> Ty(Ri, @ ) and (Rs, @) = Ty(Ra, ) =
TioT(Ri, @ ) and let (R, 0') = Tj_»(Ry, @) and (R}, ") = Ti(R),
Ty, 0 Ti—o(Ry, @). We want to check that (R}, ¢") = (Rs, ).

Ry = B/R,B!+ D,
= By(ByR\B. + Dy)B} + D,
— B,B.R,B.B} + BDyB! + D,
= (BlBk)Rl (BlBk)t + Dk + Dl
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and
R, — B.R,B.+ D,
= By(B_oR1B! ,+ D, 5)Bi + Dy,
— BB._»RB! ,B. + ByD,_sB. + D,
= (BgBi—2)Ri(BxBi—2)" + D; + Dy,

Thus Ry, = R;. We leave it to the reader to check B,DyB} = Dy,
Ble_Q.B]tc = Dl and BlBk = BkBl—2-

—
?:Bl* b_)ZBl (Bk* CL) (BlBk)*CL
<! = Bk x b= Bk * (Bl—2 * a ) = (Bchl—Z)

3. TkOj}:j} QOTk andTloTk—TkoTl 2f01‘l2]€+2
Let (R, @) € On, (R, b L Ty(R;, @) and (R3, @) = Ty(Rs, b) =
TyoTi(Ry, @ ) andlet (R, b') = Tx(Ry, @) and (R}, ©") = T)_o(R}, b
ﬂ 2 OTk(Rla )
We want to check that (R}, €)= (Rs, ©).

First the case [ > k + 2 (where we have the identity BB, = B;_,B}).

ki

/):

R3 - (B,iRQBk)Q
= [BL(BiR1B} + D)) B;J?
(BLB,R,B!B; + B.D,By)?
= (B 2B.R\ByB'_, + D,_,)?
= B, 3B'R\BB! ,B, sB.R\B;B! , + B, _,B.RB,B!_,D,_,
+Dy_sB,_»B.R\B;B! , + D? ,
= Bl_gBiRlBk]B};RlBkB;_Q + Bl_gBiRlBkO + OB};RlBkB;_Q + Dl_g
Bi_yB! R ByBLR ByB!_, + Di_,
Bi_3(B!RB})?B!_, + D,_,
Bi_2RyB}_,+ D,
= R,

We leave it to the reader to check BiD,By = D;_».

_>
= Ry*[(BL* b)® (ep—1 * xk)] where z;, = [r,(f)lkji)* o(by)] &

[(ﬂrk 1k+1) (bk—1 Abgy1)] with ’f’k Lkl = =el Reepy1and b = Bixa .
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In this way:

? = R3 * [(B}éBl * 7) D (ek_l * .’Ek)]
= R}« [(B—2B} * @) D (ep—1 * Tp)]
= (Bi_yR,B! 54 Di_3) % [(Bi_oBL + @) @ (ex—1 * 1]
= {(BiaRyB} ,) * (B 5Bl @) @ (ex 1+ 7)]}
V{D,_5 * [(B,—2B}, * @) ® (ep_1 * )]}

Lemma 7 Let M = [; ;] be a Boolean matriz and let o and W be
two arrays. If, for each index i, we have one of the following situations:

(1) pij;*xw; =0 forall j (or p; ;j*v; =0 for all j);
(2) py; =1 for, at most, a single index j;

then M x (V@ W)= (Mx77)& (M W).

Proof. Let 7 :=Mx*(V®w)and ¥ := (M* )& (M ). We

have
n

\/ Hi g * (v; ® wy) = \/[(Mzg * vj) @ (:ui,j * wy)]

=1

= (\/ M 5 % v;) @ (\/ My 5 ¥ w;)
j=1 j=1
(1) If p; ;% wj = O for all j then
Ty = \/[(IU’Z]*UJ @Q] \/'U”LJ

J

Yi = (\/Hi,j*“j) @(\/@) :\/Mi,j*v

(2) If there exists k such that y; ; = 1 = j = k then

and

and

Ti = \/[(Mu * ;) © (:U‘i,j * w;)| = (g, * Vk) © (g, * W)
J
and

Yi = (\/ Mg 5 * Uy V My 5 * w] ,Uz g * V) @ (ﬂz‘,k * W)
J
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|
With this lemma we have that:

Bf_2 * [(BZ_QB}i * 7) D (ep—1*Tk)] = (Blt_QBl_QB,i * E)) ® (Bf_Qek_l *Ty,)

by the condition (2) of the lemma for ¢ # [ — 3, and by the condition
(1) for i =1 — 3; and

Dl72 * [(BI,QB;; * 7) ©® (ek,l *xk)] = (Dl*QBl*QB]E; * 7) ©® (legekfl *,’Ek)

by the condition (2) of the lemma.
Thus

T = {(Bi2RyB},) * [(BiyBf + @) & (ex—1 * )]}
V{D,_y % [(Bi—2Bj}, * @) D (ep—1 * x|}
= {(Bi2R}) * [(B}_yBi_2BL x @) ® (Bf_yex—1 * z)]}
\/[(Dl_QBl_QBIi * E)) b (Dl_gek_l * .’Ek)]
= {(Bi—2R}) * [(B * @) & (B_yep—1 * zx)]}
V[(OB; @) @ (0% zy)]
= (Bi—aR}) * [(BL* @) © (ex—1 * )]

On the other hand

?I = Bl_Q*?I
Bioo % {Ry [(BL* @) @ (ex—1 * })]}
= (BiaRY) * [(BL* @) ® (e % 2})]
where 2, = [V, #0(ar)|@[(r12 ) por) ¥ @k 1 AGgs1)] with 7)) L) =
62_1R16k+1.

To check ¢ = ¢ we only need to prove that z}, = xy.
(2) — ot
Tk 1k+1 = €p—1 ek 11
62_1(BZR1B{' + Dl)ek—f—l
62_1B1RlBlt€k+1 + efc_lDlek+1

t
D
k—1,k+1

_)
b = B« @ and | > k + 2 implies that by_1 = ax_1, by, = ay and

brt+1 = Q1
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Then

g = [ * o)) @ [(ﬂr,%m % (b1 A bgyr)]

1
= [rkfl,k—kl * p(ax)] © [(_‘ka1,1¢+1) * (ag-1 A ag1)]
= 7

Now, let us study the case | = k + 2.

In this case, in contrast with the case [ > k + 2, we don’t have BLB; =
Bl_gB}é. In fact, BIZBIH'? = (I—Dk) +Qk_1,k+1 and B]cB,tC = (I—Dk) +
Qr-14+1+ Qry1,k—1 Where Qn 5 = eaetﬂ (i.e. all entries of Q, s are zero
except the entry (o, 8)). Thus B} B2 < ByBj.

Ry = (BLR.By)?

[Bi(Br+2R1 By 5 + Di2) Bi]?

(B} Byy2R1 By, By, + By Dy.42By)?

(BiBir2F1 B}y, By + Dy)?

= B!By.yRi B, ,BBLByyRiBL, By + BLByys Ry BL,,BiDy
+Dy B, ByyoR1 By, By, + Dj

— B!BuoRiBL,,BiBLByioR BL, By + Dy

because
BBy 2R By, By Dy < BBy 2R By ByDy = By By 2R B0 = O

and
Dy ByByyoRi By, B, = (B B2 R1 By, By Dy,)' = O

Ry = ByR,B.+ Dy
= Bk(B,f:RlBk)ZBIZ + Dk
= BkB]thlBkB]f;RlBkBli + Dk

Since B}, ,By < BB}, and B}Bj < BB}, we have

Ry = BLBysRi B, ,ByBLBysRiBL,, By + Dy
ByB.R,B,B.B,BLR, B, B. + Dj

Ry

A
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On the other hand, since By, BB} By» = BB}, we have

Ry

ByBLR, BB.R, BBl + D,

BL,yBiBLBy R Bl y By BLBy s Ry B, BBl By + Dy

By 2B (B Bryo R\ By, By By By yo R\ B}, |, By + Dy) By By.y2 + Dy,
BL.,ByRsB.Byss + Dy

B.BLRyB,B. + D,

R} + Dy,

R

HIAIA

Thus R3 = Rj.

Here we make use of the following inequalities:
BIE:—I—ZBkaBlf:B/H'Z S BkB;DkB;B]H_Q = O

and

R; (BiR2By)?
|BL(Biy2R1By 5 + Dy yo) Bi]?
(BiBy+2R1 By, By)?
(BiBr12B; ,Br)?
(BiBy)?
B.B!

IviIv

T = Ryx (B * 7) ® (ex_1 * )]

R} + [(B Byo * @)@ (ep_1 * )]

(BxR,BL + D) * [(BL Bjps * @) & (ep—1 * x1)]

= {(BeRyBYE) * [(BiBryo * @) ® (k1 * )]}
V{Dy % [(BLBiys * @) ® (ex—1 * 21)]}

= (ByRyYB}) * [(B}Bgio * @) @ (ep—1 * k)]

because, using lemma 7, we have

Dk*[(B};BkH_Q*?)@(ek_l *xk)] = (chB]tch—H*?)@(Dkek—l *xk) - @
since Dy B} Bg1o < DyBiBf = O and Dye,_, = O.
?I = Bk * 7’

= Bpx {Ry*[(BL+ @) ® (ex—1 * 2})]}
= (BkR}) * [(B}, * E’) @ (ex—1 * )]
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Lemma 8 Let ¥ be an array with values in a monoid. If vy < v 1
then Bt x U = Xy + ¥ where Xy, = BL(I — Dy1).

Proof. X differs from B} only in the entry (k — 1,k + 1) which
is 0 in Xy and 1 in B}. Thus we only need to check the equality
B! « o = Xy % v for the k — 1 coordinate which is vg_1 V vy in
B! x o and v,_; in Xy * 0. Since, by hypothesis, vy, < vx_1 we have
the equality. H

The k + 1 coordinate of (B! Byio % @) @ (ex_1 * ) is

eh 1 % [(BiBrio* @) ® (ex—1 *24)] = (ehy1BLBrio* @) D (e yeh-1 * Tk
= (efcﬂ*?)@(O*xk)

= Okt
and the k — 1 coordinate of (B.Byya* @) @ (ep_1 * ) is

et | *[(B!Byia * 7) ® (ex—1*xxx)] = (eb_;BLByia* @ ® (el_jex—1 * k)
(€1 + €hrr) * @] @ (1% )
= (ak—1V ags1) ® xk

Thus, we may apply the previous lemma

B} * [(B} Bj2 * E)) ® (eg1*xx)] = Xg*[(BrBgio* E)) @ (ep_1* xy)]
= (XkBliB’H“? * 7) ©® (Xkek,1 * .Ik)
= (Bp* 7) D (ex—1 * )

We leave it to the reader to check that Xy BjByio = Bj. Therefore

© = (ByR,B!) % [(B.Bpysx @) ® (ex_y * z1)]
= (ByRY) *[(Bl * @) & (ex—1 * xx)]

and thus @ = ¢ if z, = 2} and we can check this using the same
proof as was used in the case [ > k + 2.
Now, let us study the other relation T, o Tk = ”_f’k oT)_o for 1>k + 2.

We know that Ty o Ty = T 0 Ty for k' > 1" + 2 (substituting &k by '
and [ by k' in the relation we have already proved).
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We will use a mirror symmetry between these two relations. For that
purpose, let us introduce the function mirror symmetry defined as fol-

low:
M, : O, — (@)

(R, 7)) > (SpRS,,Snx )

where S, is the n-dimensional square matrix defined by
Sn = [Si,j] with Sij = 1 1ffl+] =n+1.

