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CHAPTER 1

Differentiable Manifolds

This chapter introduces the basic notions of differential geometry.

Section 1 studies topological manifolds of dimension n, which are
the rigorous mathematical concepts corresponding to the intuitive notion of
continuous n-dimensional spaces. As an example, we describe all possible
compact 2-manifolds (surfaces).

In Section 2, we specialize to differentiable manifolds, on which we
can define differentiable functions (Section 3) and tangent vectors (Sec-
tion 4). Important examples of differentiable maps, namely immersions
and embeddings, are examined in Section 5.

Section 6 is concerned with vector fields and their flows. We show
that there is a natural differential operation between vector fields, called the
Lie bracket, which produces a new vector field.

Section 7 is devoted to the important class of differentiable manifolds
which are also groups, the so-called Lie groups. We show that to each Lie
group we can associate a Lie algebra, a vector space equipped with a Lie
bracket which contains much of the information about the Lie group, and
the exponential map, which takes vectors in the Lie algebra to points in
the Lie group.

We discuss the notion of orientability of a manifold (which generalizes
the intuitive notion of “having two sides” for surfaces in Euclidean space)
in Section 8.

Finally, manifolds with boundary are studied in Section 9.

1. Topological Manifolds

We will begin this section by studying spaces that are locally like R”,
meaning that there exists a neighborhood around each point which is home-
omorphic to an open subset of R"™.

DEFINITION 1.1. A topological manifold M of dimension n is a topo-
logical space with the following properties:

(i) M is Hausdorfl, that is, for each pair p1,ps of distinct points of
M, there exist neighborhoods Vi, Vs, of p1 and ps such that ViNV, =
.

(i) Each point p € M possesses a neighborhood V- homeomorphic to an
open subset U of R*.
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(11i) M satisfies the second countability axiom, that is, M has a
countable basis for its topology.

Conditions (i) and (7i¢) are included in the definition to prevent the
topology of these spaces from being too strange. In particular, the Hausdorff
axiom ensures that the limit of a convergent sequence is unique and, along
with the second countability axiom, guarantees the existence of partitions of
unity (cf. Section 6.2 of Chapter 2), which, as we will see, are a fundamental
tool in differential geometry.

REMARK 1.2. If the dimension of M is zero, then M is a countable set
equipped with the discrete topology (every subset of M is an open set).
If dimM = 1, then M is locally homeomorphic to an open interval; if
dim M = 2, then it is locally homeomorphic to an open disk, etc.

(c)
F1GURE 1. (a) St, (b) 52, (c) Torus of revolution.

ExXAMPLE 1.3.

(1) Every open subset M of R™ with the subspace topology (that is,
U C M is an open set if and only if U = M NV with V an open
set of R™) is a topological manifold.

(2) (The circle S') The circle

St ={(z,y) eR?: 22 +¢% =1}

with the subspace topology is a topological manifold: conditions
(1) and (4i%) are inherited from the ambient space; for each point
p € S we can consider a vector np normal to S1 at p, and there is at
least one coordinate axis which is not parallel to it. A (sufficiently
small) neighborhood V' of p is homeomorphic to its projection on
that coordinate axis. Therefore, S' is a topological manifold of
dimension 1.
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(3) (The 2-sphere S?) The previous example can be easily generalized
to show that the 2-sphere

8% ={(5,y,2) € B 10?492+ 22 = 1)

with the subspace topology is a topological manifold of dimension
2.

(4) (The torus of revolution) Again as in the previous examples, we can
show that the surface of revolution obtained by revolving a circle
around an axis that does not intersect it is a topological manifold
of dimension 2.

(5) The surface of a cube is a topological manifold (homeomorphic to

S?).

ExXAMPLE 1.4. We can also obtain topological manifolds by identifying
edges of certain polygons by means of homeomorphisms. The edges of a
square, for instance, can be identified in several ways (see Figure 2):

(1) The torus T2 is the quotient of the unit square Q@ = [0,1]?> C R?
by the equivalence relation

('Tay) ~ (.’II + Ly) ~ ('Tay + l)a
with the quotient topology (cf. Section 10.1).

(2) The Klein bottle K? is the quotient of the unit square Q =
[0,1]2 C R? by the equivalence relation

(3) The projective plane RP? is the quotient of the unit square Q =
[0,1]2 C R? by the equivalence relation

(a:,y) ~ (1 —:v,y) ~ (.’E,l _y)'

REMARK 1.5.

(1) The only compact connected 1-dimensional topological manifold is
the circle S! (see [Mil97)).

(2) The connected sum of two topological manifolds M and N is the
topological manifold M# N obtained by deleting an open set home-
omorphic to a ball in each manifold and gluing the boundaries by
an homeomorphism (cf. Figure 3). It can be shown that any com-
pact connected 2-dimensional topological manifold is homeomor-
phic to either S? or connected sums of manifolds in Example 1.4
(see [Blo96], [Mun00]).

If we do not identify all the edges of the square, we obtain a cylinder
or a Mobius band (cf. Figure 4). These topological spaces are examples of
manifolds with boundary:

DEFINITION 1.6. Consider the half space
H* = {(z',...,2") € R"* : 2" > 0}.
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(a)
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FIGURE 2. (a) Torus (T?), (b) Klein bottle (K?), (c) Real
projective plane (RP?).

FIGURE 3. Connected sum of two tori.

(a) Q
) (b)

FIGURE 4. (a) Cylinder, (b) Mébius band.
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A topological manifold with boundary is a Hausdorff space M, with
a countable basis of open sets, such that each point p € M possesses a
neighborhood V' which is homeomorphic either to an open set U of H*\OH",
or to an open subset U of H", with the point p identified to a point in OH".
The points of the first type are called interior points, and the remaining
are called boundary points.

The set of boundary points M is called boundary of M and is a
manifold of dimension (n — 1).

REMARK 1.7.

1. Making a paper model of the Mobius band, we can easily verify
that its boundary is homeomorphic to a circle (not to two disjoint
circles), and that it has only one side (cf. Figure 4).

2. Both the Klein bottle and the real projective plane contain Mobius
bands (cf. Figure 5). Deleting this band on the projective plane,
we obtain a disk (cf. Figure 6). In other words, we can glue a
Mobius band to a disk along their boundaries and obtain RP?.

S|

a

Y

FIGURE 5. (a) Klein bottle, (b) Real projective plane.

aq az as az
1 3 as -
Yo = yp = |
‘ ‘ ap /

a1 a1 a1

FIGURE 6. Disk inside the real projective plane.

Two topological manifolds are considered the same if they are homeo-
morphic. For example, spheres of different radii in R® are homeomorphic,
and so are the two surfaces in Figure 7. Indeed, the knotted torus can be
obtained by cutting the torus along a circle, knotting it and gluing it back
again. An obvious homeomorphism is then the one which takes each point
on the initial torus to its final position after cutting and gluing.
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=

FIGURE 7. Two homeomorphic topological manifolds.

1%

EXERCISES 1.8.

(1) Which of the following sets (with the subspace topology) are topo-
logical manifolds?

(a) D? = {(z,y) € B | a® +y? < 1};
(b) S2\ {p} (» € $?);

(c) S®\{p.a} (p,q € 5% p #q);

(d) {(z,y,2) R | 2% +92 =1}

(&) {(z,y,2) € B | a2 + 2 = 2°};

(2) Which of the manifolds above are homeomorphic?

(3) Show that the Klein bottle K? can be obtained by gluing two
Mobius bands together through a homeomorphism of the boundary.

(4) Show that

(a) M#S% = M for any 2-dimensional topological manifold M;
(b) RP?#RP? = K2
(c) RP2#T? = RP?#K?;

(d) any compact connected 2-dimensional topological manifold is
homeomorphic to either S2, or a connected sum of tori, or a
connected sum of projective planes.

(5) A triangulation of a topological manifold M is a decomposition
of M in a finite number of triangles (i.e., images of Euclidean tri-
angles by homeomorphisms) such that the intersection of any two
triangles is either a common edge, a common vertex or empty (it
is possible to prove that such a triangulation always exists). The
Euler characteristic of M is

x(M):=V —-E+F,

where V, E and F' are the number of vertices, edges and faces of a
given triangulation. Show that:
(a) x(M) is well defined, i.e., does not depend on the choice of
triangulation;
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2. Differentiable Manifolds

Recall that an n-dimensional topological manifold is a Hausdorff space
with a countable basis of open sets such that each point possesses a neigh-
borhood homeomorphic to an open subset of R”. Each pair (U, ¢), where
U is an open subset of R” and ¢ : U — ¢(U) C M is a homeomorphism
of U to an open subset of M, is called a parametrization; ¢! is called
a coordinate system or chart, and the set ¢(U) C M is called a co-
ordinate neighborhood. When two coordinate neighborhoods overlap,
we have formulas for the associated coordinate change (cf. Figure 8). The
idea to obtain differentiable manifolds will be to choose a sub-collection of
parametrizations so that the coordinate changes are differentiable maps.

M
Pa Yp
R™ R®
e ﬁh
Ua (p(;l o QD,B Uﬂ

FIiGURE 8. Parametrizations and overlap maps.

DEFINITION 2.1. An n-dimensional differentiable or smooth man-
ifold is a Hausdorff topological space M with a countable basis of open
sets and a family of parametrizations ¢, : Uy, — M defined on open sets
Uy, C R, such that:

(i) the coordinate neighborhoods cover M, that is, |J, va(Ua) = M;
(i) for each pair of indices , B such that
W = ¢a(Ua) Npp(Us) # 2,
the overlap maps
05 opae, (W) = ¢z (W)
0o oppigt (W) —= @i (W)
are C;
(iii) the family A = {(Ua, o)} is mazimal with respect to (i) and (i),
meaning that if o : Uy — M is a parametrization such that 9051 op
and =1 o @y are C*® for all ¢ in A, then g is in A.
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REMARK 2.2.

(1)

(2)

3)

Any family A = {(Uy, pa)} that satisfies (i) and (4i) is called a
C*-atlas for M. If A also satisfies (i3¢) it is called a maximal
atlas or a differentiable structure .

Condition (#4) is purely technical. Given any atlas A = {(Uq, v0)}
on M, there is a unique maximal atlas A containing it. In fact, we
can take the set A of all parametrizations that satisfy (i) with every
parametrization on A. Clearly A C A, and one can easily check
that it satisfies (¢) and (i7). Also, by construction, A is maximal
with respect to (i) and (47). Two atlases are said to be equivalent
if they define the same differentiable structure.

We could also have defined C*¥-manifolds by requiring the coordi-
nate changes to be C*-maps (a C°-manifold would then denote a,
topological manifold).

EXAMPLE 2.3.

(1)

The space R" with the usual topology defined by the Euclidean
metric is a Hausdorff space and has a countable basis of open sets.
If, for instance, we consider a single parametrization (R, id), condi-
tions (7) and (i7) of Definition 2.1 are trivially satisfied and we have
an atlas for R" (the maximal atlas that contains this parametriza-
tion is usually called the standard differentiable structure on
R"™). We can of course consider other atlases. Take, for instance,
the atlas defined by the parametrization (R",¢) with ¢(z) = Az
for a non-singular (n x n)-matrix A. It is an easy exercise to show
that these two atlases are equivalent.

It is possible for a manifold to possess non-equivalent atlases: con-
sider the two atlases {(R, ¢1)} and {(R, ¢2)} on R, where ¢;(z) =z
and @o(z) = 2°. As the map ¢, ' o ¢ is not differentiable at the
origin, these two atlases define different (though, as we shall see, dif-
feomorphic) differentiable structures (cf. Exercises 2.5.4 and 3.2.6).
Every open subset V of a smooth manifold is a manifold of the same
dimension. Indeed, as V is a subset of M, its subspace topology
is Hausdorff and admits a countable basis of open sets. Moreover,
if A = {(Ua,pa)} is an atlas for M and we take the U,’s for
which ¢,(Uy) NV # @, it is easy to check that the family of
parametrizations A = {(U,, Palg, )}, where Un = 03 (pa(Ua)NV),
is an atlas for V.

Let M, «, be the set of n X n matrices with real coefficients. Re-
arranging the entries along one line, we see that this space is just
R”2, and so it is a manifold. By the above example, we have that
GL(n,R) = {A € My xn|det A # 0} is also a manifold of dimension
n?. In fact, the determinant is a continuous map from M,,x,, to R,
and GL(n,R) is the preimage of the open set R\{0}.



2. DIFFERENTIABLE MANIFOLDS 11

(5) Let us consider the n-sphere
§" = {(z!,...,2") e B ()2 4+ - 4 (") = 1}
and the maps
o :UCR" — S"

(z},...,z") — (xl,...,a:i*l,g(:vl,...,:cn),a:i,...,x"),
o, :UCR" — S"
(z},...,z") — (z},..., 2" —g(zt,...,2"), 2%, ..., 2"),

where

U=A{(@'....,z2") e R"| (") +--- + (") < 1}
and

g(a',.. ") = (1= (@) = = @)

Being a subset of R**! the sphere (equipped with the subspace
topology) is a Hausdorff space and admits a countable basis of open
sets. It is also easy to check that the family {(U, ¢;'), (U, ¢; ) ?jll is
an atlas for S™, and so this space is a manifold of dimension n (the
corresponding charts are just the projections on the hyperplanes
Tt =0).

(6) We can define an atlas for the surface of a cube Q C R® making
it a smooth manifold: Suppose the cube is centered at the origin
and consider the map f : Q — S? defined by f(z) = z/||z||. Then,
considering an atlas {(Uy, @)} for S2, the family {(Uy, f =10 ¢a)}
defines an atlas for Q).

REMARK 2.4. There are topological manifolds that admit no differen-
tiable structures at all. Indeed, in 1960, Kervaire (see [Ker60]) presented
the first example (a 10-dimensional manifold) and, soon after, Smale (see
[Sma60]) constructed another one in dimension 12. In 1956 Milnor (see
[Mil56b]) had already given an example of a 8-manifold which he believed
not to admit a differentiable structure, but that was not proved until 1965
(see [Nov65]).

EXERCISES 2.5.

(1) Show that two atlases A; and Az for a smooth manifold are equiv-
alent if and only if A; U Ay is an atlas.

(2) Let M be a differentiable manifold. Show that a set V' C M is open
if and only if o1 (V Nya(Uy)) is an open subset of R* for every a.

(3) Show that the two atlases on R" from Example 2.3.1 are equivalent.

(4) Consider the two atlases on R from Example 2.3.2, {(R, 1)} and
{(R, p2)}, where ¢y (z) = = and po(z) = x°. Show that ;' oy is
not differentiable at the origin. Conclude that the two atlases are
not equivalent.
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(5)

(6)

(8)

1. DIFFERENTIABLE MANIFOLDS

Recall from elementary Vector Calculus that a surface S C R? is
a set such that, for each p € M, there is a neighborhood V of p
in R? and a C® map F : U — R (where U is an open subset of
R?) such that S NV is the graph of F. Show that S is a smooth
manifold of dimension 2.

(Product manifold) Let {(Uq,¥a)}, {(Vs,¥5)} be two atlases for
two smooth manifolds M and N. Show that the family {(U, X
Vg, ¢a X ¥g)} is an atlas for the product M x N. With the dif-
ferentiable structure generated by this atlas, M x N is called the
product manifold of M and N.

Consider the n-sphere S™ with the subspace topology and let N =
(0,...,0,1) and S = (0,...,0,—1) be the north and south poles.
Using the stereographic projections from N and S, we obtain the
maps 7y and mg defined respectively on S"\{N} and S™\{S}. The
map 7y takes a point p on S"\{N} to the intersection point of
the line through N and p with the hyperplane z"t! = 0, which
we identify with R™. Similarly, mg takes a point p on S™\{S} to
the intersection point of the line through S and p with the same
hyperplane (cf. Figure 9). Check that {(R",7y'), (R",75")} is
an atlas for S™. Show that this atlas is equivalent to the atlas on
Example 2.3.5. The maximal atlas obtained from these is called
the standard differentiable structure on S™.

FIGURE 9. Stereographic projection.

(Real projective space) The real projective space RP" is the set

of lines through the origin in R™*!. This space can be defined as

the quotient space of S™ by the equivalence relation z ~ —zx that

identifies a point to its antipodal point.

(a) Show that the quotient space RP™ = S™/~ with the quotient
topology is a Hausdorff space and admits a countable basis of
open sets (Hint: Use Proposition 10.2);
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(b) Considering the atlas on S™ defined in Example 2.3.5 and the
canonical projection 7 : S™ — RP" given by w(z) = [z], define
an atlas for RP".

(9) We can define an atlas on RP™ in a different way by identify-
ing it with the quotient space of R**!'\{0} by the equivalence
relation z ~ Az, with A € R\{0}. For that, consider the sets
Vi = {[z',...,z""!]|z* # 0} (corresponding to the set of lines
through the origin in R**! that are not contained on the hyper-
plane z' = 0) and the maps ¢; : R* — V; defined by

wi(zt, .. 2™ = [z} ..., 2 L2t L, 2.

Show that:

(a) the family {(R",;)} is an atlas for RP";

(b) this atlas defines the same differentiable structure as the atlas
on Exercise 2.5.8.

