Função Inversa e Função Implícita

19 de Maio de 2009

- 1. Seja F(x,y)=f(x,xy) (com $f:\mathbb{R}^2\to\mathbb{R}$ de classe C^2). Exprima a derivada parcial mista F_{12} à custa de derivadas parciais de f.
- 2. Seja F(x,y)=f(x,y,g(x,y)) (com $f:\mathbb{R}^3\to\mathbb{R}$ e $g:\mathbb{R}^2\to\mathbb{R}$ de classe C^2). Exprima as derivadas parciais de ordens 1 e 2 de F à custa de derivadas parciais de f e g.
- 3. Sejam $f:\mathbb{R}^n \to \mathbb{R}$ e $\mathbf{g}:\mathbb{R} \to \mathbb{R}^n$ funções diferenciáveis.
 - (a) Mostre que a derivada de $f \circ \mathbf{g}$ é a derivada direccional de f segundo $\frac{d\mathbf{g}}{dt}$.
 - (b) Mostre que dado $\mathbf{x}_0 \in \mathbb{R}^n$ tal que $\nabla f(\mathbf{x}_0) \neq \mathbf{0}$, o máximo do conjunto

$$\{D_{\mathbf{v}}f(\mathbf{x}_0): \|\mathbf{v}\| = 1\} \subset \mathbb{R}$$

é atingido exactamente quando

$$\mathbf{v} = \frac{\nabla f(\mathbf{x}_0)}{\|\nabla f(\mathbf{x}_0)\|}.$$

(Por outras palavras, o gradiente indica a direcção de crescimento máximo da função).

4. Sejam $f:\mathbb{R}^3 \to \mathbb{R}$ e $\mathbf{g}:\mathbb{R} \to \mathbb{R}^3$ definidas por

$$f(x, y, z) = 5(x - 2)^{2} + 5(y - 1)^{2} + 2(x - 2)(y - 1) + z^{2}$$

$$\mathbf{g}(t) = (\cos(t), \cos(t), \sin(t))$$

- (a) Em que pontos a curva parametrizada por g é vertical?
- (b) Em que pontos a superfície definida pela equação f=1 é horizontal?
- 5. Dê um exemplo de uma função $f:\mathbb{R}\to\mathbb{R}$ bijectiva e de classe C^1 cuja inversa não seja de classe C^1 .
- 6. Seja $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^2$ definida por

$$\mathbf{f}(x,y) = (e^x \cos y, e^x \sin y).$$

- (a) Mostre que \mathbf{f} é localmente invertível, i.e., que dado um ponto qualquer $\mathbf{x}_0 \in \mathbb{R}^2$ existe uma vizinhança $V \ni \mathbf{x}_0$ na qual \mathbf{f} é invertível.
- (b) Será f globalmente invertível? Justifique.
- (c) Calcule $Df^{-1}(1,0)$.

7. Seja $\mathbf{f}:]0, +\infty[\times]0, 2\pi[\to \mathbb{R}^2$ definida por

$$\mathbf{f}(r,\theta) = (r\cos\theta, r\sin\theta).$$

- (a) Mostre que f é localmente invertível.
- (b) Será f globalmente invertível? Justifique.
- (c) Sendo $(x, y) = \mathbf{f}(r, \theta)$, calcule $D\mathbf{f}^{-1}(x, y)$.
- 8. Seja $\mathbf{f}: \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$\mathbf{f}(x, y, z) = (y^2 + z^2, x^2 + z^2, x^2 + y^2).$$

- (a) Determine todos os pontos para os quais o Teorema da Função Inversa garante a existência de uma inversa local para **f**.
- (b) Será f globalmente invertível? Justifique.
- (c) Calcule $D\mathbf{f}^{-1}(2,2,2)$, onde \mathbf{f}^{-1} é a inversa local de \mathbf{f} numa vizinhança do ponto (1,1,1).
- 9. Considere a função $F: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$F(x,y) = x^3 + x^2 - y^2.$$

- (a) Quais os pontos da curva de nível $F^{-1}(0)$ em que o Teorema da Função Implícita não garante a existência de uma vizinhança na qual o conjunto é da forma y=f(x)?
- (b) Esboce o conjunto de nível $F^{-1}(0)$. O que pode dizer sobre os pontos que determinou na alínea anterior?
- (c) Seja f a função cujo gráfico descreve $F^{-1}(0)$ numa vizinhança do ponto (3,6). Calcule f'(3).
- 10. Considere a função $\mathbf{F}: \mathbb{R}^4 \to \mathbb{R}^2$ definida por

$$\mathbf{F}(x, y, z, w) = (y^2 + w^2 - 2xz, y^3 + w^3 + x^3 - z^3).$$

- (a) Mostre que existe uma vizinhança do ponto (1, -1, 1, 1) na qual o conjunto de nível $\mathbf{F}^{-1}(0, 0)$ é dado por x = f(y, w), z = g(y, w).
- (b) Calcule as derivadas parciais de f e g no ponto (-1,1).