We have that M, o M, is the identity function on O, since S? =
I. Also, hearing in mind the relations S, 2B, xS, = B, nt+3— and
Snt2Dn2 kSn+2 = Dptonts—k, it is not too hard® to check the commu-
tativity of the following squares:

T, Ty
O, —= On42 Onyo—= 0,
MnI 1Mn+2 Mn+21 IMn
On - On+2 0n+2 S On
Trnya—t Trts—i
Ti_s T

O, —= 0,2 On—2—0O,

o ]

0, — On_2 Op_g.— O,

Thys-1 Trt1-k

Thus the outside square in the following diagram:

6Tt is only necessary to check the commutativity of the two first squares since the other
two are obtained from these by a change of variables. For the second square it is useful to
check first the identity Zn43_;(Sny2RSny2,Snio * V) = z1(R, 7).
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T

O

On+2

//

\/I Mp42
\ Tn+3—k /
0, ——0Opis

On—2T—> On
n+l—*k

Mn—Z/ ! \J
yd Tk \
On_Q On—|—2

commutes (i.e. T; o Tk = Tk o Tl_g) if and only if the inside square
commutes (i.e. Tn+3_loTn+3_k = Tnﬂ_k oT)ig_1 < TyoTw = Th_o0Ty
by making the change of variables: ' =n+3—1land ¥ =n+3 —k)
which we know to be true since [ > k+2 = k' > [' + 2.

4. T,oTy =T, 50T, for I > k + 2.

Let (R, @) € Oy, (Ra, b) = Ty(Ry, @) and (Rs, @) = Tel(Rp, D) =
ToTy(Ry, @), and let (Ry, b"') = T} (R, @) and (RS, €") = Ti—o(R, b
T)—5 0 Ti(Ry, @).

We want to see that (R}, ') = (Rs, ©).

) =

Rs = (BLR,By)? = BIR,B, = B.B' R, B,B;  BIB/R, BBy,

Rg = Blt_QRIQBl,Q = Bl"’_QB;éRlBkBl,Q (*:) Blt_2B}éR1BkBl,2
and since B;By, = ByB;_» we have R3 = Rj.
Note that A means the transitive closure of A.

(*) Now let us prove that Bf B} Ry BBy, = BB} Ry BBy, and B} ,BiR,ByB;_, =
B! ,BLR>ByBi_s.

Lemma 9 Let A be a square matriz, then

BLAB; = BL(I — Dy)A(I — Dy) B
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Proof. For any natural number n, we have
B} AB, (BLAB)"

By ABBABy...B. AB; Bl ABy,

By A(I — Dy)A(I — Dy)...(I — Dy)A(I — Dy)ABy,

Bi(I — Dy)A(I — Dy)A(I — Dy)...(I — Dy)A(I — Dy)A(I — Dy,) By

B[(I - DO)A( — D" By

v v

therefore B! ABy, > Bj(I — Dy)A(I — Dy,)By, and thus

BLAB,, > BL(I — Dy)A(I — Dy)B;.

On the other hand,

BiABy = Bi(I — Dy)A(I — Dy) By < Bi(I — D) A(I — Dy) By,

Corollary 10 If (I—Dy)A(I-Dy) < (I — Dy)A(I — Dy,) then BLAB), =
B} AB;,.

Proof.

BiAB, = B.(I— Dy)A(I — Dy)B;
Bj(I — Dy)A(I — D) By

BLAB;

I IA

On the other hand,

A> A= BAB, > B!AB, = BLAB, > BIAB,

Claim: (I—D;)BIR,B,(I-Dy) < (I — Dy)B'R, B,(I — Dy,).

Proof.

(I— Dp)BIRB,(I—Dy) > [(I - Dy)B!RB/(I — D))
= (I — Dy)B!R,B,(I — D;)B!R,B/(I — Dy)
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(I — Dy)BIRB,(I — D) = (I — Dy)B!R\B,B!R,B/(I — D)
— (I — Dy)B!RB||Di + (I — Dy)|B!R,B/(I — Dy)
(I — Dy)B!R,B,DB!R,B,(I — Dy)
+(I — Dy)B!R,B,(I — Dy)B!R, B,(I — Dy)

(I — Dy)B}R,B,D,B}R,B,(I — D) (I — Dy)B}R1DR,B,(I — Dy,)

(I — Dy)B!R\B/(I — Dy)

IA

(I - Dk)BltRlBl(I — Dk)BleBl(I —Dy) >
> (I — Dy)BR\By(I — Dy) B{Bi(I — Dy)
= (I - Dk)BltRlBl(I - Dk)

thus

(I-Dy,)B}R\B,D,B{ R, Bi(I-Dy) < (I-Dy)B! R, B,(I-Dy) B} R, B;(I—Dy,).

And therefore,

(I — Dg)B}R1B,(I — Dy) (I — Dy)B!R,B;(I — Dy)B!R,B)(I — D)

(I — D;y)BIR,B,(I — Dy)

IA

Using the same argument we can also prove the following claim.

Claim: (I—D,_,)BLR;, By(I-Dy_5) < (I — D) BER By(I — Dy_y).

Therefore we have B! B} Ry BBy, = BLB! Ry BBy, and B}_, Bl RyByB;_5 =
BB R,B,Bs.

Now let us see that ¢’ = ¢. We will check ¢} = ¢; for each index i.

Lemma 11 Let R = [r; ;] be a matriz with the properties E1, E2 and
E3 (i.e. an equivalence relation) and 7 an array fized by the action of
R.
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1. Ifrij =1 then el % v = e;- * U (i.e. v; = v;).
Now let R = [f; ;] = (BLRB,)?.
2. ]f f.i,afl =0 then

. o ¢ —s _ o tpt,—> _ vi i i<a-l
eix{ Rx[(Box 0")®(eq-1%2)]} = e;Box 0" = { Vige if 1> a—1

3. €, ;% {R * [(B * 7) ® (eq 1 %)} = (Va1 V Var1) ® .

Proof.
1.
Ti,j:1:>€§*7 = efR*? (since?zR*W)
> elRejel x W (since ejet = D; < 1)
_ ot : t
= e« (since e;Rel =1y ; = 1)

Since R is symmetric, we have also €;R * T >elRx V.

2.
Fiae1 =0=e!R = €R[(I — Do_1)+ Dy_i]
= e!R(I — Do_1) + €RD,_,
= e!R(I — Dy 1) +€lReq 1€,
= e'R(I — Do_1)

Thus

et [(BL * V) @ (eq-1 ¥ )] =
= e!R(I — Do) * [(BL % V) @ (eq1 * 7)]
elR+{[(I = Dy_1)B. % V)@ [(I — Dg_1)eq_1 * 2]}
e!R(I — Do_1)B, + 0
etB! RB,B! RB,(I — Do_1)B. v
e!B' RB,B.Rx v
e!B'!RB,B! « v

IA

Since

!B RByeq_1 < €lReq_ 1 = 0= !B RB, = ¢!B, RB,(I — Do_,)
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we have that

elR*[(B! % V) & (eq_1 * )] e!B'!RB,B! + v

e'B! RBo(I — Do_1)B! + v
e!B'R+ 0

elBt x« v

A1 IA

On the other hand, we have

elR+ (B!, V) ® (eaur ¥ )] > e!R % (B, + V) > e!BL + v

ehor B * (B * V) @ (€a-1 % 2)]

€hr * [(BL* V) @ (€a-1 % 2)]
(¢hy B * V') @ (€hy€a—1 * 7)

(Va1 VVay1) ® 7

v

On the other hand
e\ Rx[(BLx V) ® (€1 * )]

Il IA

(e, 1RBt *x 0 ) o) (e’;_lRea_l * 1)
(e fx 1RBt ) S

(Va1 V Vaq1) ®

~
*
~

(*) €, _,RB! « B! %0 =v4_1VUas1, and on the other hand

t \RB'x 7 t B'RB,B'RB,B! x v
g B! RB,B' R(I +B wDa_1BL) ¥
\B:RB,B.R + V')
_,B'RB, B;RB ea_1€',_|BL V)
_B'RB,B! « W)V (e!,_ B« V)
_B'R(I + BoDo_1B) « W]V (e, B % ¥)
\B!R* )V (e!,_ B RByeq_1€!,_ Bl x V)
_1Bg * 7)
el _Blx v

Al
Qo

(&

/\</-\
QPF

QNQ‘*QH./‘\QH.

(&

A
oY

<
A®
Q)
QH-

Lemma 12 Let R = [r;;] be a matriz with the properties E1, E2 and
E3 (i.e. an equivalence relation) and let R = [; ;] = (B, RB,)?. Then:
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(@) For any j # o — 1, To1j = Ta—1,4() + Tat1,ag) where &(j)
if j<a—-1
if j>a—1"7

J
j+2

{

(b) Ifi#a—1and j #a—1 then 7 ; > ra6).a0);
(c)Ifi#a—-1,7 #a—-1and 7541 = 0 (or 741 = 0) then

Tig = Ta(i),a()-

Proof.
(a)

Ta—l,j

On the other hand

/ra_laj

A

€
€
€
€

o—

(b)

Tij

(c)

Tiyj

Al

—~
*
~

Ta(i),a(j)

v

|IAVAN]
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t
w1(BL11Ba)%e;
a—1BoRBge;

+ €441) RBae;
Ta—1,4() T Ta+1,6(5)

(62—1

! B'RB,B.RBe,

! \B'R(I + ByDa_1B.)RBae;

L _\BLRBuej+ €., Bl RB,e,_1€., B, RB,e;
¢ 1BZRBa6j

Ta-1,a(j) T Ta+1,6(5)

ef(BoRB.)’e;
e!B! RB,e,;
efi(i)Rea(j)

T'a(3),a()

H(BLRB,),

¢! B. RB, B! RBye,

¢! B! R(I + BoDo 1 Bt)RBqe;

e!B! RB,e; + !Bl RB,e, 1€, B, RB,e,
e!B! RB,e,;



(*) elB. RB,eo1 < €i(B,RBy)*€q-1 = Tig-1 =0 (ore!, B RB,e; <
7:'0571,3' - 0)
And thus, by (b), we have 7;; = r43:),a(j)-

|

Now, we are going to prove that c,_; = c,_, for the case #4_1;_3 = 0.

Convention: Ry = [rij], R = [fi;] = (BIR1B)? Rz = [iij] =
(BLR2By)?, Ry = [ ;] = (BLR1By)? and R} = [} ;] = (B]_,RyB; »)*.

By lemma 11, we have:

ﬁ
ch-1 = e Ra*[(Bix b) @ (ep—1 * k)]
= (bg-1Vbgy1) Dy

where T = [fkfl,k—}—l*(P(bk)]@[(_‘fk:fl,k—}—l)*(bkfl/\bk—kl)] with fkfl,k—kl =
efcfleekH.

By lemma 12, fk—l,l—3 =0= 7‘"k—1,l—1 = (0 and 7.'k+1,l—1 =0. And then,
by lemma 11,

br—1 = ep_ 1 Ro + [(Bf + @) @ (-1 * )] = ap1

and

b1 = ey Ro* [(BY % @) @ (e1o1 % 11)] = agpa

Thus
Ch—1 = (k=1 V Q1) ® T4,

Since Ré = R3, ,F;c—l,l—?) = fk—l,l—3 =0. Then, by lemma 11,

_)
c;c—l = 6271R§; * [(Bf,2 * b) D (e—3 * 33;—2)]

I
=
L

eh1 By [(Bf+ @) @ (en-r * 2})]
= (ag-1Vag1) ® z),

where

Ty = [Pe—1h41 * (k)] @ [(7r—1,k41) * (@h—1 A Ghy1)]

: —_ ot
with Tk—1,k+1 = ek71R1€k—|—1-
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— Al 3 .
Thus ¢,y = ¢j_, if z, = 7.