(10) (A non-Hausdorff manifold) Let M be the disjoint union of R with
a point p and consider the maps f; : R — M (i = 1,2) defined by
fi(z) = z if z € R\{0}, f1(0) = 0 and f2(0) = p. Show that:

(a) the maps fz-_1 o f; are differentiable on their domains;
(b) if we considered an atlas formed by {(R, f1), (R, f2)}, the cor-
responding topology would not satisfy the Hausdorff axiom.

3. Differentiable Maps

In this book the words differentiable and smooth will be used to mean
infinitely differentiable (C'™).

DEFINITION 3.1. Let M and N be two differentiable manifolds of dimen-
sion m and n, respectively. A map f : M — N is said to be differentiable
(or smooth, or C*) at a point p € M if there exists a parametrization
(U,9) of M at p (i.e. such that p € p(U)) and a parametrization (V,) of
N at f(p) for which f(p(U)) C ¥(V) and the map

fi=9¢lofop:UCR" 5 R

is differentiable at ¢ (p).
The map f is said to be differentiable on an open subset of M if it is
differentiable at every point of this set.

As coordinate changes are smooth, this definition is independent of the
parametrizations chosen at f(p) and p. The map f =9 lofoyp:U C
R™ — R" is called a local representation of f and is the expression of f
on the local coordinates defined by ¢ and . The set of all smooth functions
f: M — N is denoted C*°(M,N), and we will write simply C*°(M) for
C*(M,R).

Clearly, a differentiable map f : M — N between two manifolds is
continuous. Moreover, it is called a diffeomorphism if it is bijective and
its inverse f~' : N — M is also differentiable. The differentiable manifolds
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M N

}%
)-

F1GURE 10. Local representation of a map between manifolds.

M and N will be considered the same if they are diffeomorphic, i.e. if
there exists a diffeomorphism f : M — N. A map f is called a local
diffeomorphism at a point p € M if there are neighborhoods V' of p and
W of f(p) such that f|y : V — W is a diffeomorphism.

For a long time it was thought that, up to a diffeomorphism, there was
only one differentiable structure for each topological manifold (note that
the two different differentiable structures in Exercises 2.5.4 and 3.2.6 are
diffeomorphic). However, in 1956, Milnor (see [Mil56a]) presented examples
of manifolds that were homeomorphic but not diffeomorphic to S”. Later,
Milnor and Kervaire (see [Mil59], [KM63]) showed that more spheres of
dimension greater than 7 admitted several differentiable structures. For
instance, S'? has 73 distinct smooth structures and S3!' has 16,931, 177.
More recently, in 1982 and 1983, Freedman (see [Fre82]) and Gompf (see
[Gom83]) constructed examples of non-standard differentiable structures
on R*.

EXERCISES 3.2.

(1) Prove that Definition 3.1 does not depend on the choice of parametriza-
tions.

(2) Show that a differentiable map f : M — N between two smooth
manifolds is continuous.

(3) Show thatif f : M1 — My and g : My — M3 are differentiable maps
between smooth manifolds M7, My and M3, then go f : M7 — Ms
is also differentiable.

(4) Show that the antipodal map f : S — S, defined by f(z) = —=,
is differentiable.

(5) Using the stereographic projection from the north pole my : S? \
{N} — R? and identifying R? with the complex plane C, we can
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identify S? with CU{oo}, where cc is the so-called point at infin-
ity. A Mobius transformation is a map f : CU{occ} — CU{o0}
of the form +h
az

f(Z) - cz + da
where a, b, ¢, d € C satisfy ad — bc # 0 and one should operate with
oo as usual. Show that any Mobius transformation f, seen as a
map f : §2 — 52, is a diffeomorphism. (Hint: Start by showing that any

Mobius transformation is a composition of transformations of the form f(z) = % and
f(z) =az + b).

(6) Consider again the two atlases on R from Example 2.3.2 and Exer-
cise 2.5.4, {(R, 1)} and {(R, ¢2)}, where pi(z) = z and p2(z) =
z3. Show that:

(a) the identity map i : (R, 1) — (R, ¢2) is not a diffeomorphism;

(b) the map f : (R, 1) = (R, ) defined by f(z) = 23 is a dif-
feomorphism (implying that although these two atlases define
different differentiable structures, they are diffeomorphic).

4. Tangent Space

Recall from elementary vector calculus that a vector v € R? is said
to be tangent to a surface S C R? at a point p € S if there exists a
differentiable curve ¢ : (—¢,e) = S C R? such that ¢(0) = p and ¢(0) = v
(cf. Exercise 2.5.5). The set T),S of all these vectors is a vector space of
dimension 2, called the tangent space to S at p, and can be identified with
the plane in R? wich is tangent to S at p.

Y

FIGURE 11. Tangent vector to a surface.
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We would like to generalize this to an abstract n-dimensional manifold
M; however, to do so, we must first give meaning to ¢(0) for a curve c :
(—e,e) = M. The idea will be the following: let us consider a smooth curve
c: (—¢e,e) = R, with ¢(0) = p. Then c(t) = (z'(t),...,2"(t)), and its
velocity vector at ¢ = 0 is the vector v € R" given by

v = ¢(0) = (4'(0),...,i"(0)).
For any function f : R* — R, differentiable on a neighborhood of p, we can
compute its directional derivative along v by taking its “restriction to ¢”,
given by (f oc)(t) = f (z'(t),...,z"(t)), and taking its derivative at t = 0:

— of . da'
AL

(0)

Ozt
i—1

- (gm) (%)p) (7).

This directional derivative along v can be viewed as an operator defined on
the set of functions differentiable at p. It is this new interpretation of ¢(0)
that will be used to define tangent spaces for manifolds.

DEFINITION 4.1. Let ¢ : (—e,e) — M be a differentiable curve on a
smooth manifold M. Consider the set C*®(p) of all functions f : M — R
that are differentiable at c¢(0) = p (i.e., C* on a neighborhood of p). The
tangent vector to the curve c at p is the operator ¢(0) : C®(p) —» R
given by
- d(f oc)
0)(7) = 129 ).
A tangent vector to M at p is a tangent vector to some differentiable curve
c:(—e,e) = M with ¢(0) = p. The tangent space at p is then the space
T,M of all tangent vectors at p.

Choosing a parametrization ¢ : U C R* — M around p, the curve c is
given in local coordinates by the curve in U

é(t) == (90_1 o c) t) = (' (t),...,2"(t)),

and
f ¢
oc ——
q) = 2= oo o0| =
[t=0
- G (@0 2m) | =3 oo -
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Hence we can write
o 0
: 0 - ' 0 =
{0 =350 (1) .
=1 p
where (%)p denotes the operator defined by the vector tangent to the curve
¢; at p given in local coordinates by
éG(t) = (a!,..., e et 41,0 L 2™,
with (z!,...,z") = ¢ 1(p).
EXAMPLE 4.2. The map ¢ : (0,7) x (—m,m) — S? given by
(0, p) = (sinf cos p, sin O sin @, cos 6)

parametrizes a neighborhood of the point (1,0,0) = (%, O). Consequently,

(%)(1,0,0) = ¢9(0) and (%)(1,0,0) = ¢4,(0), where

co(t) = (g —I—t,O) = (cost, 0, —sint);

co(t) =9 (g,t) = (cost,sint,0).

Note that, in the notation above,
tot) = (5+,0) and &) = (5,1).
2 2
; ; 3 9 9
Moreover, since ¢g and ¢, are curves in R, (W)(l,o,o) and (%)(1’0,0) can
be identified with the vectors (0,0, —1) and (0, 1,0).

PROPOSITION 4.3. The tangent space to M at p is an n-dimensional
vector space.

PRroOOF. Consider a parametrization ¢ : U C R* — M around p and
take the vector space (of derivations) generated by the operators (

0 0
Dp = Span{(ﬁ)p,..., (%)p}

It is easy to show (cf. Exercise 4.9.1) that these operators are linearly
independent. Moreover, each tangent vector to M at p can be represented
by a linear combination of these operators, so the tangent space T,M is a
subset of D,. We will now see that D, C T,M. Let v € Dy; then v can be

written as
" ./ 0
7
U_Zv (axi)p'

i=1
If we consider the curve ¢ : (—¢,e) — M, defined by

%)p’

c(t) = p(z! +olt, ... 2™ +o"t)



18 1. DIFFERENTIABLE MANIFOLDS

(where (z!,...,2") = ¢~ !(p)), then

ét) = (' +o't,... 2" + ™)
and so #*(0) = v*, implying that ¢(0) = v. Therefore v € T, M. O

REMARK 4.4.

(1) The basis {(%)p " _, determined by the chosen parametrization
around p is called the associated basis to that parametrization.

(2) Note that the definition of tangent space at p only uses functions
that are differentiable on a neighborhood of p. Hence, if U is an
open set of M containing p, the tangent space T,U is naturally
identified with T}, M.

If we consider the disjoint union of all tangent spaces T, M at all points
of M, we obtain the space

T™ = | T,M = {veT,M|pe M},
pEM

which admits a differentiable structure naturally determined by the one on
M (cf. Exercise 4.9.9). With this differentiable structure, this space is called
the tangent bundle. Note that there is a natural projection 7 : TM — M
which takes v € T, M to p (cf. Section 10.3).

Now that we have defined the tangent space, we can define the deriv-
ative at a point p of a differentiable map f : M — N between smooth
manifolds. We want this derivative to be a linear transformation

(df)p : TpM — Tf(p)N

of the corresponding tangent spaces, to be the usual derivative (Jacobian)
of f when M and N are Euclidean spaces, and to satisfy the chain rule.

DEFINITION 4.5. Let f : M — N be a differentiable map between smooth
manifolds. For p € M, the derivative of f at p is the map

(df)p : TpM — Tf(p)N
d(foc)
v g O
where ¢ : (—e,e) = M is a curve satisfying c¢(0) = p and ¢(0) = v.
PROPOSITION 4.6. The map (df)p : T,M — T N defined above is a
linear transformation that does not depend on the choice of the curve c.

PRrROOF. Let (U,¢) and (V,%) be two parametrizations around p and
f(p) such that f(p(U)) C 9(V) (cf. Figure 12). Consider a vector v € T, M
and a curve ¢ : (—e,e) — M such that ¢(0) = p and ¢(0) = v. If, in local
coordinates, the curve c is given by

&(t) = (¢~ o o)(t) = (2 (1), .., a™(1)),
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FIGURE 12

and the curve v := foc: (—e,&) = N is given by
)=o) @) = (¥ ofoyp) (@' (®),...,a™ (1))
= (y'@®),-..,y" (@),
then (0) is the tangent vector in Ty, )N given by
: _ - i i(,1 m i
0 = YL, o), (57)

i=1
n

- B{Er0 (o)),
5 (oo} (),

where the v* are the components of v in the basis associated to (U, ). Hence
4(0) does not depend on the choice of ¢, as long as ¢(0) = v. Moreover, the
components of w = (df),(v) in the basis associated to (V, ) are
n .
N
ozd "’

where (%) is an n X m matrix (the Jacobian matrix of the local repre-

sentation of f at ¢~!(p)). Therefore, (df), : TyM — Ty N is the linear
transformation which, on the basis associated to the parametrizations ¢ and
1), is represented by this matrix. O

REMARK 4.7. The derivative (df), is sometimes called differential of

f at p. Several other notations are often used for df, as for example f,, D f
and f’.
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ExXAMPLE 4.8. Let ¢ : U C R* — M be a parametrization around a
point p € M. We can view ¢ as a differentiable map between two smooth
manifolds and we can compute its derivative at z = ¢~!(p)

(dp)g : TzU — T, M.
For v € T, U =2 R", the i-th component of (dy),(v) is

n .
oz’

i
-

c— QxJ
Jj=1

J—u

(note that (g—g) is the identity matrix). Hence, (dg),(v) is the vector in

T, M which, in the basis {( a‘Zi)p} associated to the parametrization ¢, is

represented by v.

Given a differentiable map f : M — N we can also define a global
derivative df (also called push-forward and denoted f,) between the cor-
responding tangent bundles:

df :TM — TN
TpM S2U (df)p(’l)) € Tf(p)N.

EXERCISES 4.9.
(1) Show that the operators (azi

(2) Let M be a smooth manifold, p a point in M and v a vector tangent
to M at p. If; for two basis associated to different parametriza-
tions around p, v can be written as v = .1, a*(:%;), and v =

i ozt
Yoy b’(a%l)p, show that

)p are linearly independent.

nayji
a .

bi = :
— ozt

(3) Show that Definition 4.1 agrees with the definition of tangent space
to a surface from elementary vector calculus.

(4) Let M be an n-dimensional differentiable manifold and p € M.
Show that the following sets can be canonically identified with
TpM (and therefore constitute alternative definitions of the tan-
gent space):

(a) Cp/ ~, where C, is the set of differentiable curves c: I C R —
M such that ¢(0) = p and ~ is the equivalence relation defined
by

d d

1~ e (e oer)(0) = (9 00)(0)

for some parametrization ¢ : U C R* — M of a neighborhood
of p.
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(b) {(,va) : p € pa(Uys) and vq € R*}/ ~, where A = {(Uq, o)}
is the differentiable structure and ~ is the equivalence relation
defined by

(a,v0) ~ (B, vp) & v = d(‘PEl ° (Pa)(pgl(p)(va)'

(5) (Chain Rule) Let f: M — N and g : N — P be two differentiable
maps. Then gof : M — P is also differentiable (cf. Exercise 3.2.3).
Show that for p € M,

(d(g o f))p = (dg) (p) © (df )p-

(6) Let ¢ : (0,4+00) x (0,7) x (0,27) — R3 be the parametrization of
U=R\{(z,0,2) | z > 0 and z € R} by spherical coordinates,

(1,0, ¢) = (rsinf cos , rsinfsin ¢, r cos 9).

Determine the Cartesian components of %, % and % at each point
of U.

(7) Compute the derivative (df)n of the antipodal map f : S™ — S™
at the north pole N.

(8) Let W be a coordinate neighborhood on M, let z : W — R™ be a
coordinate chart and consider a smooth function f : M — R. Show
that for p € W, the derivative (df), is given by

of of
@)y = 527 (@) (da)y + -+ 2 ((p)) (da")p,

where f:= foz !
(9) (Tangent bundle) Let {(Uy, @q)} be a differentiable structure on
M and consider the maps

DUy xR* - TM
(z,v) = (dpa)z(v) € Ty (x) M.

Show that the family {(U, xR, ®,)} defines a differentiable struc-
ture for TM. Conclude that, with this differentiable structure, T M
is a smooth manifold of dimension 2 x dim M.
(10) Let f : M — N be a differentiable map between smooth manifolds.
Show that:
(a) df : TM — TN is also differentiable;
(b) if f: M — M is the identity map then df : TM — TM is also
the identity;
(c) if f is a diffeomorphism then df : TM — T'N is also a diffeo-
morphism and (df)~! = (df ~1).
(11) Let M;, M; be two differentiable manifolds and

7T1:M1XM2 — Ml
71'2:M1XM2 — M2

the corresponding canonical projections.
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(a) Show that dm; x dmy is a diffeomorphism between the tangent
bundle T'(M; x Ms) and the product manifold TM; x T My.

(b) Show that if N is a smooth manifold and f; : N — M; (i = 1,2)
are differentiable maps, then d(f1 x f2) = df1 X dfs.

5. Immersions and Embeddings

In this section we will study the local behavior of differentiable maps
f: M — N between smooth manifolds. We have already seen that, when
dim M = dim N and f transforms a neighborhood of a point p € M diffeo-
morphically onto a neighborhood of the point f(p), f is said to be a local
diffeomorphism at p. In this case, its derivative (df), : TyM — Ty, N must
necessarily be an isomorphism (cf. Exercise 4.9.10c). Conversely, if (df), is
an isomorphism then the Inverse Function Theorem implies that f is a local
diffeomorphism. Therefore, to check whether f maps a neighborhood of p
diffeomorphically onto a neighborhood of f(p), one just has to check that
the determinant of the local representation of (df), is nonzero.

When dim M < dim N, the best we can hope for is that (df), : T,M —
Tf(p) N is injective. The map f is then called an immersion at p. If f is an
immersion at every point in M, it is called an immersion. Locally, every
immersion is (up to a diffeomorphism) the canonical immersion of R™ into
R" (m < n) where a point (z',...,2™) is mapped to (z',...,z™,0,...,0).
This result is known as the Local Immersion Theorem :

THEOREM 5.1. Let f : M — N be an immersion at p € M. Then
there ezist local coordinates around p and f(p) on which f is the canonical
1Mmersion.

PRrOOF. Let (U, ) and (V,%) be parametrizations around p and ¢ =
f(p). Let us assume for simplicity that ¢(0) = p and ¢( ) = q. Since f
is an immersion, (df)o : R™ — R" is injective (where f := ¢yl o fo ¢ is
the expression of f in local coordinates). Hence we can assume (changing
basis on R™ if necessary) that this linear transformation is represented by
the n X m matrix

where I« is the m x m identity matrix. Therefore, the map
F:UxR™ — R"
(z1,...,z") flz,...,2™) +(0,...,0,z™F ... 2™,

has derivative ( dF) : R" — R" given by the matrix

Ixm 0
- - = - - = = Inxn-
I(n—m)x(n—m)
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Applying the Inverse Function Theorem, we conclude that F' is a local dif-
feomorphism at 0. This implies that 1o F' is also a local diffeomorphism at 0,
and so ¢ o F' is another parametrization of N around ¢g. Denoting the canon-
ical immersion of R™ into R" by j, we have f =Foj& f=v%o0Fojop™l,
implying that the following diagram commutes:

M>e0) L @oFR) (V)N

7T TYoF

R ST -y V CR®

(for possibly smaller open sets UcUandV C V). Hence, on these new
coordinates, f is the canonical immersion. O

REMARK 5.2. As a consequence of the Local Immersion Theorem, any
immersion at a point p € M is an immersion on a neighborhood of p.