T = [Troikrr % Q(0k)] © [(57k—1811) * (Dp—1 A bgy1)]
= [Pe-1hr1 * (0k)] © [(7k—1411) * (ar—1 A ag11)]
D s * ()] @ [(<Fmrern) * (@ro1 A agn)
L [Th—1,h11 % Q(ar)] ® [(Tr—1,541) * (ah—1 A ag11)]

!
L

(*) I fo—1 41 = 0 then fp_q o1 % (b)) =0 = 71,541 * ©(ar)-
If 71 k41 = 1 then 75, ; = 0 by the properties T1 and T2 of R;.
Thus b, = ek Ry + (B} + @) @ (e1_1 * 71)] = ay.

(1’) 'Fk—l,l—3 =0= 'f‘k—l,l—l =0 and 7.'194_1,1_1 = 0 by lemma 11.
Th-1,-1=0= g 1541 = Tk 1,1 Dy lemma 11.

We now prove cx_1 = ¢j,_, for the case iy_1;_3 = 1.
By lemma 12,

Th—14—3 =1 = Tr—1g-1 =l or g1 =1
= Tk g 1=lorrg gy =1lorrg g 1=1orrgp =1

Now we have, in theory, 15 cases to study:

(Ph—10-1, Tk—1,041, Tha 10— 1, Tke141) € {0,134\ {(0,0,0,0)}

but we can exclude the cases (x—1,1-1, Tk—1,1+1, Tk+1,1—1, Tk+1,441) = (1,1,1,0),
(1,1,0,1), (1,0,1,1) and (0,1,1,1), because Ry = [r;;] satisfies the
properties El, E2 and E3, and the case (Tkj—l,l—17 Tk—1,141, Tk4+1,1—1, Tk—l—l,l—l—l) =
(1,0,0,1), because the inequalities k — 1 < k+1<[—1<1[l+1 and
property T2 of Ry imply that if r4_1 ;-1 = 744141 =1 thenrp1-1 =1
and Tk—1,04+1 = 1.

Thus, we have the following ten cases to study:
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Tk—14-1 | Th—14+1 | Thi14-1 | The1441 | one geometric realization |

1 1 1 1

1 0 1 0 -
0 1 0 1 o —
1 1 0 0 = —
0 1 1 0 — ~
1 0 0 0 — ‘
0 1 0 0 - ~
0 0 1 0 - .
0 0 0 1 * *

Using the properties of Ry = [r;;] and Ry = [r;;], and the relations

between them (R, = (B} R;B;)?), it is easy to prove the following state-

ments:

1. If Tk—1,1-1 = 1or Tk—1,141 = 1or Tk+1,01-1 = 1or Tk+1,0+41 = 1 then:
Tk—1k+1 = 1 & (Tk—1,1—1 = Tk+1,-1 and Tk—11+1 = T/c+1,l+1);

2. Brp_iy-1=1orrg_1y41 =101 rgy15-1 =1 0r 741441 = 1 then:

Ti—10+1 = 1& (7“1%1,171 =Tk—1,1+1 and Tk+1,01-1 = Tk+1,z+1);

3. Th—1ht+1 = Th—1ht1 + Th—10+1Tk+1,1—1;
4. Tp_11-1 = Thk—1,1-1 + Th—1,141;

S. Try111= Tht10-1 T Tht1,i+1-

Also, using lemma 11, we can easily check:
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Ch—1 = (bp—1V bgi1) ®xp =

1

b1 = (@—1 Va1) &z =

be—1

bess

A1 if
bl—l if
Ap11 if
by if

bp—1 @ bry1
b1 ® @(be) if Tr_1 g =1

if 7p_1 k41 =0

Tk—1,4-1 =0

Tr—14-1 =1

Tkt10-1 = 0
Try10-1 = 1

a—1 D a1
a—1 @ o(ay) if rqp =1

if Ti—1041 =0

Since 7g_14-3 =1=k —1— (I — 3) € 2Z we have 7;;_; = 0 and then

bk = Q.-

With this, we can construct the following table:

[re—1i—1 | "k—1041 | Tht1d—=1 | Thti g4l || Th—1,ktl | Th—1,kt1 | Ck—1 |
1 1 i 1 1 1 br_1® 2(bg)
1 0 1 0 1 1 br_1 ® o(bg)
0 1 0 1 1 1 b_1 ® o (br)
1 1 0 0 0 0 br—1 ® brt1
0 0 1 i 0 0 B—1 ® bras
0 1 1 0 0 1 br_1® 2(bg)
1 0 0 0 0 0 b1 ® brrs
0 1 0 0 0 0 Bh—1 ® bl
0 0 i 0 0 0 Bi—1 ® bt
0 0 0 1 0 0 br—1 ® brt1
[ri—1041 | b1 [ Pr—10-1 | br_1 [ "rt1a—1 | brt1 [ Ck—1 |
1 aj_1 ® p(ap) 1 aj_1 ® ¢(ag) 1 aj_1 ® p(ag) aj_1 ® p(a)] @ w(ag)

0 a1 ®ajq 1 a1 ®ajq; 1 a1 Dajy; a1 Dajy1]® p(ag)
0 aj—1 Dajqy 1 aj—1 ®ajqy 1 aj—1 Dajqy aj—1 @ ai41] ® v(ax)
1 aj—1 ® e(ar) 1 a1 @ ¢(ar) 0 g1 a1 ® p@)]®apy;
1 a1 ® p(ap) 0 ap—1 1 a1 ®p(ag) | ap_1 ®[ai—1 & ¢(ar)]
0 a1 ®ajqq 1 a1 ®ajq; 1 a1 Dajy; laj—1 ®aj41] @ p(ag)
0 aj_1 @ajq 1 aj_31 ®ajq; 0 apt1 laj_1 @ ajp1]Dagta
0 a;_1 ®aj 1 aj_1 ®ajq; 0 apt1 laj_1 ®aj1]@®apss
0 aj_1®arq 0 ap_1 1 aj_1®aiq ap—1 ®faj—1 ®ary1]
0 a1 Dajy; 0 ap—1 1 a1 Dajy; ap—1 ®laj—1 S aryq]

We can construct an analogous table for the value ¢;_;. All we need to
know is that:

1. Ifrp 1y 1 =1orrgiyp1=10rrg41,1 =101 744141 = 1 then:
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2.

-/
« Tp—1,0-3

! ! _ (! / ! —
o1 =¢ 3= (b_3Vh_)®T 5=

-/
T 101

freg 1y 1=1o0rrg 1541 =10rrgy15-1 =10r 4141 = 1 then:

Pty = 1 & (Pr—10-1 = Te—1041 a0d Tey10-1 = Try1041);

=Tk-10-1F Tkt1,1-1;

Tk—10+1 + Tht+1,0+1-

) — .
Tj_3g—1 = T1=1,041 T Tk=1,141Tk+1,1—1;

.t .
Te14-3=Tk11-3=1=

/
-3

/
-1

o B
/ : ) —_
k-1 if Tp 113~ 1

e

a3 7y, =0
! : -/ _
k-1 if Tp—10-1~ 1

SETRRE S
bi_s @ p(b_p) if 7’2—3,1—1 =1

e oy _
pif 7“173,171—0

/ ' ap—1 D agyr i 71441 =0
_ :(akfl\/ak 1)€B$ = .
k—1 + k f =1
ap—1 ® plar) if re_1p1 =
' . . .y
and b;_, = a; since ¥y _;; s =1=7,_,, ,=0.
=T T
| Tk—1,1—1 | Thk—1,141 | Th4+1,1—1 | Th41,141 || Ti—1,14+1 | T1—3,1—1 | Cr—1 |
1 1 1 1 1 1 b _, ® o (b)_y)
1 0 1 0 0 0 b;_3®by_,
0 1 0 1 0 0 by_3 Dbj_,
1 1 0 0 1 1 b _3 ® p(b]_s)
0 0 1 1 1 1 b]_3 ® p(b]_5)
0 1 1 0 0 1 b]_3 @ p(b]_,)
1 0 0 0 0 0 b @b,
0 1 0 0 0 0 b]_5 ®by_,
0 0 1 0 0 0 b, @b,
0 0 0 1 0 0 by_s ®bj_4
Th—1k+1 | bi—1 [ Fl—se—1 | bi_3 [ Fl—1i-1 | bi_1 | 1

1 ap_1 @ p(ag) 1 ap_1 @ plag) 1 ap—1 @ plag) | lag—1 ® ¢(ap)]® w(ar)
1 ap—1 ® plag) 1 ap—1 @ pag) 0 aj41 lag—1 ® p(ap)] ®arys
1 ap—1 D w(ag) 0 aj—1 1 ar—1Dear) | a1 D [ar—1® ¢(ar)]
0 ap_1 Daps 1 ap_1 Dart 1 ap_1 Dags ap_1 Dapy1] ® v(ar)
0 ap_1 Dapy 1 ap_1 Dary 1 ap_1 Dagy ap_1 Dary1] @ plar)
0 ap—1 Dagys 1 ap—1 Dapy 1 ap—1 Dagt ap—1 Dary1] @ plar)
1] ap_1 Dagq 1 ap_1 Dagyy 0 ajy1 l[ap—1 D art1]®arqs
0 ap_1 Daps 0 aj_q 1 ap_1 Dags a1 ®lag—1 ®agti]
0 ap—1 Dagyr 1 ap—1 Dagyr 0 aj41 lag—1 @ apt1]Darqg
0 ap—1 Dagy 0 a1 1 ap—1 Dagt a1 Dlag—1 @ agt1]
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In order to facilitate the comparison of ¢;_; and ¢}_; we will substitute
each a; (with ¢ € {k+ 1,0 — 1,1+ 1}) appearing in the expressions of
cx—1 and ¢j,_, by a; where j € {k—1,k+1,l— 1,1+ 1} is the smallest
index such that r; ; = 1.

The results can be seen in the following table:

‘ Tg—1,0-1 ‘ Tk—1,1+1 ‘ Th+1,1-1 ‘ Tk+1,1+1 H Tk—1k+1 ‘ Ti—1,0+1 ‘

1 1 1 1 1 1
1 0 1 0 1 0
0 1 0 1 1 0
1 1 0 0 0 1
0 0 1 1 0 1
0 1 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
‘ Qg1 ‘ ap—1 ‘ Ap41 ‘ Ck—1 ‘ 62_1 ‘

ap1 | Qp1 | ag1 | ag_1 @ o(a) © plag) | ar—1 @ p(ar) ® o(ar)
Q-1 | Gk—1 | Qg1 | Q=1 D 41 D p(ak) | ax—1 ® ©(ag) S a4
Ap—1 | @1 | ap—1 | a1 D ag_1 @ plag) | a—1 @ ar_1 ® (ag)
Ugg1 | Op—1 | Qg1 | Qg1 @ p(ar) @ agy1 | Gp—1 D app1 ® ()
ki1 | Okt1 | Qks1 | Qk—1 D apr1 D ©(a) | ag—1 ® ar1 S (@)
Qi1 | Okt1 | Qo1 | Qps1 P ak—1 D @(ag) | ax—1® a1 D (@)

Ok+1 | Qg—1 | Q41 | Op—1 D 41 D Q41 ag—1 D g1 D Q41
Op+1 | Q-1 | Qg—1 | Q-1 D ag 1 D ag41 aj—1 D ag—1 D 41
Ok+1 | Qg+1 | Q1 | Op—1 D 41 D Q41 ag—1 D a1 D 41
Ok4+1 | Q-1 | Q41 | Gp—1 D a1—1 D ag41 aj—1 D ag—1 D ag41

We can easily see that ¢z = c¢},_; for all rows except the sixth row
where ¢,_1 = ¢,_, if ay = ;. But, since ry_1;11 = rg41,-1 = 1 and
Tk—1,k+1 = 0 in this case, we have, by the topological properties T2 and
T3, that r,; =1 and then a; = a;.