When an immersion f : M — N is also a homeomorphism onto its
image f(M) C N with its subspace topology, it is called an embedding.
We leave as an exercise to show that the Local Immersion Theorem implies
that, locally, any immersion is an embedding.

EXAMPLE 5.3.

(1) The map f : R — R? given by f(t) = (t2,¢3) is not an immersion
att=0.

(2) The map f : R — R? defined by f(t) = (cost,sin2t) is an immer-
sion but it is not an embedding (it is not injective).

(3) Let g : R — R be the function g(t) = 2arctan(t) + /2. If f is the
map from (2), h := f o g is an injective immersion which is not an
embedding. Indeed, the set S = h(R) in Figure 13 is not the image
of an embedding of R into R%2. The arrows in the figure mean that
the line approaches itself arbitrarily close at the origin but never
self-intersects. If we consider the usual topologies on R and on R?,
the image of an open set in R containing 0 is not an open set in
h(R) for the subspace topology, and so h~! is not continuous.

(4) The map f : R — R? given by f(t) = (e’ cost, e’ sint) is an embed-
ding of R into R?.

If M C N and the inclusion map 7 : M — N is an embedding, M is said
to be a submanifold of N. Therefore, an embedding f : M — N maps
M diffeomorphically onto a submanifold of N. Charts on f(M) are just
restrictions of appropriately chosen charts on N to f(M) (cf. Exercise 5.9.3).

A differentiable map f : M — N for which (df), is surjective is called a
submersion at p. Note that, in this case, we necessarily have m > n. If
f is a submersion at every point in M it is called a submersion. Locally,
every submersion is the standard projection of R™ onto the first n factors:
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=
q

FIGURE 13

\j

THEOREM 5.4. Let f : M — N be a submersion at p € M. Then
there exist local coordinates around p and f(p) for which f is the standard
projection.

PROOF. Let us consider parametrizations (U, ¢) and (V%) around p
and f(p), such that f(p(U)) C ¥(V), ¢(0) = p and (0) = f(p). In
local coordinates f is given by f := 4~ o f o ¢ and, as (df ), is surjective,
(df)o : R™ — R™ is a surjective linear transformation. By a linear change
of coordinates on R" we may assume that (df), = ( Inxn | *). Asin
the proof of the Local Immersion Theorem, we will use an auxiliary map F
that will allow us to use the Inverse Function Theorem:

F:UcCcR* — R™

(z},...,a™) (f(xl,...,xm),x"+1,...,xm) .
Its derivative at 0 is the linear map given by
Lixn | *
(dF)y= - —— + ———

0 | I(m—n)x(m—n)
The Inverse Function Theorem then implies that F is a local diffeomorphism
at 0, meaning that it maps some open neighborhood of this point U C U,
diffeomorphically onto an open set W of R™ containing 0. If 7; : R — R?
is the standard projection onto the first n factors, we have 71 o F' = f, and
hence
foFl=m W R

Therefore, replacing ¢ by ¢ := ¢ o F~1, we obtain coordinates for which f
is the standard projection w1 onto the first n factors:

gl ofog=ylofopoF T = foF Tt =m.
O

REMARK 5.5. This result is often stated together with the Local Immer-
sion Theorem in what is known as the Rank Theorem.
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Let f : M — N be a differentiable map between smooth manifolds of
dimensions m and n, respectively. A point ¢ € N is called a regular value
of f if, for every p € f~1(q), (df), is surjective. If p € M is such that (df),
is not surjective it is called a critical point of f. The corresponding value
f(p) is called a critical value. Note that if there is a regular value of f
then m > n.

THEOREM 5.6. Let ¢ € N be a regular value of f : M — N and assume
that the level set L= f 1(q) = {p € M : f(p) = q} is nonempty. Then L is
a submanifold of M and T,L = ker(df ), C T,M for allp € L.

PROOF. For each point p € f~!(g), we choose parametrizations (U, @)
and (V, ) around p and ¢ for which f is the standard projection 7; onto the
first n factors, ¢(0) = p and 9(0) = ¢ (cf. Theorem 5.4). We then construct
a differentiable structure for L = f~!(q) in the following way: take the sets
U from each of these parametrizations of M; since f o ¢ = 1) o w1, we have

p tof g =m oy (g) =71 1(0)
={(0,...,0,z" " ..., 2™) | 2", ... 2™ € R},
and so
U:=¢p Y (LNnp0)={t...,s™) eU:zt=---=2" =0}
hence, taking my : R™ — R™~" the standard projection onto the last m —n
factors and 7 : R™™" — R™ the immersion given by
jlzt, .., 2™ ) =(0,...,0,z, ..., 2™ ™),

the family {m2(U), ¢ o j} is an atlas for L.
Moreover, the inclusion map ¢ : L - M is an embedding. In fact, if A
is an open set in L contained in a coordinate neighborhood then

A=¢(R" x (poj) H(A))NU)NL
is an open set for the subspace topology on L.

We will now show that T},L = ker (df),. For that, for each v € T, L, we
consider a curve ¢ on L such that ¢(0) = p and ¢(0) = v. Then (foc)(t) = ¢
for every ¢ and so

d .

7 (20 (0) =0 (df),&(0) = (df)pv =0,
implying that v € ker (df)p. As dimT,L = dim (ker (df),) = m — n, the
result follows. O

Given a differentiable manifold, we can ask ourselves if it can be em-
bedded into R¥ for some K € N. The following theorem, which was proved
by Whitney in [Whi44a]|, [Whi44b] answers this question and is known as
the Whitney Embedding Theorem.

THEOREM 5.7. (Whitney) Any differentiable manifold M of dimension
n can be embedded in R2" (and, provided that n > 1, immersed in R2"~1).
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REMARK 5.8. By the Whitney Embedding Theorem, any smooth man-
ifold M™ is diffeomorphic to a submanifold of R?".

EXERCISES 5.9.

(1) Show that any parametrization ¢ : U C R™ — M is an embedding
of U into M.

(2) Show that, locally, any immersion is an embedding, i.e., if f : M —
N is an immersion and p € M, then there is an open set W C M
containing p such that f|, is an embedding.

(3) Let N be a manifold and M C N. Show that M is a submanifold
of N of dimension m if and only if, for each p € M, there is a
coordinate system z : W — R™ around p on N, for which M N W
is defined by the equations z™t! = ... = z" = 0.

(4) Consider the sphere

S ={z e R (") +--- (z")? =1},
Show that S™ is an n-dimensional submanifold of R*t! and
7,5 = {v € R* : (5,0) = 0},

where (-,-) is the usual inner product on R”.

(5) Let f: M — N be a differentiable map between smooth manifolds
and let V.C M, W C N be submanifolds. If f(V) C W, show that
f:V — W is also a differentiable map.

(6) Let f : M — N be an injective immersion. Show that if M is
compact then f(M) is a submanifold of N.

6. Vector Fields

A vector field on a smooth manifold M is a map that, to each point
p € M, assigns a vector tangent to M at p:

X:M —» TM
p — X(p):=X,eT,M.
The vector field is said to be differentiable if this map is differentiable.

The set of all differentiable vector fields on M is denoted by X(M). Locally
we have:

PROPOSITION 6.1. Let W be a coordinate neighborhood on M (that is,
W = @(U) for some parametrization ¢ : U — M), and let x := ™' : W —
R™ be the corresponding coordinate chart. Then, a map X : W —TW is a
differentiable vector field on W if and only if,

Xp = X*(p) (%)p +---+ X"(p) (3%">,,

for some differentiable functions X' : W — R (i =1,...,n).
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PROOF. Let us consider the coordinate chart z = (z!,...,2"). As X, €
TpyM, we have

%, =30 (o1 ) -+ 00 (7).

for some functions X* : W — R. In the local chart associated with the
parametrization (U x R™, dy) of T M, the local representation of the map X
is

Therefore X is differentiable if and only if the functions Xi:U - R are
differentiable, i.e., if and only if the functions X* : W — R are differentiable.
O

A vector field X is differentiable if and only if, given any differentiable
function f: M — R, the function

X-f:M - R
p = Xp'f::Xp(f)

is also differentiable (cf. Exercise 6.10.1). This function X - f is called
directional derivative of f along X. Thus one can view X € X(M) as a
linear operator X : C*°(M) — C*°(M).

Let us now take two vector fields X,Y € X(M). In general, the operators
X oY, Y oX will involve derivatives of order two, and will not correspond to

vector fields. However, the commutator X oY — Y o X does define a vector
field:

PROPOSITION 6.2. Given two differentiable vector fields X, Y € X(M)

on a smooth manifold M, there exists a unique vector field Z € X(M) such
that

Z - f=(XoY-YoX) f
for every differentiable function f € C*°(M).

PROOF. Considering a coordinate chart x : W C M — R", we have

" 9 " 9
XxX=) Xx— y=)vi—.
ZZ_; oz’ and ; ozt
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Then,
(XoY—-YoX)-f

S () (5

n

Ozt

z zaf z82f j zan
= (XYW v xH=L >+Z(X1Yf—wx.7

i=1 ij=1

S 0

- (X-Yi-Y-X :

(> Vo) 5
i=1

and so, at each point p € W, one has (X oY —Y o X) (f)(p) = Z,- f, where

=3 (X ¥ -v.x) (aiz)

=1

Hence, the operator X oY —Y o X is a derivation at each point, and conse-
quently defines a vector field, which is differentiable, as (X oY —Y 0o X) - f
is smooth for any smooth function f : M — R. O

The vector field Z is called the Lie bracket of X and Y, and is denoted

by [X,Y]. In local coordinates it is given by

- 0
1 X,)Y] = X-Yi-Y. X
) =3 )

We say that two vector fields X,Y € X(M) commute if [X,Y] = 0.
The Lie bracket satisfies the following properties (whose proof we leave as
an exercise):

PROPOSITION 6.3. Given X,Y,Z € X(M), we have:

(i) Bilinearity: for any o, € R,

[aX + Y, 2] = olX,Z]+plY, Z]

[X,aY +BZ] = ofX,Y]+B[X, Z];
(i) Antisymmetry:

[Xa Y] = _[Y’X];
(7ii) Jacobi identity:
[(X,Y],Z] +[[Y, Z], X] + [[Z, X],Y] = 0;
(iv) Leibniz Rule: For any f,g € C®(M),
[fX,9Y]=fg[X, Y]+ f(X-9)Y —g(Y )X

The space X(M) of vector fields on M is a particular case of a Lie
algebra:

0zI 0zt O0xI Ozt

)
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DEFINITION 6.4. A wvector space V' equipped with an anti-symmetric bi-
linear map [-,-] : V. XV — V (called a Lie bracket) satisfying the Jacobi
identity is called a Lie algebra. A linear map F : V — W between Lie alge-
bras is called a Lie algebra homomorphism if F'([v1,v3]) = [F(v1), F(v2)]
for all vy,vy € V. If F is bijective then it is called a Lie algebra isomor-
phism.

Given a vector field X : M — TM and a diffeomorphism f: M — N
between smooth manifolds, we can naturally define a vector field on N using
the derivative of f. This vector field, the push-forward of X, is denoted
by f«X and is defined in the following way: given p € M,

(£+X) (p) == (df )pXp.
This makes the following diagram commute:

qf,

T™ — TN
Xt tAX
M LN

Let us now turn to the definition of integral curve. If X : M — TM is a
smooth vector field, an integral curve of X is a smooth curve ¢: (—¢,¢) —
M such that é(t) = X,y. If this curve has initial value ¢(0) = p, we denote
it by ¢, and we say that c, is an integral curve of X at p.

Considering a parametrization ¢ : U C R* — M on M, the curve c
is locally given by ¢ := ¢ ! oc. Applying (d¢*1)c(t) to both sides of the
equation defining ¢, we obtain

&(t) = X (e(t),

where X = dp~' o X oy is the local representation of X with respect to the
parametrizations (U, ¢) and (TU,dyp) on M and on T'M. This equation is
just a system of n ordinary differential equations:

dc'
(2) o
The (local) existence and uniqueness of integral curves is then determined
by the Picard-Lindel6f Theorem of ordinary differential equations (see for
example [Arn92]), and we have

THEOREM 6.5. Let M be a smooth manifold and X : M — TM a
smooth vector field on M. Given p € M, there exists a neighborhood W of
p and an integral curve ¢, : I — W of X at p (that is, éy(t) = X, () for
t €I =(—¢,¢) and c,(0) = p). Moreover this curve is unique, meaning that
any two such curves agree on the intersection of their domains.

(t) = X(&(t), fori=1,...,n.

This solution of (2) also depends smoothly on the initial point p (see
[Arn92)):

THEOREM 6.6. Let X € X(M). For each p € M there is a neighborhood
W of p, an interval I = (—¢,e) and a mapping F : W x I — M such that:
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(i) for a fized ¢ € W the curve F(q,t), t € I, is an integral curve of
X at q, that is, F(q,0) = q and %—l:(q, t) = XF(gt);
(7i) the map F is differentiable.

The map F : W x I — M defined above is called the local flow of X
at p. Let us now fix £ € I and consider the map

YW = M
q = c(t) =F(g,1).
defined by the local flow. The following proposition then holds:

PROPOSITION 6.7. The maps i : W — M above are local diffeomor-
phisms and satisfy

(3) Pt 0 s(q) = Prr5(a),
whenever t,s,t+ s € I and s(q) € W.

Proor. First we note that
de,
E(t) = X, (t)
and so d
E(Cq(t +8)) = Xey(t+5)-
'Hence, as cq(t + s)|i=0 = cq.(s), the curve c, (s (t) is just ¢4(t + s), that
i8, Yiys(q) = ¥u(¥s(q)). Taking s = —t, we obtain 9y 0 9h_(q) = to(q) =
¢q(0) = ¢, and so the map 1_; is the inverse of 9, which is consequently a
local diffeomorphism (it maps W diffeomorphically onto its image). ]

A collection of diffeomorphisms {t¢y: M — M}yc; (where I = (—¢,¢))
satisfying (3) is called a local 1-parameter group of diffeomorphisms.
When the interval of definition I of ¢4 is R, this local 1-parameter group
of diffeomorphisms becomes a group of diffeomorphisms. A vector field
X whose local flow defines a 1-parameter group of diffeomorphisms is said
to be complete. This happens for instance when the vector field X has
compact support:

THEOREM 6.8. If X € X(M) is a smooth vector field with compact sup-
port then it is complete.

PRrROOF. For each p € M we can take a neighborhood W and an interval
I = (—¢,¢) such that the local flow of X at p, F(q,t) = ¢4(t), is defined on
W x 1. We can therefore cover the support of X (which is compact) by a finite
number of such neighborhoods W}, and consider an interval Iy = (—eg, &¢)
contained in the intersection of the corresponding intervals I. If ¢ is not
on supp(X), then X, = 0 and so ¢4(t) is trivially defined on I, and we
can extend the map F to M x I;. Moreover, condition (3) is true for each
—e0/2 < s,t < g9/2, and we can again extend the map F, this time to
M x R. In fact, for any ¢ € R, we can write ¢t = keg/2 + s, where k € Z and
0 < s < £9/2, and define F(q,t) := F¥(F(q, s),£0/2). O
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COROLLARY 6.9. If M is compact then all smooth vector fields on M
are complete.

EXERCISES 6.10.
(1) Let X : M — TM be a differentiable vector field on M and, for

a smooth function f : M — R, consider its directional derivative
along X defined by

X-f:M — R
p = X,-f

Show that:
(a) (X - f)(p) = (df)pXp;
(b) the vector field X is smooth if and only if X - f is a differentiable
function for any smooth function f : M — R;
(c) the directional derivative satisfies the following properties: for
fig € C®°(M) and a € R,
() X-(f+g)=X f+X g
(i) X - (af) = aX - f;
(i) X - (fg) = fX g +9X - f.
(2) Prove Proposition 6.3.
(3) Show that (R3, x) is a Lie algebra, where x is the cross product

on R3.
(4) Let {X1, X2, X3} € X(IR?) be the vector fields defined by
0 0 0 0 0 0
X =y2 % x,=.2_ ;9 x,=,2_,9
1= Y%, zay’ 2= %0 " Yoz 3 way Yor

where (z,y, z) are the usual Cartesian coordinates.

(a) Compute the Lie brackets [X;, X;] for ¢,j = 1,2, 3.

(b) Show that span{Xj, X2, X3} is a Lie subalgebra of X(RR?), iso-
morphic to (R?, x).

(c) Compute the flows 11 4,19+, 93 of X1, X9, X3.

(d) Show that ‘lpz,% @) wj,% 75 wj,% e} ’Lpz,% for ¢ 7£ j

(5) Prove that if X1, Xy € X(M) are complete vector fields whose flows
11,19 commute (i.e., "bl,t o 1/1273 = ’lﬂg’s o ¢1,t for all s,% € R), then
(X1, Xs] = 0.

(6) Let M be a differentiable manifold, N C M a submanifold and
X,Y € X(M) vector fields tangent to N, i.e., such that X,,Y, €
T,N for all p € N. Show that [X,Y] is also tangent to N.

(7) Let f : M — N be a smooth map between manifolds. Two vector
fields X € X(M) and Y € X(N) are said to be f-related (and we
write Y = f,X) if, for each ¢ € N and p € f~'(¢) C M, we have
(df)pXp =Y,. Show that:

(a) The vector field X is f-related to Y if and only if, for any
differentiable function g defined on some open subset W of N,
(Y-g)of =X-(go f) on the inverse image f~1(W) of the
domain of g;
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(b) For differentiable maps f : M — N and g : N — P between
smooth manifolds and vector fields X € X(M),Y € X(N) and
Z € X(P), if X is f-related to Y and Y is g-related to Z, then
X is (g o f)-related to Z.

(8) Let f : M — N be a diffeomorphism between smooth manifolds.
Show that f.[X,Y] = [f.X, f.Y] for every X,Y € X(M). There-
fore, f. induces a Lie algebra isomorphism between X(M) and
X(N).

(9) Let f: M — N be a differentiable map between smooth manifolds
and consider two vector fields X € X(M) and Y € X(N). Show
that:

(a) if the vector field Y is f-related to X then any integral curve
of X is mapped by f into an integral curve of Y

(b) the vector field Y is f-related to X if and only if the local flows
Fx and Fy satisfy f(Fx(p,t)) = Fy(f(p),t) for all (¢,p) for
which both sides are defined.

(10) (Lie derivative of a function) Given a vector field X € X(M), we
define the Lie derivative of a smooth function f : M — R in the
direction of X as

LXf(p) = %(f o ¢t)|t=0(p)’

where ¢y = F(-,t), for F the local flow of X at p. Show that
Lxf =X - f, meaning that the Lie derivative of f in the direction
of X is just the directional derivative of f along X.

(11) (Lie derivative of a vector field) For two vector fields X,Y € X(M)
we define the Lie derivative of Y in the direction of X as,

d
LxY := E((Qp—t)*y)\t:m

where {9 }4cr is the local flow of X.
(a) Show that:
(i) LxY =[X,Y];
(i) Lx[V,Z] = [LxY, Z] + [V, Lx Z], for X,Y,Z € X(M);
(lll) LX e} LY - Ly o LX = L[X,Y]'
(b) Using only (i) and (4i) above, prove that [-, -] satisfies the Ja-
cobi identity.

7. Lie Groups

A Lie group G is a smooth manifold which is at the same time a group,
in such a way that the group operations

GxG — G dG—)G

(z,y) +— zy an xr +— z1

are differentiable maps (where we consider the standard differentiable struc-
ture of the product on G x G).
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ExXAMPLE 7.1.

(1)
(2)

(R™,+) is trivially an abelian Lie group
The general linear group

GL(n,R) = {n x n invertible real matrices}

is the most basic example of a nontrivial Lie group. We have seen
in Example 2.3.4 that it is a smooth manifold of dimension n?.

Moreover, the group multiplication is just the restriction to
GL(n,R) x GL(n,R)

of the usual multiplication of n X n matrices, whose coordinate
functions are quadratic polynomials; the inversion is just the re-
striction to GL(n,R) of the usual inversion of nonsingular matrices
which, by Cramer’s rule, is a map with rational coordinate func-
tions with nonzero denominators (only the determinant appears on
the denominator).

The orthogonal group

O(n,R) = {A € Mpyyn | A'A =TI}

of orthogonal transformations of R" is also a Lie group. We can
show this by considering the map f : A — A'A from M,, ., = R’
to the space Spxn = Rz of symmetric n X n matrices. Its
derivative at a point A € O(n,R), (df)4, is a surjective map from
TaMpxn = Mpxn onto Ty(a)Snxn = Spxn- Indeed,

f(A+hB) - f(4)

(d)a(B) = lim

h—0 h
. (A+hB)t(A+hB) — AtA
= lim
h—0 h
= B'A+ A'B,

and any symmetric matrix S can be written as B'A+ A'B with B =
%(Afl)tS = %AS. In particular, the identity I is a regular value
of f and so, by Theorem 5.6, we have that O(n,R) = f~1(I) is a
submanifold of M,,x,, of dimension %n(n— 1). Moreover, it is also a
Lie group as the group multiplication and inversion are restrictions
of the same operations on GL(n,R) to O(n,R) (a submanifold) and
have values on O(n,R) (cf. Exercise 5.9.5).

The map f : GL(n,R) — R given by f(A) = det A is differentiable,

and the level set f~1(1) is
SL(n,R) = {A € Mpyn | det A = 1},

the special linear group. Again, the derivative of f is surjective
at a point A € GL(n,R), making SL(n,R) into a Lie group. Indeed,
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it is easy to see that
det (I +hB) —detl

(df)1(B) = I:-ILE)T%) 5 tr B
implying that
. det(A+hB)—det A
(df)a(B) = lim A
— lm (det A)det (I + hA™'B) —det A
h—0 h
(et A) lim det (I + hA1B) -1

h—0 h
= (det A) (df)1(A™'B) = (det A) tr(A™'B).

Since det (A) = 1, for any k € R, we can take the matrix B = %A
to obtain (df)4(B) = tr (%I) = k. Therefore, (df) 4 is surjective for
every A € SL(n,R), and so 1 is a regular value of f. Consequently,
SL(n,R) is a submanifold of GL(n,R). As in the preceding exam-
ple, the group multiplication and inversion are differentiable, and
so SL(n,R) is a Lie group.

The map A — det A is a differentiable map from O(n, R) to {—1,1},
and the level set f~1(1) is

SO(n,R) ={4A € O(n,R) : det A =1},

the special orthogonal group or the rotation group in R”,
which is then an open subset of O(n,R), and therefore a Lie group
of the same dimension.
We can also consider the space M, »,,(C) of complex n x n matri-
ces, and the space GL(n,C) of complex n x n invertible matrices.
This is a Lie group of real dimension 2n%. Moreover, similarly to
what was done above for O(n,R), we can take the group of unitary
transformations on C",

U(n) ={A € Muxn(C) : A*A =1},
where A* is the adjoint of A. This group is a submanifold of
Mupxn(C) = v ]R2"2, and a Lie group, called the unitary
group. This can be seen from the fact that I is a regular value of
the map f : A — A*A from M,,,,(C) to the space of selfadjoint
matrices. As any element of M, «,(C) can be uniquely written as
a sum of a selfadjoint with an anti-selfadjoint matrix, and the map
A — iA is an isomorphism from the space of selfadjoint matrices
to the space of anti-selfadjoint matrices, we conclude that these
two spaces have real dimension %dimR Mpsn(C) = n?. Hence,
dimU(n) = n2.
The special unitary group

SU(n)={Ae€U(n): det A =1},
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is also a Lie group now of dimension n? — 1 (note that A > det (A)
is now a differentiable map from U(n) to S!).

As a Lie group G is, by definition, a manifold, we can consider the
tangent space at one of its points. In particular, the tangent space at the
identity e is usually denoted by

g :=T.G.
For g € G, we have the maps
Ly:G — G d Ry:G — G
h o+ g-h h + h-g

which correspond to left multiplication and right multiplication.
A vector field on G is called left invariant if (L,),X = X for every
g € G, that is,

for every g, h € G. There is, of course, a vector space isomorphism between
g and the space of left invariant vector fields on G that, to each V € g,
assigns the vector field XV defined by

X, = (dLy).V,
for any g € G. This vector field is left invariant as
(dLg)n Xy = (dLg)n(dLp)eV = (d(Lg 0 Lp))eV = (dLgh)eV = X

Note that, given a left invariant vector field X, the corresponding element
of g is X.. As the space X, of left invariant vector fields is closed under the
Lie bracket of vector fields (because, from Exercise 6.10.8, (Lg).[X,Y] =
[(Lg)«X, (Lg)«Y]), it has a structure of Lie subalgebra of the Lie algebra of
vector fields (see Definition 6.4). Then, the isomorphism X7, = g determines
a Lie algebra structure on g. We call g the Lie algebra of the Lie group G.

EXAMPLE 7.2.

(1) If G = GL(n,R), then gl(n,R) = TtGL(n,R) = M, is the space
of n X n matrices with real coefficients, and the Lie bracket on
gl(n,R) is the commutator of matrices

[A,B] = AB — BA.

In fact, if A, B € gl(n,R) are two n X n matrices, the corresponding
left invariant vector fields are given by

0
A _ _ k _k
X, = (dLgh(A)—i%wzajw
8
X7 = (dLi(B) =} ot 5,
i N
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where g € GL(n,R) is a matrix with components Ixij . Then, the
ij-component of [X#, XP]  is given by X' - (XB)1 — XB . (X4)

and so,
A B l kik
XA XPYiGg) = (3 et t (Zw’ : ) )
I,m,n k
— 3 gt 0 3 ks
oxlm
l,m,n k

= Z mlnanméilékmbkj - Z xl”bnméilékmakj
kalvm,n k,l,m,n

— Zwin(anmbmj _ bnmamj)
m,n

= ) 2™™(AB — BA)"

(where 6;; = 1if ¢ = j and §;; = 0 if ¢ # j is the Kronecker
symbol). Making g = I, we obtain [4, B] = [X4,XP]; = AB —
BA. This will always be the case when G is a matrix group, that
is, when G is a subgroup of GL(n,R) for some n.

(2) If G = O(n,R), its Lie algebra is

o(n) = {A € L(R",R") : A"+ A =0}.

In fact, we have seen in Example 7.1.3 that O(n,R) = f~1(I) where
the identity I is a regular value of the map

f5Mn><n - Spxn
A — A'A.

Hence, o(n) = TrG = ker(df); = {A € Mpxn(R)| A + A = 0} is
the space of skew-symmetric matrices.
(3) If G = SO(n) ={A4 € O(n,R) : det A = 1}, then its Lie algebra is

s0(n,R) =T1SO(n,R) = T10(n,R) = o(n, R).
(4) Similarly to Example 7.2.2, the Lie algebra of U(n) is

the space of skew-hermitian matrices. To determine the Lie algebra
of SU(n), we see that SU(n) is the level set f~1(1), where f(A) =
det A, and so

su(n) = ker(df)r = {4 € u(n)| tr(4) = 0}.

Let us now consider the flow 9, of a left invariant vector field.
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PROPOSITION 7.3. Let F' be the local flow of a left invariant vector field
X at a point h € G. Then the map 1, defined by F (that is, ¥1(q) = F(q,t))
is such that Py = Ry, (). Moreover, the flow of X is globally defined for all
teR

PROOF. For g € G, Ry,(e)(9) = g - ¥1(e) = Ly(¢1(e))- Hence,
Ryo(e)(9) = Lg(to(e)) =g-e=g

and

& (Roo@) = 5 Eo(e) = @p)ago (G000

= (dLg)yy(e) (Xuu(e)) = Xgpu(e)

XRyyo)(9)

implying that Ry,)(g9) = cg(t) = i(g) is the integral curve of X at g.
Consequently, if 1;(e) is defined for ¢ € (—¢,¢), then 9(g) is defined for
t € (—¢,¢e) and g € G. Moreover, condition (3) in Section 6 is true for each
—e/2 < s,t < €/2 and we can extend the map F to G x R as before: for
any t € R, we write t = ke/2 + s where k € Z and 0 < s < €/2, and define
F(g,t) = Fk(F(g,s),€/2) :gF(e,s)Fk(e,e/Z). O

REMARK 7.4. A homomorphism F' : G; — G5 between Lie groups is
called a Lie group homomorphism if, besides being a group homomor-
phism, it is also a differentiable map. Therefore the integral curve ¢ — ;(e)
defines a group homomorphism between (R, +) and (G, -).

DEFINITION 7.5. The exponential map exp : g — G is the map that, to
each V € g, assigns the value 11 (e), where 1 is the flow of the left-invariant
vector field XV .

REMARK 7.6. If ¢,(t) is the integral curve of X at p and s € R, it is easy
to check that c,(st) is the integral curve of sX at p. On the other hand,
for V € g one has XV = sXV. Consequently, 1;(e) = cc(t) = co(t 1) =
exp (tV).

ExXAMPLE 7.7. If GG is a group of matrices, then for A € g,

(e o]
Ak
— LA _ -
expA=¢" = Z R
k=0
In fact, this series converges for any matrix A and the map ¢ — e“? satisfies

h0) = =1

— = A= A.
Ty = A=
Hence, h is the flow of X4 at the identity (that is, h(t) = 1:(e)), and so
expA = 9y(e) = el
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Let now G be any group and M be any set. We say that G acts on M
if there is a homomorphism % from G to the group of bijective mappings
from M to M, or, equivalently, writing

Y(9)(p) = A(g,p),

if there is a mapping A : G x M — M satisfying the following conditions:
(i) if e is the identity in G, then A(e,p) = p, Vp € M;
(ii) if g,h € G, then A(g, A(h,p)) = A(gh,p), Vp € M.

Usually we denote A(g,p) by g - p.

EXAMPLE 7.8.

(1) Let G be a group and H C G a subgroup. Then H acts on G by
left multiplication: A(h,g) =h-gfor he€ H, g € G.

(2) GL(n,R) acts on R* through A -z = Az for A € GL(n,R) and
z € R". The same is true for any subgroup G C GL(n,R).

For each p € M we can define the orbit of p as the set G-p:={g-p|
g € G}. If G-p = {p} then p is called a fixed point of G. If there is a point
p € M whose orbit is all of M (i.e. G-p = M), then the action is said to be
transitive. Note that when this happens, there is only one orbit and, for
every p,q € M with p # ¢, there is always an element of the group g € G
such that ¢ = g - p. In this case, M is called a homogeneous space of G.
The stabilizer (or isotropy subgroup) of a point p € M is the group

Gp={9€G:g-p=p}
The action is called free if all the stabilizers are trivial.
If G is a Lie group and M a smooth manifold, we say that the action
is smooth if the map A : G x M — M is differentiable. In this case, the
map p — ¢ - p is a diffeomorphism. Unless otherwise stated, we will always

assume the action of a Lie group on a differentiable manifold to be smooth.
A smooth action is said to be proper if the map

GxM — MxM

(9,p) = (9-p,p)

is proper (recall that a map is called proper if the preimage of any compact
set is compact).

REMARK 7.9. Note that a smooth action is proper if and only if, given
two convergent sequences {p,} and {gn -pn} in M, there exists a convergent
subsequence {g,, } in G. If G is compact this condition is always satisfied.

Under certain conditions the quotient space M /G is naturally a differ-
entiable manifold.

THEOREM 7.10. Let M be a differentiable manifold equipped with a free
proper action of a Lie group G. Then the orbit space M /G is naturally a
differentiable manifold of dimension equal to dim M — dim G.
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The proof of this theorem can be found in Section 10.4. The natural
differentiable structure on the quotient is obtained as follows: through every
point of M there exists a submanifold S of dimension dim M — dim G such
that [p] # [g] for all p,q € S. Parametrizations ¢ : U - M/G of M/G
are obtained from parametrizations ¢ : U — S by setting ¢(z) = [¢(z)].
In particular, it is clear that the natural projection # : M — M/G is a
submersion.

ExXAMPLE 7.11.

(1) Let S™ = {z e R**! | "7 | (2%)% = 1} be equipped with the action
of G = Zy = {—1I,1I} given by —I -z = —z (antipodal map). This
action is proper and free, and so the orbit space S"/G is an n-
dimensional manifold. This space is the real projective space RP™
(cf. Exercise 2.5.8).

(2) The group G = R\ {0} acts on M = R*! \ {0} by multiplica-
tion: ¢ -z = tz. This action is proper and free, and so M/G is a
differentiable manifold of dimension n (which is again RP"™).

(3) Consider M = R" equipped with an action of G = Z" defined by:

(k' . kY- (2.2 = (P R 2 D).

This action is proper and free, and so the quotient M/G is a
manifold of dimension n. This space with the quotient differen-
tiable structure defined in Theorem 7.10 is called the n-torus and
is denoted by T™. It is diffeomorphic to the product manifold
St x ... x S and, when n = 2, is diffeomorphic to the torus of
revolution in R3.

Quotients by group actions often determine coverings of manifolds.

DEFINITION 7.12. A smooth covering of a differentiable manifold B is
a pair (M, ), where M is a connected differentiable manifold, = : M — B is
a submersion, and, for each p € B, there exists a connected neighborhood U
of p in B such that 7=(U) is the union of disjoint open sets U, C M (called
slices), and the restrictions mq, of w to Uy are diffeomorphisms onto U. The
map 7 s called a covering map and M is called a covering manifold.

REMARK 7.13.

(1) It is clear that we must have dim M = dim B.

(2) Note that the collection of mutually disjoint open sets {U,} must
be countable (M has a countable basis).

(3) The fibers 7—!(p) C M have the discrete topology. Indeed, as
each slice U, is open and intersects m~!(p) in exactly one point,
this point is open in the subspace topology.

ExAMPLE 7.14.
(1) The map 7 : R — S! given by
m(t) = (cos(2t), sin(2nt))
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is a smooth covering of S?.

(2) As the product of covering maps is a covering map (cf. Exer-
cise 7.16.14), we can generalize the above example and obtain a
covering of T" = S§' x --- x S' by R”.