Now, to see that ¢;_3 = ¢;_5 we proceed in the same way as we did to
show c,_1 = ¢j,_, for the case i_1, 3 = 0. For the case 7y_1; 3 =1,
we have ¢;_3 = ¢;_1 = ¢},_; = ¢j_3 (by lemma 11).
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For another generic index ¢, we have:
s — _ N ) N
If #; )1 =1 then ¢; = 41 =¢;,_; = ¢;.
s _ — R N
If 7;,;_3 =1 then ¢; = ¢i_3 = ¢;_3 = ¢;.

If 7.;i,l<:—1 = ’Fi,l_g = 0 then we have:

¢ = e; Ry [(By * 7) @ (ex—1 * 2x)] = €7 By, * b= Dkt

L i if i<k-—-1
where k(z):{i+2 if i>k—-1

Fig—3 =0 =71 = 0, by lemma 11. Thus

¢i = bj) = ef;(i)RQ*[(Blt*E))@(el,l x1p)]} = e'}c(i)Bf*H) =e!'B!B'x @

BN -
¢ =elRyx [(Bl_y* b') @ (15 aj_,)]} = €lBf,% b' =y,

Fig—1 = Tig—1=0= 7'"2;2(1.)716_1 =0, by lemma 11. Thus

— — —
¢ = bzlz(i) = efiz(i)Rlz*[(Bltc* @)D (e 1x1y)|} = € Bltc* a = efo—zBli* a

1=2(3)

Since B} _,B} = B} B} we have ¢; = ¢,.
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5 Systems of non-singular planar curves

Now, we are going to study this representation in the particular case of
systems of non-singular planar curves. By a system of non-singular planar
curves we mean an immersion in the plane of a finite number of disjoint
circles which may be regarded as a morphism from the empty partition of
the line to itself (i.e. an element of hom(f, 0)).

Any morphism ¢ € hom((}, #) is a word made of generators &, and %, .
Let us make the substitution: %, — (2,2k—n—3) and £, — (—2,2k—n—3)
for each word. The number 2k — n — 3 counts the number of strings on the
left of the local maximum (minimum) minus the number of strings on the
right.

The following lemma shows that no information is lost after this substi-
tution. But first, let us introduce a notation for the following sets:

S, :={(2,n) :n €2Z}

and
S_:={(-2,n):n€2Z}

Lemma 13 After the substitution: t, ) — (2,2k—n—3) and {, 1 — (—2,2k—
n—3) of a morphism t € hom(0, ) we get a word (c1,d1)(ca,dz)...(cpn, dy) in
S+ US_ satisfying the following condition:

C. For any index 1:

if i =2 then |di| < —(32;0¢5) —2=3255, ¢,
if ¢; = =2 then |d;| < —ZKZ- cj = (Zbi cj) — 2.

Also, if a word in Sy U S_ satisfies this condition then there exists a unique
morphism t € hom(), 9) that becomes this word after the substitution: fn,k —
(2,2k —n —3) and .y, — (—2,2k —n — 3).

Proof. Observing that each (c;, d;) substitutes one generator t,, ; or t,,
it easy to see that —) . . c; is the number of points at the bottom of the
generator (t,, s, OT %, ;) and that >_ji Cj is number of points at the top of
the generator. The condition follows naturally from this fact.

For the second part of the lemma, we make the inverse substitution
(ciydi) = (2,k) v Ly with n' = (>2j5i¢) + 1 and k' = ’“LZJ, and
(ciydi) = (=2,k) = T with n' = (3", ¢;) — 1 and &' = bints  m
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So we have a new language for morphisms in hom(@, #) and in this lan-
guage the local relations become:

1 ...(Ci, dz)(—Q, k) (2, k+2) (Ci—|—3; dzj_3) :A ---(Ci; di)(§i+3a dzj—?:) = ...(Ci, dz)(—Q, k)
(2, k - 2) (Ci+37 di+3)... (1e tk’—l—l o tk:’ == Zd = tkl_l e} tk’);

2 (2,k)(2,0)... = ..(2,1+2)(2,k+2)... for k <1—2 (i.e. {poly =tyio0ty
for I' > k' + 2);

3.1 ..(=2,k)(2,0)... = ..(2,] = 2)(=2,k+2)... for k <1 —4 (ie. {gpoty =
ty_ootp for I' > k' + 2)

3.2 ...(2,]{})(—2,[)... = ...(—2,l+2)(2, k—?)... fork <1 (1e 'EkIO'ElI = flq_QOtAkl
for I' > k' + 2)

4 . (=2,k)(=2,0).. = (=2, = 2)(=2,k = 2) for k <1 -2 (i.e. fy g0lp =
Tkl O ﬂ/ for l, 2 k, + 2)

Note that, by the previous lemma, these relations preserve the condition

C.

Proposition 14 Any word in Sy U S_ satisfying the condition C is equiva-
lent, by the previous relations, to a word of symbols (2,0) and (—2,0).

Proof. We use the following algorithm to transform any word in S, U S_
satisfying the condition C into a word of symbols (2,0) and (—2,0).
ALGORITHM:

input: Take a word in S, U S_ satisfying the condition C;

step 1. Apply the relations 3.1 (...(2,] — 2)(=2,k + 2)... = ...(—2,k)(2,])...
for k <1—4)and 3.2 (...(2,k)(—2,1)... = ..(—2,1 + 2)(2,k — 2)... for
k <) so as to put all the symbols of the form (—2, k) on the left side
of the word and all the symbols of the form (2, k) on the right;

step 2. Use the relations 2 (...(2,£)(2,0)... = ...(2,1 + 2)(2,k + 2)... for £ <
[—2)and 4 (...(=2,k)(=2,1)... = ...(=2,1—-2)(—=2,k—2) for k < [—2) to
order in semi-decreasing order (according to d;) each block consisting
of (¢;, d;) of the form (2, k) or (-2, k);
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step 3. If there exists a sequence of the type (—2,k)(2, k+2) in the word we
apply the relation 1 (...(¢;, d;)(—2, k)(2, k+2)(Cit3, dit3)-.. = ...(¢i, di)(Cits, diy3)-..)
and go back to step 1;

step 4. If there exists a sequence of the type (—2,k)(2,[) with & < [—4 then
we apply the relation 3.1 (...(=2,%)(2,1)... = ...(2,1 — 2)(=2,k + 2)...)
and go back to step 3;

step 5. If there doesn’t exist a sequence of the type (—2,k)(2,1) with k <
[ — 2 in the word we output this.

Claim 1. The algorithm always terminates in a finite number of steps.

We will prove this by induction on the number of symbols since the algo-
rithm doesn’t increase this.

It easy to see that any word satisfying the condition C has the same
number of symbols of the form (2,%) as of the form (-2, k), and always
begins with (—2,0) and ends with (2,0). So (—2,0)(2,0) is the unique word
of two symbols and this passes through the algorithm without any changes.

Now, assuming that the algorithm terminates for any word with 2n sym-
bols, we take a word with 2n + 2 symbols. We consider for any word
w = (¢1,dy)(ca, d3)...(cn, dy) the “potential”

Ew)=()_i, Y di—Y dy)

c;=—

which takes values in Z? with lexicographic order (i.e. (a,b) < (¢, d) iffa < ¢
or a = cand b < d). We can see that, after being increased in step 1, the
potential of the word is always decreased until (if it occurs) the algorithm
returns to step 1 (after step 3), but in this case the word has 2n symbols and
then by the induction hypothesis the algorithm terminates. The condition C
implies that there are a finite number of potentials for a word with 2n + 2
symbols (or less), and thus the algorithm terminates in a finite number of
steps.

Claim 2. The output word has only (2,0) and (—2,0) as symbols.

For a word w = (¢, dy)...(¢Con, dop) let oy < ... < v, be the indices such
that ¢, = 2 and §; < ... < 8, be the indices such that c3, = —2. We
consider a new “potential” Fy defined by the formula:

Ey(w) = max ({da;,, — da; —2(0tiy1 —; — 1) : 1 <i<n—1}U
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{dp,,, —dg, = 2(Bi1 — Bi —1):1<i<n—1})

After step 2 the potential of the word becomes non-positive and step 4
doesn’t change this. This means that the output word contains no sequence
of the type (2,k)(2,1) or (—=2,k)(—2,1) with k£ < [. It is a condition of the
algorithm that the output word contains no sequence of the type (=2, k)(2,1)
with k£ < [.

Thus, if it does not contain a sequence of the type (2, k)(—2,1) with k < [,
then the word is ordered by semi-decreasing order and, since it has to begin
with (—2,0) and to end with (2,0), the word has only (2,0) and (—2,0) as
symbols.

To show that the output word contains no sequence of the type (2, k)(—2, 1)
with k < [, it is enough to observe that after step 1 there is no sequence of the
type (2, k)(—2,1) and that steps 2 and 4 do not produce any new sequences
of the type (2,k)(—2,0) with k <. &

NOTE: This algorithm was not conceived to be the most efficient
but to guarantee an easy proof that it terminates. The author
conjectures that there exist more efficient algorithms.

Next, we observe that the family of non-singular planar curves (i.e. hom((, 0)))
together with the composition has a structure of a commutative monoid. We
will see that any irreducible element of this monoid (i.e. a system of curves
that is not a composition of other systems of curves) is a system of curves en-
circled by another curve. Note that to encircle a system of curves by another
curve is, in the (42, k) words language, the same as adding a (—2,0) at the
beginning and a (2,0) at the end of the corresponding word. Thus if a word
(c1,0)(cz,0)...(¢y, 0) of symbols (—2,0) and (2, 0) satisfying the condition C
(and thus (¢;,0) = (—2,0) and (¢, 0) = (2,0)) doesn’t come from a system of
curves encircled by another curve (this means that the word (cz,0)...(¢, 1, 0)
doesn’t satisfy the condition C) then there exists 2 < k£ < n such that
> i<k ¢ = 0, which implies that (cx—1,0) = (2,0), (¢, 0) = (-2,0) and
the words (c1,0)...(ck—1,0) and (ck, 0)...(cn, 0) satisty the condition C. There-
fore the morphism in hom(@, #) (corresponding to the word (c1, 0)...(c,, 0)) is
the composition of two morphisms in hom((), @) (corresponding to the words

(¢1,0)...(ck-1,0) and (¢, 0)...(cn, 0)).

"By the previous proposition, any system of non-singular planar curves can be repre-
sented in this way.
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Note that we have just proved that an irreducible morphism is another
morphism encircled by an exterior curve, but we haven’t proved yet that a
morphism encircled by an exterior curve is an irreducible morphism. This is
because the last proposition says nothing about when two words of symbols
(—2,0) and (2, 0) represent equivalent words (by the relations 1, 2, 3 and 4).

However we do know that, using the composition of morphisms and the
operation of encircling, we can generate all morphisms in hom((, ) from the
identity.

With this in mind, we are going to see what happens in the representation
when we compose two morphisms (see corollary 17) or encircle one by a circle
(see corollary 21).

Consider, for a fixed value m € M and for each natural number n, the
following morphism:

Uym: O, —_— O,
(R, 7) — (R,Rx*(e; *xm & 7))

The purpose of this morphism is to add the value m to the region asso-
ciated to the first interval.

Lemma 15 Forany2 <k <n-+1, Tn,k oV, m=¥Y,4omo Tn,k and Tn,k o
\I’n+2,m = ‘I]n,m o Tn,k

Proof.

First equation: T,y 0 Wy, = Wyiom o T k-

For an arbitrary (R, V) € O, let (Rl, V1) =Upm(R, V), (Ry, ¥'2) =
Tk (Ri, 1), (R, W) = To (R, 7) and (Rp, V') = Voo m(RY, V)
We want to check (Ry, 7'5) = (R), U'h).

Since ¥ does not change the matrices and the changes of the matrices

under the morphisms T do not depend on the choice of the array of
values, it is obvious that Ry = Rj,.
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Vo = Bn,k * ?1

By g * [R* (e1 *m 69 )]
B,yR+(e;+*m@ v 1)
BuxRB! B+ (1 +m e T'y)

[By, kRBn w Bk * (€1 *m & 71)] V [DpioxBng * (1 * m & 71)]
(Bn,lcRBn,k + Dryo) * By *
= R} *[(Byxer *xm) @ (B * o
= R *[(Bprer *m) @ 7'1]

(er *xm@® V)]
1

)]

On the other hand,
T = R.x(epxm@ )

If k > 2 then B, ze; = e; and therefore o'y = 0%,
If £ =2 then

?2 = Rﬁ*[(Bn,kel*m)EB?'l
R x [(el*mVeg,*m)EB?’l
R s (e +m® U)) VR, % (es+m@® V)
R’ (el*mEBT))

because R! x (e3xm® ) = R, x (e, xm® 0’} as we will prove next:
R'lel = (Bn,ZRB;L,z + Dn+2’2)€1 = BH,QRB};,Qel V Dn+2,2€1 = Bn’zRel
R'163 = (Bn,QRBfL’2 + Dn+2’2)€3 = BngBfl,er, V Dn—|—2,2€3 = Bn,gRel

thus Rje; *x m = Rjes *x m, and using the next lemma we conclude

R % (esxm® V) =R, % (e +xm® ).
Lemma 16 I[fR = R' and R« v’ = v then Rx(W® V) = R« U@ 7.
Proof. Let 7 :=Rx (W & 7') and i := R+ W & ', then
\/r” (uj®v;) and y; = (\/ri,j *u;) B v;
J

28



i = V;rij* (u; ®v))
Vj:m,jzl(uj S v;)
Vj:n,j:1(uj ® vi)
(Vj;n-,j:1 u;) @ vi
(V7 * uj) © v
= Y

Note that, since R* o = o', we have that v; = v; whenever r; ; = 1.
|
Second equation Tn,k oViom=Y,mo Tn,k.
For an arbitrary (R, ¥') € Oy, let (R, @) = T, ﬂm(R’ ), (Ry, 7) =
Tri(R1, @), (R, @) = Tox(R, @) and (Ry, ') = U, (R}, ).
— —
We want to check (Ry, b) = (RS, b').

Since ¥ does not change the matrices and the changes of the matrices
under the morphisms 7" do not depend on the choice of the array of
values, it is obvious that Ry = R),.

7:R2*[(Bt* a’) @ ep_1 * Ty

with
@ =R+(e1*xm®7V)=Re;*xm® v

and .
- JoapaNagyr i Tk =0

T = .
o(ag) if rp_ipp=1

On the other hand

_)
b'=Ry*(e1xm® @) =R, +md a'

We want to check 7 = 7’ )

A) by = bj,_;.
By lemma 11, we have

ap—1 D agrr i rp_1p1=0

b_ = (ar_1V a @j = 1
k-1 = (ar—1V ars1) k {ak—l@(P(a'k) if re_iprr=1
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Bearing in mind that

—
ak71:€§571*(R€1*m@ v):rk,l,l*meavk,l
t —
Qi1 =€ppq % (Rer Mm@ V') = rppq1 x M@ vpyq
ar = ek (Rey xm @ T) = 11 * m B vy,

we have that

(e *m) B vg_ B (Teyr,1 *m) B gy A 1 kp1 =0
br—1 = )
(k=11 *mM) QU1 B (g *xmBvy) i rp_qp4 =1

Now we note that ry_; y+1 = 0 implies that 7,_11 = 0or rp411 =0
and therefore (rp_11 *m) @ (rg11,1 * M) = (Tg_11 + Tey1,1) * M.
On the other hand 74 y4+1 = 1 implies that r,; =0 and rx_1; =
Tkt1,1 = Tk—1,1 T Tht1,1-

Thus

b | — (Th—11 + Tht11) *MB Vg1 Bvgyr i Th_1 411 =0
kot (k=11 + k1) *M B vy B (vg) I Tp1 41 =1

That means
br—1 = (Th—1,1 + Tht1,1) * M B aj_,
by lemma 11. Now

ﬁ
V' =R, x(e;xm® @) =Re+ma 0’

1.e.
! _ t / —>1
el = el,?_1 * (Rley xm @ a’)
/! !
e, et xmda;_,
— ! !
= Tp_pp*m D a,_q

and using lemma 12 we have

! !
ket = (Tho1g +Thy1) xm@ay

be—1
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B) b; = b with 1/, , = 0.
By lemma 11, b; = ¢! B! * @

by = eBLx(Re;*xm@ )
!B Re; xm @ e! B, v
= Ty, *mo efB,ﬁ?

On the other hand,

b, = ei(Riey*md ")

= €§R,1€1 *m@ei?l)

= rj,*xm® e;?B}’c?
Thus we have b; = b if 771 = ;) 1-
If kK — 1% 1 then, by lemma 12, r{; = 7 51y = Thi),1-
If k—1 =1 then, by lemma 12, Tg,l = Té,k_l 2 Th)k—1 = Th(i),1
and since 7, = réjk_l = 0 we have r; ; = TORE
Since, by lemma 11, b; = by, and b, = bj,_; this shows that
b; = b}.

Corollary 17 1. For any T € hom(O,,,0,), T oV, n, =¥, moT;

2. For any T € hom(O;,0;) (corresponding to a system of non-singular
planar curves) T([1],0) = ([1},x) = T([1],m) = ([1],x & m);

3. For any T1,T» € hom(O;,0;) Ty o T1([1],0) = ([1], ma & my) where
([1], my) = T([1],0), i = 1,2.

Proof.

1. It is obvious that if {U,, 1, }nen commute with the generators Tn,k and ka
then they commute with any morphism 7'.

2. T([1],m) = ToW, m([1],0) = U1 moT([1],0) = ¥y m([1],x) = (1], xBm).
3. T, 0 Ty([1],0) = To([1], my) = ([1], ms & my).
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|

This result shows that all information about a morphism 7" € hom(Qy, O)
is contained in a single value v € M (which is obtained evaluating the mor-
phism 7" on ([1],0)). Thus, we can associate a value in M to each system of
non-singular planar curves. Moreover this association is a monoid homomor-
phism.

Next we will look at what value is obtained when a collection of planar
curves is encircled by another curve.

Consider, for each n, the following subset of O,

U, ={(R, V") € O, :e'Re, =1}

By the property T1 we have that U, = () for any even number n. It is
clear that U, = O; and therefore it easy to see that U, # @ for any odd
number n, using the following result.

Proposition 18 For any n and k, if (R, ) € U, then Ty(R, V) € Ups
and Ty(R, V) € Uy ».

Proof. Let (R, v") =Ty(R, 7). We want to see that if ¢! Re, = 1 then
t D! _
eiR'e,0 = 1.
etR'e,n = e (BxRBL+ Di)enia
= e!ByRBlen o
= elRe, =1

Let (R, V") = Ty(R,v). We want to see that if e!Re, = 1 then
t ot _
e;R'ep_o=1.

e!R'e,—o = €' (B!RB;)%*,_o
Z €§B£RB]€€”_2
> e'Re, =1
|
Now we consider, for each odd natural number n, the following morphism:
En t U, — Z/{n+_2>
(R, 7) — (R, )
with
R=E,RE! + F, 5
and



where E,, = [e; ;] is an (n+2) X n matrix defined by e;; =1 < i—1 = j and
Foto = [fij]is an (n4+2) x(n+2) matrix defined by f; ; = 1 <4, j € {1,n+2}.

Proposition 19 For any odd natural number n, €, is well defined.

Proof. We need to see that if (R, ©") € U, then e,(R, 0") € Upyo.

Let (R, ?) = &,(R, V). We are going to check that R+ ©" = v implies
R x 7 = _17), R satisfies the properties E1, E2, E3, T1, T2 and T3 and the
(1,n + 2) entry of R is 1.

For this purpose, we are going to use the identities: E'E,, = I, E! F,, .o =
O and F,, .o F, = O, which we will leave to the reader to check.
T = (E.RE. + Fppo) % (Bn+ 0)
(E,RE'E,) % V'V (Fpy2Eyn) * v

K

R+7V =7 = Rx

|
SRS
* &

The properties E1, E2 and E3 of R are very easy to verify, so we leave
them as an exercise.

For the properties T1, T2 and T3, we observe that the (i, ;) entry of R
isthe (1 —1,7— 1) entry of Rif2<4,5<n-+1,1ifij5€{1,n+2} and 0
in all other cases, i.e.:

Ti—l,j—l lf 2 SZ,] S’I’L-i—l
7ij = ei(EnRE, + Fyis)ej = 1 if 0,7 €e{l,n+2}
0 otherwise

In particular, we have 7 49 = 1.

Property T1: 7,;, =1 = j —1 € 2Z.
We have 7;; =1 = 14,5 € {1,n+ 2} or r;_1;-1 = 1. Since we have
taken n to be odd and R satisfies T1 we have 7 — i € 27Z.

Property T2: vasggys,s fa,fy = fg,(s =1= fa,g = fg,fy = 7:%5 =1.

We only need consider the case @ < 8 < v < 4, and then 7,, =
s =1 =>2<a<pB<y<d<n+1l Thus 7fqy = ra-14-1
and 7gs5 = r3_1,-1, hence, since R satisfies T2, we have r,_15-1 =
TB—1,y—1 = Ty—1,6—1 = 1, that is 7:&,/3 = fﬂﬁ = 7:7’5 = 1.
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Property T3: Vocpg Tap=1= Tat18-1 =1 0r dycye i Tay = 1.
If « =1 then fa,ﬂ =1= ﬂ =n+ 2. Thus fa—kl,ﬂ—l = fQ,n—H =Tin = 1
since R € U,,8.
If > 1 then 7,3 =1= 8 <n+2. Thus

Tag =Ta-18-1 = Tap—2=1 0r Jo_icy—1<p-1:Ta-1y-1=1
= Tat18-1=1 or Jocy<p 1 Tay =1

Lemma 20 For any 2 < k < n+ 1, we have the identities Tn+2,k+1 og, =
€n+42 O Tn,k and Tn,k+1 C&p =&Ep20 Tn72,k

Proof.

First identity: 740 k+10€n = €py2 0 Thk-

For an arbitrary (R, ) € Up, let (Rl, V1) = en(R, V), (Ry, V'3) =
Toyop1(By, V), (R, _h) = Tnk(R V) and (Ry, 'h) = enqa(RY, V).
We want to check (Ry, 0'3) = (R}, U'h).

Ry = Buiop1RiB) 91+ Dusakin

Bn+2,k+1(E REt + Fn+2)B£L+2 k+1 + Dn+4 k+1

B iox+1E,RE!, Bn+2 g1+ Bryo k+1Fn+2Bn+2 ki1 T Dnsapsr
EpnyoBugRB B o+ Fyia + EnioDpioi Bl L,
En+2(Bn,k:RBfL,k + Dn+2,k)E7tH_2 + Fn+4

EnoRE) o+ Fria

— !
= R2
— —
Vo = Bn—|—2k—|—1* V1 -
= Bn—|—2 k+1 * (E *_)U )
(Bn+2 k+1E ) v

(Eny2Bng) x 0
Ep o % (Byy * 7)
En+2 * 7’1

=

8This is an abuse of notation, since we should write (R, ¥) € Up,.
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Second identity 7, 41 0€p = €p—20 Ty _ok.