(3) In Example 7.11.1 we have a covering of RP"™ by S™.

A diffeomorphism h : M — M, where M is a covering manifold, is called
a deck transformation (or covering transformation) if 7 o h = 7 or,
equivalently, if each set 7=1(p) is carried into itself by h. It can be shown that
the set of all covering transformations is a discrete Lie group which acts on
M as a group of diffeomorphisms, and that this action is proper and free. By
Theorem 7.10, we know that the quotient space M /G of a covering manifold
by its group of deck transformations is a smooth manifold. Moreover, if the
covering manifold M is simply connected (cf. Section 10.4), the covering
is said to be a universal covering. In this case, the base manifold B can
be identified with the quotient M /G, and the group of deck transformations
G is isomorphic to the fundamental group 7;(B) of B (cf. Section 10.4).

If B is connected then it admits a unique (up to isomorphism) simply
connected covering m : M — B, and B is diffeomorphic to the quotient of
M by its group of deck transformations. If G is a connected Lie group, then
its universal covering is also a Lie group. Lie’s Theorem states that two
connected Lie groups have the same universal covering if and only if they
have the same Lie algebra.

EXAMPLE 7.15.

(1) In the universal covering of S! of Example 7.14.1 the deck trans-
formations are translations hy : ¢t — ¢ + k by an integer k, and so
the fundamental group of S! is Z.

(2) Similarly, the deck transformations of the universal covering of T"
are translations by integer vectors (cf. Example 7.14.2), and so the
fundamental group of T" is Z".

(3) In the universal covering of RP? from Example 7.14.3, the only
deck transformations are the identity and the antipodal map, and
so the fundamental group of RP" is Zs.

EXERCISES 7.16.

(1) Given two Lie groups G1, G2, show that G1 x G (the direct product
of the two groups) is a Lie group with the standard differentiable
structure on the product.

(2) The circle S* can be identified with the subset of complex numbers
of absolute value 1. Show that S! is a Lie group and conclude that
the n-torus 7" =2 S x ... x S! is also a Lie group.

(3) Using Exercise 5.9.5, complete the details of Examples 7.1.3-7.1.7
to show that O(n,R) and SO(n,R) are in fact Lie groups.

(4) Show that (R™,+) is a Lie group, determine its Lie algebra and
write an expression for the exponential map.
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(5) Prove that, if G is an abelian Lie group, then [V, W] = 0 for all
V.W €g.
(6) We can identify each point in

H = {(z,y) € R |y >0}

with an invertible affine map h : R — R given by h(t) = yt+z. The
set of all such maps is a group under composition; consequently,
our identification induces a group structure on H.
(a) Show that the induced group operation is given by
($ay) ' (Z,’U]) = (yz +‘T,yw),

and that H, with this group operation, is a Lie group.

(b) Show that the derivative of the left translation map Ly :
H — H at point (z,w) € H is represented in the above coor-
dinates by the matrix

y 0
(dL(:c,y))(z,w) - (() y) :

Conclude that the left-invariant vector field determined by the
vector

0 0
V= 5% _H?a_y €bh=TonH,

where £, € R, is

0 0
XV = §y8— Y5 € X(H).
z Yy

(c) Given V,W € b, compute [V, W].

(d) Determine the flow of the vector field X", and give an expres-
sion for the exponential map exp : h — H.

(e) Confirm your results by first showing that H is the subgroup
of GL(2,R) formed by matrices
with y > 0.

Yy T
01
(7) Consider the group

SL(Z,R)z{(Z Z) : ad—bc=1},

which we already know to be a 3-manifold. Making
a=p+q, d=p—q, b=r+s, c=r—235,
show that SL(2,R) is diffeomorphic to S* x R2.
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(8) For A € gl(n,R), consider the differentiable map
h:R — R\{0}
t +— deted

and show that:
(a) this map is a group homomorphism between (R, +) and (R\{0},-);

(b) A'(0) = tr 4;
(c) det(e?) = elT4;
(d) (logdetS)" = tr (S~'9’) for any smooth function S : R —
GL(n,R).
(9) (a) If A € sl(2,R), show that there is a A € RU R such that
e = cosh A T + Slnh)\A.

(b) Show that exp : sl(2,R) — SL(2,R) is not surjective.

(10) Show that, if an action of a Lie group is proper, then all the stabi-
lizers are compact.

(11) Consider the vector field X € X(R?) defined by

0
NG )
X=+z*+y pre
(a) Show that the flow of X defines a free action of R on M =
R? \ {0}.
(b) Describe the topological quotient space M/R. Is the action
above proper?
(12) Let G be a Lie group and H a Lie subgroup. Show that the action
of H in G defined by A(h,g) = h- g is free and proper.
(13) (Grassmannian) Consider the set H C GL(n,R) of invertible ma-

trices of the form
A 0
C B)’

where A € GL(k,R), B € GL(n — k,R) and C' € M ;,_g)xk-

(a) Show that H is a Lie subgroup of GL(n,R). Therefore H acts
freely and properly on GL(n,R) (cf. Exercise 7.16.12).

(b) Show that the points of the quotient manifold

Gr(n,k) = GL(n,R)/H

can be identified with the set of k-dimensional subspaces of
R™ (this manifold is called the Grassmannian of k-planes in
R"). Notice that in particular Gr(n,1) is just the projective
space RP"~!. What is the dimension of Gr(n,k)?
(c) Show that Gr(n,k) is diffeomorphic to Gr(n,n — k).
(14) Show that the product of two covering maps is a covering map.
(15) Let G and H be Lie groups and F' : G — H a Lie group homomor-
phism. Show that:
(a) (dF) : g — b is a Lie algebra homomorphism;
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(b) if (dF'), is an isomorphism then F is a local diffeomorphism;
(c) if F is a surjective local diffeomorphism then F' is a covering
map (note that this is not true for general manifolds).
(16) (a) Show that R-SU(2) is a four dimensional real linear subspace
of May2(C), closed under matrix multiplication, with basis

(10 (i 0
“\No1) """ \o —i)
. 0 1 0 i
i=(50) +=(F0)

satisfying i2 = j? = k? = ijk = —1. Therefore this space can
be identified with the quaternions.

(b) Show that SU(2) can be identified with the quaternions of
Euclidean length equal to 1, and is therefore diffeomorphic to
S3.

(c) Let us identify R? with the quaternions of zero real part. Show
that, if n € R? is a unit vector, then

exp 2 = COS 2 7 S1n 2

is also a unit quaternion, and

ex _n) ex nb -

P 9 ]~ P 2 .
(d) Show that the map
R —» R

(nﬁ) ( n9>
v exp 5 ) vep (-5

is a rotation by an angle # about the axis defined by n.

(e) Show that there exists a surjective homomorphism F' : SU(2) —
SO(3), and use this to conclude that SU(2) is the universal
cover of SO(3).

(f) What is the fundamental group of SO(3)?

8. Orientability

Let V be a finite dimensional vector space and consider two ordered
bases 8 = {b1,...,b,} and B’ = {¥),...,b),}. There is a unique linear
transformation S : V' — V such that b} = Sb; for every i = 1,...,n. We say
that the two bases are equivalent if det S > 0. This defines an equivalence
relation that divides the set of all ordered basis of V into two equivalence
classes. An orientation for V is an assignment of a positive sign to the
elements of one equivalence class and a negative sign to the elements of the
other. The sign assigned to a basis is called its orientation and the basis
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is said to be positively oriented or negatively oriented according to its
sign. It is clear that there are exactly two possible orientations for V.

REMARK 8.1.

(1) The ordering of the basis is very important. If we interchange the
positions of two basis vectors we obtain a different ordered basis
with the opposite orientation.

(2) An orientation for a zero-dimensional vector space is just an as-
signment of a sign +1 or —1.

(3) We call the standard orientation of R” to the orientation that
assigns a positive sign to the standard ordered basis.

An isomorphism A : V — W between two oriented vector spaces carries
two ordered bases of V' in the same equivalence class to equivalent ordered
bases of W. Hence, for any ordered basis 3, the sign of the image A S is
either always the same as the sign of 8 or always the opposite. In the first
case, the isomorphism A is said to be orientation preserving, and in the
latter it is called orientation reversing.

An orientation of a smooth manifold consists on a choice of orientations
for all tangent spaces T, M. If dim M = n > 1, these orientations have to
fit together smoothly, meaning that for each point p € M there exists a
parametrization (U, ) around p such that

(d(p);E R — T(p(z)M
preserves the standard orientation of R" at each point z € U.
REMARK 8.2. If the dimension of M is zero, an orientation is just an

assignment of a sign (+1 or —1), called orientation number, to each point
peM.

DEFINITION 8.3. A smooth manifold M is said to be orientable if it
admits an orientation.

PROPOSITION 8.4. If a smooth manifold M is connected and orientable
then it admits precisely two orientations.

PrOOF. We will show that the set of points where two orientations agree
and the set of points where they disagree are both open. Hence, one of them
has to be M and the other the empty set. Let p be a point in M and let
(Ua, ¢a), (Us, pp) be two parametrizations centered at p such that dy, is
orientation preserving for the first orientation and dyg is orientation preserv-

ing for the second. The map (d(gogl o goa))o : R® — R” is either orientation
preserving (if the two orientations agree at p) or reversing. In the first case,
it has positive determinant at 0, and so, by continuity, (d((p/g1 o (pa))w has
positive determinant for £ on a neighborhood of 0, implying that the two
orientations agree on a neighborhood of p. Similarly, if (d((pgl o (pa))o is
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orientation reversing, the determinant of (d(<p/;1 o @a)) is negative on a

neighborhood of 0, and so the two orientations disagree on a neighborhood
of p.

Let O be an orientation for M (i.e., a smooth choice of an orientation O,
of T,M for each p € M), and —O the opposite orientation (corresponding
to taking the opposite orientation —O)p at each tangent space T,M). If
O' is another orientation for M, then, for a given point p € M, we know
that O, agrees either with O, or with —O,, (because a vector space has just
two possible orientations). Consequently, O’ agrees with either O or —O in
M. |

An alternative characterization of orientability is given by the following
proposition, whose proof is left as an exercise.

PROPOSITION 8.5. A smooth manifold M is orientable iff there exists an
atlas A = {(Uq, va)} for which all the overlap maps @Elogoa are orientation-
preserving.

An oriented manifold is a manifold together with an orientation.

EXERCISES 8.6.

(1) Prove that the relation of “being equivalent” between ordered basis
of a finite dimensional vector space described above is an equiva-
lence relation.

(2) Show that a differentiable manifold M is orientable iff there exists
an atlas A = {(Ug, ¢q)} for which all the overlap maps golgl 0 Yq
are orientation-preserving.

(3) Show that, if a manifold M is covered by two coordinate neigh-
borhoods V; and V5 such that Vi3 N V5 is connected, then M is
orientable.

(4) Show that S™ is orientable.

(5) (a) Show that an n-dimensional submanifold M C R**! is ori-

entable if and only if there exists a smooth map f : M —
S™ C R**1 such that f(p) is orthogonal to T, M for allp € M.

(b) The Méobius band is the 2-dimensional submanifold of R3
given by the image of the immersion ¢g : (—1,1) x R — R?
defined by

g(t, ) = ((1 + tcos (%)) Cos @, (1 + t cos (%)) sin @, t sin (g)) .

Show that the M6bius band is not orientable.
(6) Let f : M — N be a diffeomorphism between two smooth man-
ifolds. Show that M is orientable if and only if N is orientable.
If, in addition, both manifolds are connected and oriented, and
(df)p : TyM — Tp) N preserves orientation at one point p € M,
show that it is orientation preserving at all points. The map f is



46 1. DIFFERENTIABLE MANIFOLDS

said to be orientation preserving in this case, and orientation
reversing otherwise.

(7) Let M and N be two oriented manifolds. We define an orientation
on the product manifold M x N (called product orientation)
in the following way: If « = {a1,...,a,,} and 8 = {b1,...,b,}
are ordered basis of T, M and T; N, we consider the ordered basis
{(a1,0),...,(am,0),(0,b1),...,(0,b,)} of T o)(M x N) =T, M x
TyN. We then define an orientation on this space by setting the
sign of this basis equal to the product of the signs of o and 8. Show
that this orientation does not depend on the choice of « and .

(8) Show that the tangent bundle T'M is always orientable, even if M
is not.

(9) (Orientable double cover) Let M be a non-orientable n-dimensional
manifold. For each point p € M we consider the set O, of the (two)
equivalence classes of bases of T, M. Let M be the set

M = {(paOp) |p € MaOp € Op}
Consider a maximal atlas {(Uy, o)} of M and the maps @, : Uy —

M defined by
4 )
_, 1 n 1 n
w(w,...,x):(ga(m,...,.r ),[(—) ,...,(—n> >,
0 ) o) 9x™ ] ()
where z = (:vl,...,wn) € U, and [(0%1)(;7(%) enns (a%)ga(w)] repre-
sents the equivalence class of the basis {(%)(p(w) yeees (3;%)90(;8)}

of T, M associated to the parametrization (U, ¢q)-

(a) Show that M is an orientable differentiable manifold of di-
mension 7.

(b) Consider the map 7 : M — M defined by 7(p, O,) = p. Show
that 7 is differentiable and surjective. Moreover, show that, for
each p € M, there exists a neighborhood V of p with 771 (V) =
W1 U Ws, where W e Wy are two disjoint open subsets of M
such that 7 restricted to W; (i = 1,2) is a diffeomorphism
onto V. (M is therefore called the orientable double cover
of M).

(c) Let 0 : M — M be the map defined by o(p, 0,) = (p, —0,),
where —O), represents the orientation of T, M opposite to Op.
Show that o is a diffeomorphism which reverses orientations
satisfying m oo = w and o o o = id.

(10) Show that any simply connected manifold is orientable.

9. Manifolds with Boundary

Let us consider the closed half space
H* = {(z',...,2") € R" : 2™ >0}
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with the topology induced by the usual topology of R*. A map f: U — R™
defined on an open set U C H" is said to be differentiable if it is the
restriction to U of a differentiable map f defined on an open subset of R”

containing U. In this case, the derivative (df), is defined to be (d f ) .

P
Note that this derivative is independent of the extension used since any two
extensions have to agree on U. The boundary of H" is the set R*~! x {0} C

R™.

DEFINITION 9.1. A smooth n-manifold with boundary is a Hausdorff
topological space M with a countable basis of open sets, together with a family
of parametrizations ¢q : Uy C H* — M (that is, homeomorphisms of open
sets U, of H" onto open sets of M), such that:

(i) the coordinate neighborhoods cover M, meaning that |, ¢a(Ua) =
M;
(i) for each pair of indices «, 8 such that

W = ¢a(Ua) N p(Us) # 2,
the overlap maps
05 0 papa (W) = @5 (W)
0o opp iz (W) —= @, (W)

are smooth;

(iii) the family A = {(Ua,@a)} is mazimal with respect to (i) and (i),
meaning that, if @o : Uy = M is a parametrization such that g o
o~ and o™t oy are C™ for all ¢ in A, then ¢q is in A.

A point in M is said to be a boundary point if it is on the image
of the boundary of H" under some parametrization (that is, if there is a
parametrization ¢ : U C H* — M such that ¢(z!,...,2""1,0) = p) for
some (z!,...,2" 1) € R* 1. The boundary of M is the set of all boundary
points, and is denoted by OM.

PROPOSITION 9.2. The boundary OM of a smooth n-manifold with bound-
ary M is a differentiable manifold of dimension n — 1.

PROOF. Suppose that p is a boundary point of M and choose a parame-
trization ¢, : U, C H* — M around p. Letting V,, := ¢o(Uy), we claim
that ¢o(0U,) = 0V,. By definition of boundary, we already know that
©0a(0U,) C 0V,, so we just have to show that 9V, C ¢,(0U,). Let ¢
be a point in 0V, and consider a parametrization g : Ug — M around
g, mapping an open subset of H" to an open subset of M and such that
q € pg(0Ug). If we show that ¢g(0Ug) C ¢o(0U,) we are done. For that,
we see that ((,051 ° <,05) (0Ug) C 9U,. Indeed, suppose that this map ¢, lops
maps a point z € dUg to an interior point (in R") of U,. As this map is a
diffeomorphism, = would be an interior point (in R”) of Ug. This, of course,
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contradicts the assumption that z € 0Up. Hence, (@5 o ¢g) (8Up) C 0U,
and so g(0Ug) C pa(0U,).

The map ¢, then restricts to a diffeomorphism from AU, onto 9V,
where 90U, is an open subset of R*! and 0V, = OM N V,. We obtain in
this way a parametrization around p in OM. |

REMARK 9.3. In the above proof we saw that the definition of a bound-
ary point does not depend on the parametrization chosen, meaning that if
there exists a parametrization around p such that p is an image of a point
in OH", then any other parametrization around p maps a boundary point of
H"™ to p.

It is easy to see that if M is orientable then so is OM:

PROPOSITION 9.4. Let M be an orientable manifold with boundary. Then
OM s also orientable.