For an arbitrary (R, 0") € U,, let (R, @) = €n(R, ), (Rg,_>) =
Trip1 (R, @), (R, 7’): Tn,Q,k(]E) ) and (R, b') = &,
We want to check (R, b) = (R}, b').

Ry, = [Bn k+1Ran,k+1]2
[Bn k+1(EnREfz + Fn+2)Bn,k+1]2
[Bn k+1E REfLBn,IH—l + B;,k+1Fn+2Bn,k+1]2
- (En 2Bn—2,kRBn—2,kE7tz—2+Fn)2
= E, 2B kRBn ZkEn QEn 2B kRBn 2kE
+Ey 9Bl RB, 24 B\ ,Fy + FE, 3B QkRBn Bl + F2
= E,,R\E! ,+F,
= R’

b = Rox|( nkH*?)EB(@k*ikH)]
= (E,oR\E._,+ F,) + {[B! i1 * (B 0] @ (eg * Tpi1)}
= En oR\E! % [(BLy 1 Enx V) ® (ek * )]
VFE, * [(Bf1 k+1E * V) D (eg * Tpy1)]
= E, R «{E._,* (En2B o, * U) @ (Bl _yer * 1)}
\/(FnEn_gBLQ’k x 0) @ (Faep % Tps)]
= EnoR|* (Bl yEu2B. 5+ V) ® (ep—1 * Frs1)]
En oR} 5 [(B!_y, * V) @ (ep_1 * x)]
En_g x a’
7/

Here Tyi1 = “Tppio * (g A ary2) ® Trpro * ©(ak1) wWhere 7y pro =
t
e, Riepa.

Since 1 < k, k+2 < n+2 we have that 7 19 = 75_1 k41 and ap = vi_1,
Ap+1 — Vg and Ap+2 — VUk+1- Thus ik—l—l = Tg-

Corollary 21 Let F : PIyy — Ply be the functor which sends Tnk and
Tn,k to Tn+2,k+1 and Tn+2,k+1 (respectively). Then
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1. For any T € hom(U,,Up,), emoT = F(T) o &,.
2. For any T € hom(Oy,01) (note that Uy = Oy), T([1],0) = ([1],x) =
Tip0 F(T) 0 T15([1],0) = ([1], ¢(x)).

Proof.

1. This follows immediately from the previous lemma and the definition of
the functor F.

2.
) 101 0
Tiao F(T)oTis([1],0) = TiaoF(T){ |0 1 0|, ®
101 0
= Tip0F(T)oe([1],0)
= T120510T([1] 0)
= Tipoe((l],x)
101 0
= Tia|]010],[x
101 0

|

Note that T]_,Q oF(T)o T]_,g is the representation of #; 50 F(t) o fl,gg which
corresponds to the encirclement of the morphism ¢.

In summary we see that the representation of a system of non-singular
planar curves is a morphism in hom(QO;, O;), but this is determined by a
single value. This means that the representation gives a map from the monoid
of systems of non-singular planar curves hom((), ) to the monoid of the
representation M. To a morphism ¢ € hom(),()) we associate the value
v(t) € M such that ([1],v(t)) = T([1],0) where T" € hom(O;, O) is the
representation of ¢. This map is a monoid morphism (v(t; o t2) = wv(t;) &
v(t2)) as we have seen (see corollary 17), and furthermore, the function ¢ is
what corresponds in M to the operation of encircling a system of curves by
another curve (see corollary 21), i.e. v({t)) = ¢(v(t)) where (t) denotes the
encirclement of the morphism %.

9Here the functor F is defined in the same way for PT as it was for PIy.
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We are going to study this map in the following two particular cases.

First case: the monoid is the natural numbers with the usual multipli-
cation as the operation of the monoid and with the division order giving the
lattice structure; the function ¢ is the function that sends a number n to the
n'* prime number.

We are going to see that, for systems of non-singular planar curves, the
map is a monoid isomorphism (and thus is a complete invariant for such
systems). This means that two systems of curves with the same value are
equivalent (isotopic). Let us prove this by induction on the value v(s) = n of
the system s. Note that it only remains to prove that the map is bijective.

First we observe that if a morphism s € hom((, () is irreducible (and thus
is encircled) then v(s) is a prime number.

If v(s) = 1 then s is the empty system of curves (the identity in hom(@, }))
because a non-empty system of curves is a non-empty composition of irre-
ducible morphisms therefore it has a non-empty product of prime numbers as
value v (i.e. v(s) > 1). This implies that if a morphism has a prime number
as value then it is irreducible. Thus an encircled morphism is irreducible.

Now let v(s1) = v(sg) = n, and suppose by the induction hypothesis that,
for k < m, v(s1) = v(se) = k implies s; = so.

If n is a prime number (say the k™ prime) then s; and s, are irreducible
(encircled), that is s; = (s3) and so = (s4) and v(s3) = v(s4) = k. Thus, by
the induction hypothesis, s3 = s, and therefore s; = ss.

If n is a composite number then s; and sy factorize into the same irre-
ducible morphisms because if an irreducible morphism sz is a factor of s; then
v(s3) is a prime number that divides n and, by the induction hypothesis, s3
is the unique morphism with value v(s3), therefore s; is also a factor of s,.
The same argument can be used to prove that each factor appears in s; and
$o the same number of times. The conclusion that s; = s, comes from the
following proposition.

Proposition 22 The monoid hom((, )) is commutative.

Second case: the monoid is the non-negative integer numbers with the
usual sum as the operation of the monoid and with the usual order giving
the lattice structure; the function ¢ is the function that sends a number n
to its successor n + 1.

We are going to see that, for a system of non-singular planar curves s,
v(s) is simply the number of curves of s.
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This is very easy because, since the map v is uniquely determined by
the relations v(s; 0 $2) = v(s1) + v(s2) and v({s)) = ¢(v(s)) = v(s) + 1, we
only need to observe that the number of curves v(s) of a system of curves s
satisfies the relation v(s; o0 s9) = v(s1) + v(s2) and v((s)) = v(s) + 1.
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6 Temperley-Lieb algebras

A Temperley-Lieb algebra A, is an algebra over K[§]'0 generated by Uy, Us,
., U,_1 with the following relations:

UZ‘U]' = U]Uz for ‘Z —j| >1
UiUi:tlUi = Uz for all 7 = 1, ey — 1
U? = 6U; foralli=1,...,n—1

Geometrically .4, is a subalgebra of the linearization of the monoid hom ({1,
2,...,n},{1,2,...,n}) quotiented by the relations U? = §U; for alli = 1, ...,n—
1. Here each U; corresponds to fn—1,i—1 o fn—u—l and each relation U? = 6U;
can be substituted by f,_1; 1 0%, 1,1 = did,_1 (where id,_; is the identity
morphism on hom({1,2,....;n —2},{1,2,...,n — 2})).

For the matrices the representation that we have constructed is compat-
ible with the restriction ¢, ;-1 o tAn_ly,-_l = §id,_1 as we will see shortly.

On the other hand this relation ,, ; i ofn,l,i,l = did,,_1 makes the array
of monoid values unnecessary since each closed curve becomes a scalar value ¢
independent of the region where it appears. Besides we have a linear structure
on the Temperley-Lieb algebra that we need to preserve in a representation.

So we will give a representation of the Temperley-Lieb algebra in the
category Vecty of the linear spaces over K which is adapted from the previous
representation.

For that we consider the Boolean matrix part of the previous representa-
tion.

Let &, be the set of n x n-Boolean matrices satisfying the equivalence
relation conditions, E1-E3. We are going to associate to each partition of the
line into n intervals the linear span K&, of the set &,.

We can consider the operators Tn,k and Tn,k as functions between sets
of Boolean matrices satisfying E'1, E2 and E3, since the matricial parts of
Tni(R, @) and Ty x(R, @) don’t depend on o'

We are going to represent the generator morphism fn,k by the linear op-

erator
Tnk * Kgn — K5n+2

ZReé‘n agR +— ZRESn aRTn,k(R)

10Here K[6] is the ring of polynomials in one variable § over a field K (for convenience
we can fix K = C).
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and the generator morphism £, ; by the linear operator

7v—n,k : KEn—i—Q — Kgn 5
D Regnss ORIL = Yopee ., Or(Te-1 1 % 0) T k(R)

where 741 k41 is the (k — 1,k + 1) entry of the matrix R.
Looking at the section 3 we can see that, for the matrices, the consistency
proof of the relations

A

n+2,1 © Tn,k = Tn+2,k (@) T’rL,l—2 for [ 2 k + 2,

Tn—Z,l—Z o Tn—Z,k = Tn,k o Tn,l for [ Z k + 2a

=)

n,l © Tn,k = 7Ajnf2,lc % Tn72,l72 for [ > k + 2 and
Tan,le © Tn,k = Tan,k © Tn,l for I > k + 2.

does not require the properties T1, T2 and T3. Thus, Tn,k and Tn,k as
functions on &, (or &,,2) satisfy these relations.

Bearing this in mind, it is not difficult to prove that 7, and 7, satisfy
the following relations:

1. 7V—n,k+17A—n,k = 7v—rl.,lc—1'7A—n,lc = Zd,

2. ’7A'n+2,l7A'n,k = 7A'n+2,k’7A'n,l_2 for [ Z k + 2,

3.1. ’f'n_g’l_gf'n_z,k = %n,k%n,l for [ 2 k + 2,
3.2. 7V—n,l7A—n,k = ’?\—n_Q’kﬂv—n_Q,l_Q for [ Z k+ 2 and
4. ’7V'n_2,l_27v'n,k = 7V'n_2,k7v'n,l for [ Z k + 2.

We are going to prove the last relation leaving the others as an exercise
for the reader.

By linearity we only need to prove that 7,_9;_oTpr = Th_2k7n,; for an
arbitrary R € &,.

Denoting by (M)g_1,+1 the (K — 1,k + 1) entry of a matrix M we have
to check the identity:

((Tn,k(R))z—§,l—1 * 5)((R)k—1,k+1 * 5)Tn—2,l—2 OVTn,k(R) =
= ((Tn,l(R))k—l,k+1 * 5)((R)l—1,l+1 * 5)Tn—2,k o Tn,l(R)
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Since we have just proved that Tn,Q’l,Q o Tn,k(R) = Tn,g’k o Tn,l(R) the
identity reduces to (dropping the index n on 7}, ; and T}, ;)

(T(R))1=34-1 % 0) (R)k—1.641 * 0) = ((T{(R))p—1,p41 * 6) ((R)1-1441 % 6) (1)

By lemma 12 we know that (T;(R)); 5, 1 is equal to (R); 1441 if (Ti(R))k 1.4 3
or (Tx(R))k_1,-1 are equal to zero, and if (Ti(R))s_1,-3 and (Tx(R))g—1-1
are both equal to 1 then, by the transitive property E3, (T (R)) 1—3,—1 s equal
to 1. Thus

(Te(R))i—3-1 = (R)i—1,041 + (Te(R))k—1,-3(Te(R))k-1,-1

Also by lemma 12 we have that (Tk(R))k_]_,l_y, = (R)k—1,-1 + (R)k+1,-1
and (Tk(R))k—l,l—l = (R)k—l,l—H + (R)k+1,l+1- Therefore

(Tx(R))i—ay—1 = (R)i—ii41 + [(R) k=141 + (B)ks1,0-1) [(R) k=141 + (R)kt1,41]
(R)i-141 + (R)k-10-1(R) k1041 + (R)k-1,0-1(R) kg 1,141

F(R)ks10-1(R)k-1041 + (B)kt1,-1(R)kt1,041

= (R)i—1y41 + (R)k—1,-1(R)ks1441 + (R)k+1,-1(R) k1,141

using the transitive property.
By the same argument we get

(iR k1401 = Rk 1401 + (R 1k 1 (R)ig1 41 + (R) s 1 (R 1441

If (R)i-15-1(B) 11,641+ (R)i1,6-1(R)i-1,5+1 = 0 then we have (T (R));—3,-1 =
(R)i—14+1 and (T3(R))k-14+1 = (R)k—14+1, and therefore the equality (1)
holds. If (R)l—l,k—l(R)l+1,k+1+(R)l+1,k—1(R)l—1,k+1 =1 tvhen we have (R)lv—l,l-l-l =
(R)k—1+1, by the equivalence relation properties, and (7x(R));—3,—1 = (1}(R))k-14+1 =
1, and therefore the equality (1) holds too.