PROOF. If M is orientable we can choose an atlas {(Uy, ¢q)} on M for
which the determinants of the derivatives of all overlap maps are positive.
With this atlas we can obtain an atlas {(0Ua, @)} for OM in the way
described in the proof of Proposition 9.2. For any overlap map

(70,51 ° (pa (:L'l’... ’:L'n) = (yl(‘IEl" i 7"En)" .- 7yn($17' i 7$n))
we have
03 0pa (@), 5" 1,0) = (1 (&), .., 3", 0),...,y" N, 5771,0),0)
and
@El 0 Po (zh, ...zl = @El 0o (zh,...,2"10)
= (yl("L‘l, tt "’I’-n_l’o)’ st ,yn_l(‘/El? tte "Tn_l’o))'

Consequently, denoting (z!,...,z2"71,0) by (Z,0),

(@5 0 Ba))s |
(d(w3" © pa))(z0) = —— + =
0 | % (%,0)
and so
det (d(¢5! 0 ¥a))(z.0) = %(:i 0) det (d(@5t 0 Ba))s-
8 a))(%,0) 9z Pp Pa))z
However, fixing z!,--- , 2" !, we have that y" is positive for positive values

of z™ and is zero for 2™ = 0. Consequently, g%:(i:, 0) > 0, and so

det (d(5" © $a))z > 0.
O

Hence, choosing an orientation on a manifold with boundary M induces
an orientation on the boundary dM. The convenient choice, called the
induced orientation, can be obtained in the following way: for p € M
the tangent space T,(0M) is a subspace of T, M of codimension 1; as we
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have seen above, considering a coordinate system x : W — R" around p,
we have z"(p) = 0 and z!,...,2" ! is a coordinate system around p in
OM; setting np := — (%)p (called an outward pointing vector at p),
the induced orientation on OM is defined by assigning a positive sign to an
ordered basis 8 of T,(0M) whenever the ordered basis {ny, 5} of T,M is
positive, and negative otherwise. Note that, since g%(cpfl(p)) > 0 (in the
above notation), the sign of the last coordinate of n, does not depend on the
choice of coordinate system. In general, the induced orientation is not the
one obtained from the charts of M by simply dropping the last coordinate
(in fact, it is (—1)"™ times this orientation).
EXERCISES 9.5.

(1) Show that there is no diffeomorphism between a neighborhood of
0 in R™ and a neighborhood of 0 in H".

(2) Show with an example that the product of two manifolds with
boundary is not always a manifold with boundary.

(3) Let M be a manifold without boundary and N a manifold with
boundary. Show that the product M x N is a manifold with bound-
ary. What is 9(M x N)?

(4) Show that a diffeomorphism between two manifolds with boundary
M and N maps the boundary M diffeomorphically onto ON.

10. Notes on Chapter 1

10.1. Section 1. We begin by briefly reviewing the main concepts and
results from general topology that we will need (please refer to [Mun00] for
a detailed exposition).

(1) A topology on a set M is a collection 7 of subsets of M having
the following properties:
(i) the sets @ and M are in T;
(ii) the union of the elements of any sub-collection of 7 is in T
(iii) the intersection of the elements of any finite sub-collection of
T isin T.

A set M equipped with a topology 7T is called a topological
space. We say that a subset U C M is an open set of M if it
belongs to the topology 7. A neighborhood of a point p € M is
simply an open set U € 7 containing p, and a closed set FF C M
is a set whose complement M \ F' is open. The interior intA of
a subset A C M is the largest open set contained in A, and its
closure A is the smallest closed set containing A. Finally, the
subspace topology on A C M is {U N A}yer-

(2) A topological space (M, T) is said to be HausdorfT if, for each pair
of distinct points p1,py € M, there exist neighborhoods Uy, Us of
p1 and po such that U; NU; = @.

(3) A basis for a topology 7 on M is a collection B C 7 such that for
each point p € M and each open set U containing p there exists a
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basis element B € B such that p € B C U. If B is a basis for a
topology 7 then any element of 7 is a union of elements of B. A
topological space (M, T) is said to satisfy the second countability
axiom if 7 has a countable base.
A map f: M — N between topological spaces is said to be con-
tinuous if, for each open set U C N, the preimage f !(U) is an
open subset of M. A bijection f is called a homeomorphism if
both f and its inverse f~! are continuous.
An open cover for a topological space (M, T') is a collection {U, } C
T such that |J, U, = M. A subcover is a sub-collection {V3} C
{Uq} which is still an open cover. A topological space is said to be
compact if every open cover admits a finite subcover. A subset
A C M is said to be a compact subset if it is a compact topo-
logical space for the subspace topology. Continuous maps carry
compact sets to compact sets.
A topological space is said to be connected if the only subsets
of M which are simultaneously open and closed are @ and M. A
subset A C M is said to be a connected subset if it is a connected
topological space for the subspace topology. Continuous maps carry
connected sets to connected sets.
Let (M, T) be a topological space. A sequence {p,} in M is said to
converge to p € M if, for each neighborhood V of p, there exists an
N € N for which p, € V for n > N. If (M, T) is Hausdorff, then
a convergent sequence has a unique limit. If in addition (M,7)
is second countable, then ' C M is closed if and only if every
convergent sequence in F' has limit in ', and K C M is compact
if and only if every sequence in K has a sublimit in K.
If M and N are topological spaces, the set of all Cartesian products
of open subsets of M by open subsets of NV is a basis for a topology
on M x N, called the product topology. Note that with this
topology the canonical projections are continuous maps.
An equivalence relation ~ on a set M is a relation with the following
properties:

(i) reflezivity: p ~ p for every p € M;

(ii) symmetry: if p ~ g then ¢ ~ p;
(iii) transitivity: if p ~ g and g ~ 7 then p ~ r.
Given a point p € M, we define the equivalence class of p as the
set

[Pl ={q€ M: q~ p}.

Note that p € [p] by reflexivity.

Whenever we have an equivalence relation ~ on a set M, the
corresponding set of equivalence classes is called the quotient
space, and is denoted by M/~. There is a canonical projection
m: M — M/~, which maps each element of M to its equivalence
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class. If M is a topological space, we can define a topology on the
quotient space (called the quotient topology) by letting a subset
V C M/~ be open if and only if the set 7=1(V') is open in M. The
map 7 is then continuous for this topology.

We will be interested in knowing whether some quotient spaces
are Hausdorff. For that, the following definition will be helpful:

DEFINITION 10.1. An equivalence relation ~ on a topological
space M is called open if the map © : M — M/~ is open, i.e., if
for every open set U C M, the set [U] = w(U) is open.

For open equivalence relations we have:

PROPOSITION 10.2. Let ~ be an open equivalence relation on
M and let R ={(p,q) € M x M : p ~ q}. Then the quotient space
1s Hausdorff if and only if R s closed in M x M.

PROOF. Assume that R is closed. Let [pl],[q] € M/~ with
[p] # [g]- Then p » g, and (p,q) ¢ R. As R is closed, there are open
sets U,V containing p, g, respectively, such that (U x V) N R = @.
This implies that [U] N [V] = @. In fact, if there were a point
[r] € [U] N [V], then r would be equivalent to points p' € U and
q €V (that is p’ ~ r and r ~ ¢'). Therefore we would have that
p' ~ ¢' (implying that (p’,q’) € R), and so (U x V) N R would not
be empty. Since [U] and [V] are open (as ~ is an open equivalence
relation), we conclude that M/~ is Hausdorff.

Conversely, let us assume that M/~ is Hausdorfl. If (p,q) ¢
R, then p » g and [p] # [¢], implying the existence of open sets
U,V C M/~ containing [p] and [q], such that UNV = &. The sets
7~ 1(U) and 7~1(V) are open in M and (7~ }(U) x = Y(V)) NR =
@. In fact, if that was not so, there would exist points p’ € 7~1(U)
and ¢’ € 7 1(V) such that p' ~ ¢’ and we would have [p'] = [¢'],
contradicting the fact that UNV = @ (as [p'] € n(z=1(U)) = U
and [¢'] € n(r=!(V)) = V). Since (p,q) € 7~ (U) x 7~'(V) C
(M x M)\ R and 7= }(U) x 7 1(V) is open, we conclude that
(M x M)\ R is open, i.e., R is closed. O

10.2. Section 2.

(1) Let us begin by reviewing some facts about differentiability of maps
on R". A function f : U — R defined on an open subset U of R"
is said to be continuously differentiable on U if all the partial
derivatives %, e % exist and are continuous on U.

In this book the words differentiable and smooth will be used
to mean infinitely differentiable, that is, all partial derivatives
% exist and are continuous on U.

Similarly, a map F' : U — R™, defined on an open subset of R",
is said to be differentiable or smooth if all coordinate functions
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f* have the same property, that is, if they all possess continuous
partial derivatives of all orders.

If the map F is differentiable on U, its derivative at each point
of U is the linear map DF : R® — R™ represented in the canonical
bases of R® and R™ by the Jacobian matrix

ofr ... o
ozl ox™
DF=| : :
o ... 9™
ozl ox™

10.3. Section 4.

(1)

(2)

(The Inverse Function Theorem) Let f : U C R® — R" be a

smooth function and p € U such that (df), is a linear isomorphism.

Then there exists an open subset V' C U containing p such that

flv:V = f(V) is a diffeomorphism.

Let F, B and F' be smooth manifolds and « : £ — B a differen-

tiable map. Then, 7 : E — B is called a fiber bundle of basis B,

total space F and fiber F if

(i) the map = is surjective;

(ii) there is a covering of B by open sets {U, } and diffeomorphisms
Yo : 7 H(Uy) — Uy x F such that o (n71(b)) = {b} x F for
beU,.

10.4. Section 7.

(1)

A group is a set G equipped with a binary operation - : GXG — G
satisfying:
(i) Associativity: gi-(g2-93) = (91-92)-gs for all g1, 92,93 € G;
(ii) Existence of identity: There exists an element e € G such
thate-g=g-e=gforall g € G;
(iii) Existence of inverses: For all g € G there exists g7! € G
such that g-g~' =g !-g=e.
If the group operation is commutative, meaning that g1 -g> = go- g1
for all g1, g2 € G, the group is said to be abelian. A subset H C G
is said to be a subgroup of G if the restriction of - to H x H is a
binary operation on H, and H, with this operation, is a group. A
map f : G — H between two groups G and H is said to be a group
homomorphism if f(g1 - g2) = f(g1) - f(ge) for all g1,92 € G.
We begin by proving the following result:

ProprosITION 10.3. If the action of a Lie group G on a dif-
ferentiable manifold M is proper, then the orbit space M/ ~ is a
Hausdorff space.

PROOF. The relation p ~ ¢ & q € G - p is an open equivalence
relation. Indeed, since p +— ¢ - p is a homeomorphism, the set
[Ul={g9-p|peUandgeG} =Uygqgyg-U is an open subset of
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M for any open set U in M. Therefore we just have to show that
the set
R={(p,g) eM xM:p~q}
is closed (cf. Proposition 10.2). This follows from the fact that R
is the image of the map
GxM — MxM

(9,p) — (9-pp)
which is continuous and proper, hence closed. O

We can now prove Theorem 7.10:

THEOREM 10.4. Let M be a differentiable manifold equipped
with a free proper action of a Lie group G. Then the orbit space

M/G is naturally a differentiable manifold of dimension equal to
dim M — dim G.

PRrOOF. By Proposition 10.2, the quotient M /G is Hausdorff.
Moreover, this quotient satisfies the second countability axiom be-
cause M does so and the equivalence relation defined by G is open.
We will now show that any orbit G - p is a submanifold of M. For
p € M and g € G, let us consider the maps

Ay G - M Ag: M — M
and
h — h-p g — g-q.
The image of A, is the orbit through p and, as the action is free,
this map is injective. Its derivative at e, (dA,)e : g — T,M, is
injective. In fact, if X € g is such that (dA4,).(X) = 0, we have
d d d
 (Ap (exp(X))) = S (Ap((e)) = T (Ap(Hrss(e))) o
d
= T (Aepiex) © Ap)(Exp(sX))) 2o
= (dAexp(tX))p(dAp)eX =0,

where )4 (e) is the flow of X at e. Hence, the map ¢ — A, (exp(tX))
is constant and so
Ay (exp(tX)) = Ay(exp0) = Ay(e) = p,

that is, exp(tX)-p = p for every t. However, as the action is free, the
stabilizer of p is {e} and so exp(tX) = e for every ¢. Consequently,

d dip(e)

— tX =

dt (eXP( )) |t:0 dt |t:0

implying that (dAp). is injective. At any other point g € G,
(dAp)g = (d(Ap © Rg))e © (ng—l)g = (dAg-p)e o (ng—l)ga

where Ry : G — G is right multiplication by g, implying that
(dAp)4 is injective ((dR,-1)4 is an isomorphism). Therefore, A, is
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an injective immersion. As the action is proper, A, is proper as
a map to the orbit G - p and it follows that it is an embedding.
Each orbit G - p is then a submanifold of M. Hence, there is a
decomposition

T,M = (dAp)e(g) oW = Tp(G p)eWwW
where W is transverse to the orbit. Let S be a submanifold of M
through p such that 7,5 = W. By continuity, there is an open

neighborhood S of p in S such that, for all points ¢ € S, ToM =
Ty(G - q) ® TyS (cf. Figure 14). We will now consider the action

FIGURE 14

restricted to S, that is, the map
UV:GxS - M

(9,9) = Alg,9)=g-q

The derivative (d¥) . q) is bijective for all ¢ € S. In fact, for X € g

and V € T, S, (d9)(¢,0) (X, V) = (d4,)o(X) +V and so,
(d‘IJ)(e,q) (g X TqS) = TqM.
Moreover, if (d¥) ¢ (X, V) = 0, then (dAy) (X) = =V, implying

that (dAq)e(X) = 0, and injectivity follows from the injectivity of
(dAg)e. As A(g,q) = Ag(Ale, q)) for every (g,9) € G x S, then

(d\Ij)(gaQ) = (dAg)q °© (d\P)(e,q)
and, as A, is a diffeomorphism and (d¥) . ,) is bijective, it follows

that (d¥)y,q) is bijective for every (g,9) € G x S. By the Inverse
Function Theorem, we conclude that ¥ is a local diffeomorphism
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from G x S to an open neighborhood of the orbit G - p in M.
Shrinking S if necessary, we can assume that W is also injective. In
fact, as U is a local diffeomorphism at all points of the form (g, p)
with g € G, if it were not injective on G x S for sufficiently small S,
there would be sequences {(gn,pn)} and {(hy,q,)} in G x S such
that

(gnapn) # (hn,Qn)a limy, o0 pp = limy, yo0gn =p € S

and

Y(gn,pn) = Y (hn,qn)
(that is, g, - pn = hy - ). Note that g, # h, as otherwise we
would have p, = g, (the action is free). Every element vy, =
h-lg, € G is different from e and g, = v, - p,. The sequence
{(Yn - Pn,pn)} converges to (p,p) and so, as the action is proper,
there is a converging subsequence v, . Let 7 be its limit. Then

v-p= lim 5, - pp, = lim g, =p,

implying that v = e (the action is free). Then, on every neigh-
borhood of (e,p) in G x S, there would be points (,,p,) such
that
\IJ(’)’n,pn) =Yn"Pn = 4n = \Ij(eaq’fl)a

contradicting the fact that ¥ is a local diffeomorphism at (e, p).

Now that we have established that V¥ is a diffeomorphism from
G x S onto an open subset V of M containing the submanifold
S, we will show that M/G is a manifold. For that we have the
following commutative diagram:

GxS % VcM
prg | im
s % v/iGcM/G
where, for ¢ € S, ¢(q) = [q] is the orbit through qg. When we
consider two open sets V7, V5 in M, diffeomorphic to G x S7 and to
G x S5 via two maps ¥y and ¥y as above, the set V1 NV5 is open in
M, the sets U; ' (V4 N V3) are open in G x S; and are of the form

G x S; for some open sets S; C S; (1 =1,2). Hence, we have the
following diagram

GxS, B vinnh & Gx85,
prgl im I prg
s, B Mmie & s
Now ¥, }(S,) is a submanifold of G x S intersecting each G x {¢}

(g€ S’l) transversely at exactly one point. Hence,

T 1(Sy) = {(k(q),q)| g € S;}
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is the graph of a differentiable map k : Sll — G and the map
¢y o ¢y is differentiable, as ¢, ' o ¢1(a) = K(a) - a for every a €
Sll. Similarly, we can prove that ¢1_1 o ¢ is differentiable and we

conclude that M/G is a manifold of dimension equal to dim S =
dim M —dimG. O

Let f,g : X — Y be two continuous maps between topological
spaces and let I = [0,1]. We say that f is homotopic to g if there
is a continuous map H : I x X — Y such that H(0,z) = f(z) and
H(1,z) = g(x) for every z € X. The map H is called a homotopy.

Homotopy of maps forms an equivalence relation in the set of
continuous maps between X and Y. As an application, we can
consider homotopy classes of continuous maps f : I — M from
the interval I = [0,1] to a manifold M (that is, the set of paths
in M). We will, however, consider the additional restriction that
their initial point and terminal point are fixed, meaning that
H(t,0) and H(t,1) are constant functions.

Let us now fix a base point p in M and consider the paths that
have p as both their initial and final point (such paths are called
loops based at p). The set of path homotopy classes of loops based
at p is called the fundamental group of M relative to the base
point p, and is denoted by 71 (M, p). Among its elements there is the
class of the constant loop based at p f(t) = p for every ¢ € [0, 1].
Note that the set m1(M,p) is in fact a group with operation
(composition of paths) defined by [f] x [g] = [h := f * g], where
h:[0,1] — M is given by

ht) = { f@y  iteog]
g(2t —1) ifte[5,1]
The identity element of this group is the equivalence class of the
constant loop based at p.

If M is connected and this is the only class in m1(M,p), M is
said to be simply connected. This means that every loop through
p can be continuously deformed to the constant loop. This property
does not depend on the choice of point p and is equivalent to the
condition that any closed path may be continuously deformed to a
constant loop in M.

10.5. Bibliographical notes. The material in this chapter is com-

pletely standard, and can be found in almost any book on differential geom-
etry (e.g. [Boo03], [dC93], [GHLO04]). Immersions and embeddings are
the starting point of differential topology, which is studied on [GP73],
[Mil97]. Lie groups and Lie algebras are a huge field of Mathematics, to
which we could not do justice. See for instance [BtD03], [DK99], [War83].
More details on the fundamental group and covering spaces can be found in
[Mun00].



CHAPTER 2

Differential Forms

This chapter deals with differential forms, which are a fundamental
tool in differential geometry.

In Section 1 we review the notions of tensors and tensor product,
and introduce alternating tensors and their exterior product.

Differential forms and their operations, the pull-back by a smooth
map and the exterior derivative, are defined in Section 2. Important ideas
such as the Poincaré Lemma and de Rham cohomology, which will not
be needed in the remainder of this book, are discussed in the exercises.

In Section 3 we define the integral of a differential form on a smooth
manifold. To do so we make use of another fundamental tool in differential
geometry, namely the existence of partitions of unity.

The far-reaching Stokes Theorem is proved in Section 4, and some of
its consequences are explored in the exercises.

Finally, in Section 5 we study the relation between orientability and the
existence of special differential forms, called volume forms.

1. Tensors

Let V be a n-dimensional vector space. A k-tensor on V is a real
multilinear function (meaning linear in each variable) defined on the product
V x - xV of k copies of V. The set of all k-tensors is itself a vector space
and is usually denoted by 7%(V*).

ExXAMPLE 1.1.

(1) The space of 1-tensors T1(V*) is equal to V*, the dual space of
V, that is, the space of real-valued linear functions on V.

(2) The usual inner product on R” is an example of a 2-tensor.

(3) The determinant is an n-tensor on R™.

Given a k-tensor T" and a m-tensor S, we define their tensor product
as the (k + m)-tensor T'® S given by

T® S('Ul, ey Uk Vktls--- ,Uk+m) = T(’Ul, e ,’Uk) . S(Uk:—{—la ee a'Uk—f—m)-
The following proposition then holds

PROPOSITION 1.2. If {Ty,...,T},} is a basis for T'(V*) = V* (the dual
space of V'), then the set {T;, ® ---QT;, | 1 <'iy,...,ix < n} is a basis of
TE(V*), and therefore dim T*(V*) = nk.
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Proor. Step 1: We will first show that the elements of this set are
linearly independent. If

Ti= Y ;.1 ® T =0,
ilv"'vik

then, taking the basis {v1,...,v,} of V dual to {T1,...,T,}, meaning that
Ti(vj) = ds; (cf. Section 6.1), we have T'(vj,,...,vj,) = aj,..j, = 0 for every
1 Sjla"'ajk <n.

Step 2: To show that {7}, ®---®T;, | 1 <i1,...,4i < n} spans TF(V*),
we take any element 7' € 7*(V*) and consider the k-tensor S defined by

S = Z T(viys 03Ty ® - T, .

il,"' aik

Clearly, S(vi;,...,vi,) = T(viy,--.,v;) for every 1 <iy,...,i < n, and so,
by linearity, S = T. O

If we consider k-tensors on V*, instead of V, we obtain the space 7%(V)
(note that (V*)* =V, as is shown in Section 6.1). These tensors are called
contravariant tensors on V, while the elements of 7%(V*) are called co-
variant tensors on V. Note that the contravariant tensors on V are the
covariant tensors on V*. The words covariant and contravariant are related
to the transformation behavior of the tensor components under a change of
basis in V, as explained in Section 6.1.

We can also consider mixed (k, m)-tensors on V, that is, multilinear
functions defined on the product V x --- X V x V* x --- x V* of k copies
of V and m copies of V*. A (k, m)-tensor is then k times covariant and m
times contravariant on V. The space of all (k, m)-tensors on V is denoted
by TE™(V*, V).

REMARK 1.3.

(1) We can identify the space 71 (V*, V) with the space of linear maps
from V to V. Indeed, for each element 7' € T51(V*, V), we define
the linear map from V to V, given by v — T(v,-). Note that
T(v,-) : V* — R is a linear function on V*, that is, an element of
(VH)*=V.

(2) Generalizing the above definition of tensor product to tensors de-
fined on different vector spaces, we can define the spaces 7#(V*) ®
T™(W*) generated by the tensor products of elements of 7%(V*) by
elements of 7™(W*). Note that 75™(V*, V) = TH(V*) @ T™(V).
We leave it as an exercise to find a basis for this space.

A tensor is called alternating if, like the determinant, it changes sign
every time two of its variables are interchanged, that is, if

T(V15- 3 ViyeneyVjyenyVp) = =T (V150,050 0, Uiy, Un).



1. TENSORS 59

The space of all alternating k-tensors is a vector subspace A*(V*) of T#(V*).
Note that, for any alternating k-tensor 7', we have T'(vi,...,vx) = 0 if
v; = v; for some i # j.

ExXAMPLE 1.4.

(1) All 1-tensors are trivially alternating, that is, A*(V*) = TH(V*) =
V.
(2) The determinant is an alternating n-tensor on R".

Consider now Sk, the group of all possible permutations of {1,...,k}. If
o € Sk, set a(v1,..., V) = (Vg(1)s- > Vo(k))- Given a k-tensor T' € TE(V*)
we can define a new alternating k-tensor, called Alt(T'), in the following
way:

1
Al(T) = o Z (sgno) (T o o)
oES
where sgn o is +1 or —1 according to whether ¢ is an even or an odd permu-
tation. We leave it as an exercise to show that Alt(7') is in fact alternating.

EXAMPLE 1.5. If T € T3(V*),
A(T) (v, v9,v3) = é (T'(v1,v2,v3) + T'(v3,v1,v2) + T(v2,v3,v1)
—T(’Ul, v3, ’02) - T(’UQ, ’l)1,’U3) - T(’U3, V2, ’Ul)) .

We will now define the wedge product between alternating tensors: if
T € A¥(V*) and S € A™(V*), then T A S € A¥T™(V*) is given by

_ (k+m)!
TAS =" AT ® 5).

EXAMPLE 1.6. If T, S € AY(V*) = V*, then
TAS=2AKT®S)=T®S—S&T,
implying that TAS = -SAT and T AT = 0.

It is easy to verify that this product is bilinear. To prove associativity
we need the following proposition

PROPOSITION 1.7.

(i) Let T € TF(V*) and S € T™(V*). If Alt(T) = 0 then

AB(T ® S) = Al(S®T) = 0;

(i) AIW(AR(T ® S) @ R) = Al(T ® S ® R) = Alt(T ® Alt(S ® R)).

PROOF.
(i) Let us consider
(k+m)! AIW(T ® S)(v1,- .., Vk1m) =
Z (sgn O') T(’Ug(l), ‘e ava(k))S(Ua(k+1)a ‘e ,v(,(lﬂ_m)).

0ESk4+m
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Taking the subgroup G of Sk, formed by the permutations that leave
k+1,...,k+ m fixed, we have

Z sgn o T(Vg(1),- - » Vo)) S (Vo (k41)s - - - s Vo (htm)) =
ceG

= Y sgno T(v,(1),-- - V() S (Wk41s- - > Vtm)
oeG

= k! (AR(T)® S) (v1y...,Vkrm) = 0.

Then, since G decomposes Si,, into disjoint right cosets G - o9 =
{o0¢ | 0 € G}, and for each coset

Z sgna (T'® 8)(Vo(1)s- - -1 Vo(ktm)) =
c€G 09

= sgnog Y _(s8n0) (T ® S)(Ve(oe(1))s - - - » V(oo (b-tm)))
ceG

= sgnog k! (Alt(T) ® S)(Uao(l)a s avao(k:—l—m)) =0,

we have that Alt(T ® S) = 0. Similarly, we prove that Alt(S®T) = 0.
(ii) By linearity of the operator Alt and the fact that Alt o Alt = Alt (cf.
Exercise 1.14.3), we have

Alt(AL(S® R) — SQ R) = 0.
Hence, by (3),
0=Al(TQ(AIt(S®R) — S® R)) = AL(T®AIt(S®R)) —Alt(TRS®R),
and the result follows.
[l

Using these properties we can show that
PROPOSITION 1.8. (TAS)AR=TA(SAR).

PROOF. By Proposition 1.7, for T € A¥(V*), § € A™(V*) and R €
AY(V*), we have

(k+m+1)!
mAlt((T ANS)® R)

(k+m+1)!

(TAS)AR

and

TASAR) = %Ah@@ (SAR))

(k+m+1)!

= AT R S @ R).

We are now able to prove the following theorem:
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THEOREM 1.9. If {Th,...,T,} is a basis for V*, then the set
{Tz /\"'/\Tik ‘ 1< 4 <...<ik§n}

is a basis for A¥(V*), and

. k *\ n _ n!
dim A®(V*) = ( A > BT
PrOOF. Let T € AF(V*) C T*(V*). By Proposition 1.2,
T = Z air"ikTil R---Q TZk
Tl yeenslls
and, since 7' is alternating,
T=AWT)= ) ai. AT, ® -+ ®T;,).
Bl yeenyls

We can show by induction that Alt(T}, @ --- QT;,) = %Th ATy N+ NT;, .
Indeed, for k = 1, the result is trivially true, and, assuming it is true for k
basis tensors, we have, by Proposition 1.7, that

Alt(Th Q@ ® Tik+1) = Alt(Alt(Til Q- ®T2k) ®Tik+1)
k!
= mAlt(nl®"'®Ek)Aﬂk+l
1
T G MR M

Hence,

T = % > iy Ty AT Ao AT
Bl yeenylpe
However, the tensors Tj, A --- AT;, are not linearly independent. Indeed,
due to anticommutativity, if two sequences (i1, ...1%), (j1,- .. jx) differ only
in their orderings, then T;, A--- AT;, = £Tj, A-+- ATj,. In addition, if any
two of the indices are equal, then T;, A--- AT;, = 0. Hence, we can avoid
repeating terms by considering only increasing index sequences:

T= Y byiTiy A= AT,
1< <ig

and so the set {T;; A---AT; |1 < i3 < ... < i < n} spans AF(V*).
Moreover, the elements of this set are linearly independent. Indeed, if

0=T= > byi,Ty Ao ATy,
11 < <ip
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then, taking a basis {v1,...,v,} of V dual to {T1,...,T,} and an increasing
index sequence (j1,--..,jk), we have

0="T(j5,---,05) = k! D biy i, ATy, @ -+ @ Tip) (v, - -, v5)

11 <<
= Z bil"'ik Z (Sgn J) T (’Ujo'(l)) T le (Uja(k))'
1 <<t o€ES
Since (i1,...,4) and (ji,...,Jx) are both increasing, the only term of the

second sum that may be different from zero is the one for which ¢ = id.
Consequently,

0="T(vj,-..,0j) = bj,.rjy-
O

After this, it is clear that the anticommutativity shown in Example 1.6
implies that:

PROPOSITION 1.10. If T € A¥(V*) and S € A™(V*), then
TAS=(-1)FmSAT.

REMARK 1.11.

(1) Another consequence of Theorem 1.9 is that dim(A™(V*)) = 1.
Hence, if V = R”, any alternating n-tensor in R" is a multiple of
the determinant.

(2) Tt is also clear that A¥(V*) = 0 if k& > n. Moreover, the set A°(V*)
is defined to be equal to R (identified with the set of constant
functions on V).

If F : V — W is a linear transformation between vector spaces, it induces
a linear transformation F* : T*(W*) — T*(V*) defined by

(F*T)(v1,...,v5) = T(F(v1),...,F(vg)).

If T € A¥(W*), the tensor F*T is an alternating tensor on V. It is easy to
check that

F(T®S8) = (F'T) @ (F*S)

for T € TH(W*) and S € T™(W*). One can then easily show that if 7' and
S are alternating, then

F*(TAS)= (F*T) A (F*S).
Another important fact about alternating tensors is the following:

THEOREM 1.12. Let F : V — V be a linear map and let T € A™(V*).
Then F*T = (det A)T, where A is any matriz representing F'.

PROOF. As A"(V*) is 1-dimensional and F' is a linear map, F* is just
multiplication by some constant C. Let us consider an isomorphism H
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between V and R*. Then, H* det is an alternating n-tensor in V, and so
F*H* det = CH* det. Hence, by Exercise 1.14.4,

(H™Y)*F*H*det = Cdet & (H o F o H™')*det = Cdet & A* det = C det,

where A is the matrix representation of F' induced by H. Taking the stan-
dard basis in R”, {e1,...,e,}, we have

A*det (eq,...,e,) = Cdet(e,...,e,) = C,

and so
det (Aey, ..., Ae,) = C,
implying that C' = det A. O

REMARK 1.13. By the above Theorem, if T € A"(V*) and T # 0, then
two ordered basis {v1,...,v,} and {w1,...,w,} are equivalently oriented if
and only if T'(v1,...,v,) and T(w1,...,w,) have the same sign.

EXERCISES 1.14.

(1) Show that the tensor product on 7%(V*) is multilinear and asso-
ciative but not commutative.
(2) Find a basis for the space 7%™(V*,V) of mixed (k, m)-tensors.
(3) If T € T*(V*), show that
(a) Alt(T) is an alternating tensor;
(b) if T is alternating then Alt(T") = T}
(c) ALL(AI(T)) = Al(T).
(4) Let F : Vi — V,, and H : V5 — V3 be two linear maps between
vector spaces. Show that:
(a) (Ho F)*=F*o H*
(b) for T € A¥(Vy) and S € A™(Vyf), F*(T A S) = F*T A F*S.
(5) Prove Proposition 1.10.
(6) Let Ti,...,Ty € AL(V*) = V*. Show that they are linearly inde-
pendent if and only if T3 A --- ATy # 0.
(7) Let Ty,...,T; € V*. Show that

Ty A= ANTg(v1,...,v5) = det [Tz('UJ)]

(8) Let T € A*¥(V*) and let v € V. We define contraction of T by v,
t(v)T, as the (k — 1)-tensor given by

L(U)T(vla R avk—l) = T(Ua U1y--- 7vk—1)'

Show that:

(a) ¢(v1)(e(v2)T) = —u(v2)(e(v1)T);
(b) if T € A*(V*) and § € A™(V*) then

L@)(TAS) = (t(v)T) A S + (=1)*T A (1(v)S).
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2. Differential Forms

Alternating tensors enable us to define very important objects called
forms.

DEFINITION 2.1. Let M be a smooth manifold. A form of degree k
(or k-form) on M is a field of alternating k-tensors defined on M, that is,
a map w that, to each point p € M, assigns an element w, € AF (T;M).

The space of k-forms on M is clearly a vector space.

REMARK 2.2. We usually denote by T7 M the dual space of the tangent
space T, M at a point p in M and call it the cotangent space at p. Similarly
to what was done for the tangent bundle, we can consider the disjoint union
of all cotangent spaces and obtain the manifold

™M= ] ;M
pEM
called the cotangent bundle of M. Note that a 1-form is just a map from
M to T*M defined by
P wp € Al(T;M) =T, M.
ExAMPLE 2.3. Let f : M — R be a differentiable function. We can

define a 1-form df which carries each point p € M to (df),, where

(df)p : T,M — R

is the derivative of f at p. This 1-form is called the differential of f. For
any v € T,M we have (df),(v) = v- f (the directional derivative of f at p
along the vector v). Considering a coordinate system z : W — R", we can

write v = Y1, v* (%)p, and so

(@) = 30" oL (a(r),

2

where f =fo 7. Taking the projections z* : W — R, we can obtain
1-forms dz' defined on W. These satisfy

(dz")p ((%)p) = b

and so they form a basis of each cotangent space (T;M ), dual to the coordi-
nate basis {(%)p e k (&%)p} of T,M. Hence, any 1-form on W can be
written as w = ), w;dz’, where w; : W — R is such that w;(p) = wp((%)p).

In particular, df can be written in the usual way df = > ;" %dmi. More-

over, by Theorem 1.9, any k-form on W can be written as

w = Z wjdxl
I
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where I = (i1,...,4x) denotes any increasing index sequence of integers in
{1,...,n}, dz! is the form dz®* A- - -Adz®, and the w;’s are functions defined
on W.

Given a smooth map f : M — N between differentiable manifolds, we
can induce forms on M from forms on N as follows: given a k-form w on N,
we define a k-form f*w on M as

(f*w)p = ((df)p)"w
that is,
(f*w)p(vl, P ,’Uk) = wf(p)((df)pvl, ey (df)p’l)k),
for v1,...,v; € T,M. This form f*w is called the pullback of w by f.

REMARK 24. If ¢ : N — R is a O-form, the pullback is defined as
ffg=golf.