We have also an extra identity

5. Fnitap = 0id

which is very easy to verify, so that we leave it to the reader to do so.
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7 The Kauffman bracket polynomial

The well known Kauffman bracket polynomial has a skein relation

(O =A0O0)+AH( =)

which can be used to represent braids into Temperley-Lieb algebras. Each
generator o; of the Artin braid group B, is represented by Aid + A~'Uj;,
where A is a non-vanishing variable. The inverse of o; is represented by
AU; + A7Yid. Fixing § = —A? — A~2 the Artin relations!! for B, are pre-
served in this representation due to relations of the Temperley-Lieb algebra.
Moreover, we can use the representation of the Temperley-Lieb algebras in
the category Vectx that we gave to produce a representation of the braid
group B, in Vectg. Indeed, this could be done in such a way as to extend
this representation to the category of non-oriented tangles. This category
(let us call it Tang) has the finite subsets of R as its objects and a morphism
between two objects 0; and 05 is a 1-dimensional compact submanifold of
R? x [0, 1] which has o; x {(0,1)} Uo, x {(0,0)} as boundary.

Here we consider two tangles with the same boundary to be the same if
there exists an ambient isotopy changing one into the other without moving
the boundary. For the composition of two tangles t; € hom(o1,0,) and
to € hom(0y, 03) we take the gluing of ¢; and ¢ in 0y in the same way as for
planar tangles.

We can give a presentation for this category taking as generators the same
generators as for PT (the category of non-singular planar tangles): %, and
tnr (for n,k € N with 2 < k < n + 1) plus the crossings: o, and J;jc
(corresponding to the generators oj_; and o', of B, ;). As relations we
take the relations of PT:

tn,k—l—l o tn,k = tn,k—l o tn,k =1d

tn+2,l o tn,k = tn+2,k: o tn,l—2
forl > k+2;

Z?n—Q,l—Q o fn,k = gn—2,lc o En,l
forl >k + 2;

11

0i05; = 0;0; for |2 —]l > 1 and 0;0;410; = 0;+4+10;0;+1
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£n72,l72 o tvnf2,k = Zn,k o fn,l
for | > k+ 2 and

fn,l o i?n,k = fn—Q,k o En—2,l—2
forl > k + 2,
plus the relations of the braid groups B,,:

-1 _ -1 .
Tnfo © O = Oy © Onp = icln

OnplO0pnk = Opk OO0n,

for |l — k| > 1;

OnkOnk+10nk = On k+10n kO n k+1

plus the following relations:

|

[ _ \,

€ n ____—€ n
Opt2k+1 Olngk = Tpio g Oln ki1
with € = £1;

forl >k + 2;
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On+2,k © tn,l = tn,l O O0nk

for I > k + 2;

U
.7

On—21-20tpk = tp_2k O0ny

forl > k+2;

J
) _H!

On—2,k © tn,l = tn—2,l O Onk

for | > k+ 2 and

) _

[

. s
Op+2,k © tngk = Tnk

with € = £1.
We have constructed (in the previous section) a linear representation 7, 4
and 7, for the generators ¢, ; and fn,k which satisfies the relations:

1. Topt1Tng = Tnk—1Tnk = id;

2. Trng2,0Tnk = Tny2kTni—2 for [ >k + 2;

3.1. ’f'n_gyl_g’f'n_z,k = %n,k%n,l for [ Z k + 2;
3.2. %n,l’f-n,k = ’f'n_g’k’iv'n_g,l_z for [ Z k + 2 and

4. ’7V'n_2,l_2’7v'n,k = ’7V'n_2,k7v'n’l for [ Z k+ 2.
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and another relation:
5. TprTnk = 0td

With the skein relation of the Kauffman-bracket polynomial we get a
linear representation for the generator o, (represented by X, := Aid, +
Ao kTn_o) and for its inverse a;}c (represented by E;}c = A Yd, +
AT y_opTn_ok). Taking 6 = —A? — A% it is easy to see that in this repre-
sentation all the relations are satisfied except the relations o490 fn,k = tAn,k
and Uﬁizk o fn,k = fn,k. Instead, this representation satisfies the relations
SniopTnge = =A% and T Ly o = —A 3.

Nevertheless, we can obtain, following the spirit of the Kauffman work
[4] , a true representation of the category of oriented tangles OTa (see
[10] ) in the following way: given an oriented tangle ¢, take the corre-
sponding non-oriented tangle [t| and obtain its linear representation (|t|)
described above. Then multiply (|¢|) by the factor (—A)=3*® where w(t)
(called the writhe of t) is defined as follows: put a sign on each cross-
ing: sgn( ) = sgn( ) = sgn( ) = sgn(>) = 1 and sgn(>) =
sgn( <) = sgn( > ) = sgn( <) = —1, and the writhe is the sum the signs
of all crossings. In the end we get a representation JK(t) := (—A)73®(|¢])
of the tangle ¢ consistent with all relations of the category of oriented tangles
OTa.

If [ is a link (i.e. [ € hom((,0)) then JK(I) is an automorphism in
a 1-dimensional Z[A, A~']-module, thus it can be identified with a scalar
value in Z[A, A7'] (i.e. a Laurent polynomial P;(A) which, in this case, is
just the Jones'?.-polynomial V;(A) multiplied by (—A? — A™2), that means
JTK(1)(z) = (—A% — A2V (A)z.

It is not difficult to see this, since the Jones polynomial is the unique
polynomial invariant for links which satisfies:

1. Viy(A) =1 for the unknot U = f1,2f1,2;
2. A_4VX - A4VX = (A2 — A_2)V>< .
and (—A% — A72)7' JK(1)(1) also satisfies these relations.

Proposition 23 If | is a long link (i.e. a tangle from a single point to a
single point) then JK(l) is an automorphism in a 2-dimensional Z[A, A~!]-
module, which is a scalar multiple P;(A) of the identity operator. This scalar

2with the variables as in the Kauffman-bracket polynomial
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Pi(A) is just the Jones-polynomial Vi(A) of the closure | of the long link L.
Note that the closure of the composition of two of these tangles is just a
connected sum of their closures.

Proof. K& is a 2-dimensional linear space generated by [ (1) 2 } and

[ 1 } ] (I) : K& — K& is a linear combination of products of 7 and 7.

Since [ 0 } is the unique matrix in K& that satisfies the topological

01
" . . . 10
condition T1 and T1 is preserved by 7 and 7, we have that <l)([ 01 ]) =
P(A) (1) (1) where P,(A) is a Laurent polynomial in the variable A.

Looking at the proof of proposition 18 we can see that 7 and 7 pre-

serve the value 1 in the first row - last column entry, thus (l}([ } 1 ]) =

11
11

Therefore, to see that () is a multiple of the identity operator we only
need to check that Pj(A) = P/(A). For that we are going to consider the
subset £ C &, of the matrices that satisfy the condition T1, and we take the
linear operators x,, : K& — K&, defined by the formula x,(R) = R+ T,
(the transitive closure of R + T},) where T,, is the matrix in which the (i, j)-
entry is 1 if and only if |§ — j| = n — 1 (i.e. has 1 only in the first row - last
column and last row - first column entries). In the topological sense, it is as
if the strip R x [0, 1] were transformed into a cylinder joining the exterior
regions.

P/(A) where P/(A) is a Laurent polynomial in the variable A.

Lemma 24 For even dimension, x commutes with the operators T and T in
the following sense: X,Tn—2k = Tn—2kXn_o and X,T = TX,49, for any even
natural number n.

Proof. The first equation: x,,Tn—2% = Tn—2kXn_2-
By linearity, all we need to see is that, for any matrix R € &), x,,7n—24(R) =

%n727kx’n—2(R)
This corresponds to the identity:

ByRB! + Dy, +T = ByR+TBj + Dy
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First we prove

ByRB! + Dy, +T = By(R+ T)B} + Dy,

Since

ByRB, + Dy, +T BB + Dy +T
(ByBL + Dy +1T)3
ByBLT By B!

ByTB.

IV IV IV

we have that

ByRBL + Dy +T = ByRBL + Dy + T + By T B]

Then, since T' < BT B}, we have

ByRB. + Dy, +T = By(R+ T)B}, + Dy

Now the identity

ByRB! + Dy, + T = ByR+TBj + Dy
comes from the identity
(Bx(R+T)B} + Dy,)" = By(R+T)"B}, + Dy for all natural n

Now let us prove the second equation: x,,7 = 7X,,,o-

By linearity, all we need to check is that, for any matrix R € &/, x,,7(R) =
7V'Xm—Q(R)-

XnT(R) = aBLRBy, + T = aB,RBj, + T where a = (e},_; Regy1) * 0.

On the other hand, 7x,,,,(R) = BBLR + T By, where 8 = (el _ R+ Teg1)*

Thus, all we need to check is that § = o and B{R +TBy = B{RB, + T.

For that we observe that R+7T = R+ T + RT + TR + RT R because
R? = R and TMT < I + T for any matrix M. Indeed, since R > I (and
therefore T+ RT + TR < RTR), we have R+ T = R+ RTR.

Since n is even and R satisfies T1, an (4, j)-entry of RT'R is 1 only if |i— j|
is odd. Thus the (k—1, k+1)-entry of R + T is equal to the (k—1, k+1)-entry
of R, therefore 5 = «.

To see that BLR+ TBy, = B,RBy + T we observe that this equality is

equivalent to BiR + TBy, = BL(R+ T)By, because ByTB, = T. To check
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this last equality it is sufficient, by corollary 10, to see that (I —Dy)R + T(I—
Di) < (I = Dy)(R+T)(I — D).

(I - DYR+T( - Dy) =

= (I — Di)(R+ RTR)(I — D) =

= (I = Di)R(I — Dg) + (I — Dg)RTR(I — Dy)

({ = Di)R(I — Dy) + (I — Dp)R(I — Dy)T(I — D) R(I — D)
( )

( )

T—D)R(I—Dy) +T
I—Dy)(R+T)(I— Dy)

From this lemma it follows that x commutes with (I) for any long link.

Then - .
B(A)[l1]_@)[11}_@,@{01}_

—e |y ] =en@ | V) =re| ] ]

and therefore P/(A) = P(A).

To see that (—A)™3*()P(A) is the Jones polynomial of the closure of
we proceed in the following way. The closure of a long link [ can be given
by the composition [ = ;5 0 J(I) 0 9, where J is a functor that sends the
object {1,2,...,n} to the object {1,2,...,n + 1} and the generators ¢, 4, tnx
and o, to tn+1 ks tn+1 g and ok respectlvely This is represented by the
operator (I) = 719J((I))712 (here J is a different functor, but is defined in an
analogous way). Now we consider the operators ¢, : K&, — K&, which
sends a matrix R to R®1 which is equal to R in the first n rows and columns,
1 in the (n+ 1,n + 1)-entry and zero in the other entries. It is quite simple
to see that X, olnt2Tnk = TntikXntn a0A X,lnTnk = Tnt1kXpiolnt2 and
therefore x¢(l) = J({I))x¢ for any long link (although lemma 24 is restricted
to x,, with n even, all the proof is adaptable to the general case except the
identity el (R + T)ex+1 = eh ;Rery1, but it is easy to see that if R is in
the image of ¢ this identity holds).

Thus we have

(] = 712d (N F12(1A]) = 7127 (1))

—_ O =

o = O

[ s
I
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8 The Kauffman-Vogel Polynomial

In the article [6] Kauffman and Vogel extend the Kauffman Polynomial'® to
4-valent graphs embedded in R?, via the local relations:

[<1=AD+ B[ =1+ [x] (2)
and
[ol=al)]

This polynomial is invariant under rigid vertex regular isotopies, and can
be made invariant under the first Reidemeister move by multiplying by some
power of @ in the same way as for the Jones polynomial.

Since [ % | = A[ =]+ B[ )(]+[ ], this polynomial satisfies the axioms
of the Kauffman Polynomial:

=D =2Dd-1=D
and
[ol=al)]
with z = A — B.
Thus we can calculate the polynomial of a 4-valent graph eliminating each
vertex by the formula

[<]=ADd+ B[ =]1-[x]
and calculate the polynomials of the resulting links by the axioms of the
Kauffman Polynomial.

However, there exists a graphical calculus that allow us to calculate the
polynomial of any 4-valent planar graph without resort to formula (2). Thus
we can calculate the polynomial in the inverse way (eliminating the crossings
by the formula (2)). This is very practicable in the specific case B = A~! and
a = A (see [2] and [3]) where the polynomial of any 4-valent planar graph G
is:

G] = 27 (A — A7y’
where c¢ is the number of components of G and v is the number of vertices of
G.

As we have done with the bracket polynomial we can use the formula (2)
to decompose a tangle as a linear combination of planar tangles (in this case
singular planar tangles).

13 Also known as the Dubrovnik polynomial.
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8.1 Singular planar tangles

We consider a singular planar tangle to be a set of finitely many intervals
and circles embedded in R x [0, 1] which intersect one each other transversely
in finitely many points (never on its boundaries) and whose boundaries are
in R x {0,1}. We can see singular planar tangles as an extension of the
category of planar tangles PT (let us call it SPT) with the same objects.
For a presentation of SPT we can take as the generators the same generators
as those of PT and add vertex generators:

1.2 .. k n

Un,k =

1 2 .. k n

(here n > 3 is the number of intervals and £ is the position of the vertex
2 < k <n—1). For the relations we consider all relations of PT plus the
following relations:

b © Unk = Ungok ©lny

forl > k+2;

N[ - X

~ A

tnk © Ung = Ung2,42 O bk
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forl >k +2;

S LT X

X |

Un,1—2 © En,k = En,lc O Un42,
forl >k +2;

Y X

X L

Un,k © tn,l = tn,l O Un+42,k

forl >k +2;

\
Un+2,k © tn,k:+1 = Up+2,k+1 © tn,k
for l > k+ 2 and

X A
X

X 1T .

X A ]

\
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Un, O VUn,k = Upk O Upy

forl > k + 2.

Following the spirit of the representation of fnyk and fn,k, we will represent
vnk by the operator v, : K&, — K&, defined by the formula v, ;(R) =
e[(I — Dg)R(I — Dy) 4+ Dy) where ¢ is a constant in K (which plays the role
of counting the number of vertices).

Making use of the identities (I — Dy)B; = B;(I — D) and (I — D;)By, =
BZ(I—Dk_Q) for ! 2 k+2, (I_Dk)Bk—H = (I—Dk+1)Bk and (I—Dk)(I—Dl) =
(I — Dy)(I — Dy) we can check easily that the representations 7, 7y and
Vnye Of ty g, tni and v, (vesp.) satisfy all the relations of SPT.

Moreover, it is easy to see that the following identities are satisfied:

VpVgi1 = Vg1 Vg: % = N;

vi=cuy: EZ ><

VETE = ET: Q m

TRV = €Tk 5 U
FrTE = 0td: Q

In this way, we have that for a 4-valent planar graph G its representation
is given by the value 6°c” where c is the number of connected components of
G and v is the number of vertices of G.

Thus, fixing d =2 and e = —A— A1, we can extract the Kauffman-Vogel
polynomial with variables B = A~! and a = A.
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9 Conclusion, conjectures and developments

The theory contained in this thesis is very specific to the study of planar
structures such as planar tangles. In fact, it uses the Jordan lemma implicitly
in several aspects. In the final two chapters we applied it to ordinary tangles
(spatial not planar) but making use of planar state models. It is left as an
open problem to find other representations of spatial tangles within the same
theory without decomposing them into planar tangles. Note that although
this theory extends the Jones polynomial for tangles to operators it is very
different from the Turaev theory.

It is important also to note that in the final chapters we didn’t require
that the Boolean matrices should satisfy the topological conditions T1, T2
and T3. This give us a higher-dimensional representation than if we had
restricted to matrices satisfying the topological conditions. However, it is not
clear whether we would lose any information with such a restriction. In other
words, we don’t know if, whenever two tangles have the same representation
with such a restriction, they then have the same representation. We know
that it is true for links (trivially) and long links (prop. 23) but we don’t
know if it is true in general.

Another open problem is to establish whether, subject to suitable choices,
the representation of chapter 4 for planar tangles is faithful (i.e. is a complete
invariant) or not. We have proved this only for the case of systems of non-
singular planar curves. The following argument suggests that it is faithful.
Given a representation of a non-singular planar tangle, if we evaluate it on
the Boolean identity matrix we get a matrix that tells us which intervals at
the bottom of the tangle are in the same region in the tangle. Thus we can
draw the curves which have their boundary at the bottom of the tangle. By
evaluating the representation on all Boolean matrices (satisfying E1-E3 and
T1-T3), and looking at changes in the array of monoid values, we can find
the curves which have their boundary at the top of the tangle. Now we can
link the remaining ends at the top and the bottom in a unique way since
the curves cannot cross each other, and finally, using the array of monoid
values, we can draw the closed curves in their respective regions. Thus we
can determine the tangle from its representation.

One possible way to develop this theory is to apply it to the theory of
surfaces embedding in R®, where there is an analogous theorem to the Jordan
lemma. Here, we would take an embedding of surfaces in R® for which the
coordinate on the vertical axis is a Morse function, and we would decompose
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such an embedding into a composition of 2-dimensional cobordisms with a
single critical point in each one. Note that the complement of an embedding
of surfaces in R® is a 3-dimensional manifold which may be decomposed as
a composition of 3-dimensional cobordisms between complements of embed-
ding closed curves in R?. Here the Boolean matrices would give us informa-
tion about whether regions in the source of the cobordism are in the same
component of the cobordism. However, we don’t have a natural order for
regions in the plane in the same way as we have for intervals in the line.
This small detail increases the difficulty in developing this theory for higher
dimensions.
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A Calculus with Boolean matrices

There are, for this paper, two useful ways to calculate the operations on
Boolean matrices.

One is using propositional logic calculus. To each entry (3, j) of a Boolean
matrix M = [m; ;] we associate a proposition p; ;(M) on variables ¢ and j
with logical value m; ;. In this way we have the following correspondence:

pij(A+B) = p; ;(A)Vp; j(B) for all 4, j (here V means the logical
operation OR);

pij(AB) = Jyo1,.n : Dig(A) A prj(B) for all 4,5 (here A means
the logical operation AND);

A< B iff pz,](A) = pl,](B) for all 7, 5.

This is useful, for example, to check the inequality CixmCrixn < Cixn
which appears on page 22. Since p; ;(C) := (i — j) € 2Z the veracity of the
inequality is the same as the veracity of the proposition (3x—1,..m: (i —k) €
2Z N (k — j) € 2Z) = (i — j) € 2Z which is obvious.

The other way is more visual, and consists of associating to an m x n
Boolean matrix M = [m; ;] a set of arrows beginning in a set of n ordered
points and ending in a set of m ordered points such that there exists an arrow
from the point j to the point ¢ if and only if m; ; = 1:

1 01

1 1 1| ~1 2 3

i
1 2 3

In this way we have:

The set of arrows corresponding to a sum of matrices A+ B is the
union of the sets of arrows corresponding to A and B separately;

An arrow from the point j to the point 7 is in the set corresponding
to a product of matrices AB iff there exists a point k& such that
there exists an arrow from j to k in the set corresponding to B
and an arrow from £ to ¢ in the set corresponding to A;
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A < B iff the set corresponding to A is contained in the set
corresponding to B.

Some of the matrices used in the text have the following form:

Dy~ 1 k—1 k k+1 n
l
1 k—1 k k+1 n
I—Dpj~ 1 k—1 k k+1 n
| l l |
1 k—1 k k+1 n
By~ 1 k-1 n
1 k—1 k k+1 n+2
By~ 1 k-1 k k41 n+2
1 E—1 n

Thus we can check many of the identities (and inequalities) used in the
text in this easier way. For example:

BkBtZI—Dk
k+1

\\

38

U W S S Y



v

—_—~—

S S Y

e

—_—

— e~ =

89

n+ 2



—_—_- =

— < =

—_ e~ <~

e
L=<
i 2
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B An example of calculating the invariant for
a SNPC

In this appendix we give an example of the calculation of the invariant for
the following system of non-singular planar curves:

O

First we decompose the SNPC as a composition of generators (fn,k and
En,k)l

=) Las
= fys

/ ;

/ 1 133
|

|

\

\

T s
/ s

/ s
T
Y
\\// t5,4
t33

t12

Thus this SNPC #; 20t330t54ot54ot55ot55ot530t56ot330t330t330t1 2
is represented by the operator Tl 90 T3 30 T5 40 T5 40 T5 50 T5 50 T5 30 T5 6O
T3,3 o T3,3 o T3,3 o Tl,g. The calculation of the evaluation of this operator on
([1],0) is presented in the following sequence:
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-~ =S =sS=

S- S
e " N—
— o O O ~
1
0101010001

R R

— TN
i=] A
OCHO O o0 4o o - R% — —~~ Ts%
=== VTs% =
— —
~ —— O O O - BN ShooosD
—~~ —~
3% _— 1 —~ —~ m — m
< ~—— =S s=sSsss 3. = S
— m% S S =S fee= S ==
TN A ~— — —~ ~— — — wr
- S - S
/
ce s g : Y _ : 5
S~—— . —HO OO~ O L O H O OO N _
- = N -
— =S —= cCooc oo HAO coo—-Ho —HO
— O w:
~ S A 000 H O A O A0 10000 A0 A0 ~HO H
o< - OC-H O 0000000000 -HO OO0 O
1
— o — o — CO0O-H 0000 T O HO A 410 —"00O0 - - O — O —
| I |
N~———— =) oO-HoOoO 0000 H0O0CO0C 0O T0000CO0C O -0 O0O
Am% — O —_ O OO A OO A A OO A OO A O A D OO A AD HAOD —
T 1 ] IL Il ]
—~~
= ~—— - - — - — -
—

&1 el &1 e
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VT—M“%

(1], 0(0) ® (0(0) ®

— N 39
— N 2t =
S
= —//
S - N
~~~ \\|}

s PpsssSs” =
—~ S- = =
= — S-

SpS=S=
~— — S .S S Sssss
.@ SN’ N N’
- = S S S
T 1 S- @
oo A0 AN__ —
~ =
oo Cc o - O /@

SO OO A 4O - O =

S o O —H O OO O oo O

1

—_, OO A OO A A0 O~ — O -

O OO0 oo oo —-ocoo - 0o

1
0
1
0
1
0
1
[ 1
0
1
0
1
1
0
1

\[

E._

5,4

i

A

Ts

T33
—

(0) ® 0(0)))

Thus we have that the value associated to this system of non-singular

planar curves is ¢(0) ® p(p(0) & (D) & (0)).
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