It is easy to verify that the pullback of forms satisfies the following
properties, the proof of which we leave as an exercise:

PROPOSITION 2.5. Let f : M — N be a differentiable map and o,
forms on N. Then,
(i) f*(a+pB)=fra+ f'B;
(i) f*(ga) = f*g f*fa=(go f)f*a for any function g : N — R;
(it)) f*(aAB) = fraNfB;
() g* f*a = (f og)*«a for any differentiable map g : L — M.
EXAMPLE 2.6. If f : M — N is differentiable and we consider coordinate
systems m Wy =R y: Wy - R? respectlvely on M and N, we have
Y= fl( ™) for i =1,...,n and f=yo foxz! the local represen-
tation of f. If w=2y wldyl is a k-form on Wy, then by Proposition 2.5,

flw=f" (Z wﬂyl) =Y frurfrdy’ =Y (wro f)f*dy" A--- A frdy'.
I I

I
Moreover, for v € T, M,

(f*(dy")p(v) = (dy") ) ((df )pv) = (" © [)),, (v),
that is, f*(dyi) =d(y* o f). Hence,
=Y (wro f)d(y™ o f) A--- Ad(y* o f).
1

If dimM = dimN = n and w = dy' A--- A dy”, then the pullback f*w is
given by Theorem 1.12:

(4) (frdy' A=+ A frdy™), = det (df)y(p)(da’ A=+ A dz™),.

Given any form w on M and a parametrization ¢ : U — M, we can
consider the pullback of w by ¢ and obtain a form defined on the open set
U, called the representation of w on that parametrization.
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ExAMPLE 2.7. Let z : W — R" be a coordinate system on a smooth
manifold M and consider the 1-form dz’ defined on W. The pullback ¢*dz’
by the corresponding parametrization ¢ := z~' is a 1-form on an open
subset U of R" satisfying

(as)o) = sy (307 (58 | =ttty | 3ot ()
: - :

=1

) g (am), | =" = @t

forz € U, p = p(x) and v = ;‘:1 o) (%)w an element of T,U. Hence,
o)

just as we had (ami)p = (dp), (%)w, we now have (dz?), = ¢*(dz'),, and

so (dz?), is the 1-form in W whose representation on U is (dz?),.

If we consider two parametrizations ¢, : Uy — M, ¢g : Ug — M such
that ¢o (Ua)Nep(Ug) = W # @, and take the corresponding representations
wo = Pow and wg = Pjw of a k-form w, it is easy to verify that

((p,gl o Wa)*wﬂ = Wgq-

A form w = Y ;widz! on R" is called smooth if each function w; is dif-
ferentiable. In general, a form w on a manifold M is said to be smooth (in
which case it is called a differential form) if the representation of w on
each parametrization is smooth. Note that we really just need to check this
for the parametrizations in an atlas, since each coordinate change (,051 0 Vg
is differentiable. From now on we will use the word “form” to mean a differ-
ential form. The set of differential k-forms on M is represented by QF(M).

Hw=> wrdz! is a k-form defined on an open subset of R, we define
a (k + 1)-form called exterior derivative of w as

dw = Zdw; Adzl.
T

EXAMPLE 2.8. Consider the form w = —ﬁ dz + ﬁ dy defined on
R?\{0}. Then,
y x
2 2 2 2
- y-r y-r —
= Wi dy A dx + @2 1 202 dz Ndy = 0.

The exterior derivative satisfies the following properties:

PROPOSITION 2.9. If a,w,w1,ws are forms on R, then

(i) d(w1 + wa) = dwi + dws;
(i) if w is k-form, d(w A @) = dw A a+ (—1)Fw A do;



2. DIFFERENTIAL FORMS 67

(i1i) d(dw) = 0;
(w) if f:R™ — R" is smooth, d(f*w) = f*(dw).

PROOF. Property (i) is obvious. Using (i), it is enough to prove (i7) for
w = aydz! and o = bydz’:

dwNha) = d(arbydz’ Adz”) = d(arby) Adx! A dz?
= (byda; + ardby) Adz' Adz’!
= bydar Ndz! Ndz? +ardby Ade! Adz?
= dwAa+ (—)kardz! Adby A dz’

dw A a+ (—1)kw A da.

Again, to prove (iii), it is enough to consider forms w = ardz’: since

n

dw = dag A dz! = ail.d:ci/\dxl,
et O’
=1

we have
n on 32(1] _ )
ddw) = Y :a i —dz? A dz’ A da?
7 Oz

j=11i=1

n 82a1 82(1[ ; i ]
R (axjc?xi - 3xi3:1:j) dz’ Adz* Adz” = 0.

i=1 j<i

To prove (iv), we first consider a 0-form g:

" dg . . " /0 . 0 aFft .
f*(dg) = f* ( a—jz-dw“) ZZ <8—$gz-of) dfzzz ((a—jiof)a—ij> dz’

i=1 ij=1

- “2dr! = d(go f) =d(f*g).

Then, if w = ardz’, we have

d(f*w) = d(ar o ) Ndf" + (ar o )d(df') = d(ar o f) NdfT = d(f*ar) Adf?
= (f*dag) N df' = f*(dar A dz") = f*(dw)

(where df! denotes the form df’* A --- A df%), and the result follows. a

Suppose now that w is a differential k-form on a smooth manifold M. We
define the (k + 1)-form dw as the smooth form that is locally represented by
dw,, that is, for each parametrization ¢, : U, — M, the form dw is defined
on o (U), as (pa1)*(dwa)- If pp : Us — M is another parametrization such
that ¢ (Ua) Np(Us) = W # @, then, setting f equal to ¢, o pg, we have

[ (dwg) = d(f*wqa) = dwg.
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Consequently,

(p5) dws = (05")" " (dwa)
= (fop;!) (dwa)
— (pa")" (dwa),

and the two definitions agree on the overlapping set W. We leave it as an
exercise to show that the exterior derivative defined for forms on smooth
manifolds also satisfies the properties of Proposition 2.9.

EXERCISES 2.10.

(1) Prove Proposition 2.5.

(2) (Ezterior derivative) Let M be a smooth manifold. Given a k-form
w in M we can define its exterior derivative dw without using local
coordinates: given k + 1 vector fields X7,..., X1 € x(M),

k+1
do(X1, ..., Xer1) = (=)' X w(Xy,. oo, Xy ooy X))+
i=1
Z(_l)Z+Jw([XlaXJ]7X1a s aXia s 7Xj7 s 7Xk-|-1)7

1<j

where the hat indicates an omitted variable.

(a) Show that dw defined above is in fact a (k + 1)-form in M,
that is,

(i) do(X1,..., X +Y], ..., Xpp1) =
dw(Xla vy Xy 7Xk-|-1) + dw(Xla I T aX/H-l);
(ii) dw(Xl, cee ,fXj, ces ,Xk+1):fdw(X1, cee an—l—l) for any
differentiable function f;
(iii) dw is alternating.

(b) Let z : W — R" be a coordinate system of M and let w =
> ardz™ A--- Adz* be the expression of w in these coordi-
nates (where the a’s are smooth functions). Show that the
local expression of dw is the same as the one used in the local
definition of exterior derivative, that is,

dw = z:da[/\d:ci1 A---dztk.
I

(3) Show that the exterior derivative defined for forms on smooth man-
ifolds satisfies the properties of Proposition 2.9.

(4) Show that:
(a) if w = fldz + f2dy + f3dz is a 1-form on R? then

dw = gtdy A dz + g*dz A dx + g3dx A dy,

where (¢, g%, ¢°) = curl(f', 2, f3);
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(b) if w = fldy Adz + f2dz Adx + f3dz A dy is a 2-form on R3,
then

dw = div(f*, f2, f3) dz A dy A dz.

(5) (De Rham cohomology) A k-form w is called closed if dw = 0.
If it exists a (k — 1)-form f such that w = df then w is called
exact. Note that every exact form is closed. Let Z* be the set of
all closed k-forms on M and define a relation between forms on Z*
as follows: a ~ B if and only if they differ by an exact form, that
is, if B — o = dO for some (k — 1)-form 6.

(a) Show that this relation is an equivalence relation.

(b) Let H®(M) be the corresponding set of equivalence classes
(called the k-dimensional de Rham cohomology space of
M). Show that addition and scalar multiplication of forms
define indeed a vector space structure on H*(M).

(c) Let f: M — N be a smooth map. Show that:

(i) the pullback f* carries closed forms to closed forms and
exact forms to exact forms;
(ii) if @ ~ S on N then f*a ~ f*8 on M;
(iii) f* induces a linear map on cohomology f*: H¥(N) —
H*(M) naturally defined by f4[w] = [f*w];
(iv) if g : L — M is another smooth map, then (f o g)f =
gto ft.

(d) Show that the dimension of H(M) is equal to the number of
connected components of M.

(e) Show that H*(M) = 0 for every k > dim M.

(6) Let M be a manifold of dimension n, let U be an open subset of
R™ and let w be a k-form on R x U. Writing w as

w= dt/\ZaId:vI +ZdemJ,
I J

where I = (i1,...,i,k—1) and J = (j1,...,jx) are increasing index
sequences, (z',...,z") are coordinates in U and ¢ is the coordinate
in R, consider the operator Q defined by

t
Q(w)(t,z) = Z (/t CL[dS) dz!,

I

which transforms k-forms w in R x U into (k — 1)-forms.

(a) Let f : V — U be a diffeomorphism between open subsets
of R". Show that the induced diffeomorphism f := id x f :
R x V — R x U satisfies

f*OQ:QOf*-

(b) Using (a), construct an operator Q which carries k-forms on
Rx M into (k—1)-forms and, for any diffeomorphism f : M —
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N, the induced diffeomorphism f:=idx f : Rx M - Rx N
satisfies f* cQ@=0Qo f* Show that this operator is additive,
ie. Qla+p) = Qa) + Q(B).

(c) Considering the operator Q defined in (b) and the inclusion i, :
M — Rx M of M at the “level” g, defined by i, (p) = (to,p),
show that w — 7"} w = dQw + Qdw, where 1 : Rx M — M
is the projection on M.

(d) Show that the maps 7f : H*(M) — H*(R x M) and 4, :
H¥(Rx M) — H(M) are inverses of each other (and so H*(M)
is isomorphic to H*(R x M)).

(e) Use (d) to show that, for k > 0 and n > 0, every closed k-form
in R” is exact, that is, H¥(R?) = 0 if k > 0. (Hint: Use induction
on n).

(f) Use (d) to show that, if f,g : M — N are two smoothly
homotopic maps between smooth manifolds (meaning that
there exists a smooth map H : RxM — N such that H(to,p) =
f(p) and H(t1,p) = g(p) for some fixed tg,t17 € R), then
ft=g.

(g) We say that M is contractible if the identity map id : M —
M is smoothly homotopic to a constant map. Show that R”
is contractible.

(h) (Poincaré Lemma) Let M be a contractible smooth manifold.
Show that every closed form on M is exact, that is, H* (M) = 0
for all £ > 0.

(7) (Symplectic manifold) A symplectic manifold (M,w), is a man-
ifold M equiped with a closed non-degenerate 2-form w. Note that
non-degenerate means that the map that to each tangent vector
X, € TpM associates the 1-tensor in T, M defined by ¢(X,)w, :=
wp(Xp, ) is a bijection.

(a) Show that dim M is necessarily even.

(b) Consider coordinates (z',...,z" y',...,y") in R?"  and the
differential form wy = Y 1 | dz’ A dy’. Show that (R?",wy) is
a symplectic manifold and compute the wedge product w{, of
n copies of wo. (Remark: The form wy is called the standard symplec-
tic form. This example gives us a local model for all symplectic manifolds -
Darboux Theorem).

(8) (Lie derivative of a differential form) Given a vector field X €
X(M), we define the Lie derivative of a form w along X as

d
Lyxw:= E((iﬁt)*“’)lt:o’

where 9 = F(-,t) with F the local flow of X at p.

(a) Show that the Lie derivative satisfies the following properties:
(i) LX(w1 A LUQ) = (wa1) ANwo+wi A (wag);
(ii) dLxw = Lxdw;
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(iii) Cartan formula: Lyw = +(X)dw + du(X)w
(cf. Exercise 1.14.8).
(b) Given a point p € M, a vector X, € T,M different from zero,

and choosing coordinates around p for which X, = (a%l)p’
show, using the definition of Lie derivative, that
ow
I _ 1,1
LX;UJId.’E = 4 ﬁdx.

3. Integration on Manifolds

Before we see how to integrate differential forms on manifolds, we will
start by studying the R™ case: for that, let us consider an n-form defined
on an open subset U of R". We already know that w can be written as

wy = a(z)dz' A--- Adz",

where a : U — R is a smooth function. The support of w is, by definition,
the closure of the set where w # 0 that is,

suppw = {z € R* : w, # 0}.

We will assume that this set is compact (in which case w is said to be
compactly supported) and is a subset of U. We define

/wz/a(x)dxl/\---/\dxnzz/a(x)dxl---dx",
U U U

where the integral on the right is a multiple integral on a subset of R®. This
definition is almost well-behaved with respect to changes of variables in R”.
Indeed, if f : V — U is a diffeomorphism of open sets of R,

frw=(ao f)(detdf)dy" A-- Ady",
and so

/f*w:/ (ao f)(detdf)dy' - - - dy™.
v 1)

If f is orientation preserving, then det (df) > 0, and the integral on the right
is, by the Change of Variables Theorem for multiple integrals in R”, equal
to fU w. For this reason, we will only consider orientable manifolds when
integrating forms on manifolds. Moreover, we will also assume that supp w
is always compact to avoid convergence problems.

Let M be an oriented manifold, and let A = {(U,, qa)} be an atlas
whose parametrizations are orientation-preserving. Suppose that suppw is
contained in some coordinate neighborhood Wy, = ¢, (U, ). Then we define

/w::/ wa:/ Wa-
M o Ua



72 2. DIFFERENTIAL FORMS

Note that this does not depend on the choice of coordinate neighborhood: if
suppw is contained in some other coordinate neighborhood Wg = ¢, (Up),
then wg = f*w,, where f = prlo ¢, and hence

/ wg = f*wa:/ We-
Uﬂ Uﬂ a

To define the integral in the general case we use a partition of unity
(cf. Section 6.2) subordinate to the covering {W,} of M, i.e., a family of
differentiable functions on M, {p;}icr, such that:

(i) for every point p € M, there exists a neighborhood V of p such
that V Nsupp p; = G except for a finite number of p;’s;

(i) for every point p € M, > . ; pi(p) = 1;
(iii) 0 < p; < 1 and supp p; C W, for some element W, of the covering.

Because of property (i), suppw (being compact) intersects the supports of
only finitely many p;’s. Hence we can assume that I is finite, and then

o (Zpi) o= Y pw— S

el el el
with w; = p;w and suppw; C W,,. Consequently we define:
/ w::Z/ wi:Z/ Dy; Wi-
M ier VM iel Vo
REMARK 3.1.

(1) When suppw is contained in one coordinate neighborhood W, the
two definitions above agree. Indeed,

Lo - L5 (5

icl el
* *
= j[ § Y W; = E j/ Y w; = E j[ Wi,
Uer ic1 YU icl ' M

where we used the linearity of the pullback and of integration on
R™.

(2) The definition of integral is independent of the choice of partition
of unity and the choice of covering. Indeed, if {§,}cs is another
partition of unity subordinate to another covering {Wg} compatible
with the same orientation, we have

S [ =X [ sip

i€l iel jeJ

5[ - S5 o

jeJ jeJ el

and
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(3) It is also easy to verify the linearity of the integral, that is,

/aw1+bw2:a/ w1+b/ wo.
M M M

for a,b € R and w;, ws n-forms on M.

EXERCISES 3.2.

(1) Let M be an n-dimensional differentiable manifold. A subset N C
M is said to have zero measure if the sets ¢, (N) C U, have zero
measure for every parametrization ¢, : U, — M in the maximal
atlas.

(a) Prove that in order to show that N C M has zero measure it
suffices to check that the sets ¢, 1(N) C U, have zero measure
for the parametrizations in an arbitrary atlas.

(b) Suppose that M is oriented. Let w € Q"(M) be compactly
supported and let W = ¢(U) be a coordinate neighborhood
such that M \ W has zero measure. Show that

/w:/go*w,
M U

where the integral on the right-hand side is defined as above
and always exists.
(2) Let z,y, z be the restrictions of the Cartesian coordinate functions
in R3 to S?, oriented so that {(1,0,0);(0,1,0)} is a positively ori-
ented basis of T(O’O’l)SQ, and consider the 2-form

w = zdy A dz + ydz A dz + zdz A dy € Q*(S?).

W
S2

using the parametrizations corresponding to
(a) spherical coordinates;
(b) stereographic projection.

Compute the integral

4. Stokes Theorem

In this section we will prove a very important theorem:

THEOREM 4.1. (Stokes) Let M be an oriented smooth manifold with
boundary, let w be a (n — 1)-differential form on M with compact support,
and let 1 : OM — M be the inclusion of the boundary OM in M. Then

/ i*w:/ dw,
oM M

where we consider OM with the the induced orientation (cf. Section 1.9).
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PROOF. Let us take a partition of unity {p; }icr subordinate to an open
covering of M by coordinate neighborhoods compatible with the orientation.
Then w = )7, ; piw, where we can assume I to be finite (w is compactly
supported), and hence

dw = dz piw = Z d(piw).
el i€l

By linearity of the integral we then have,

/dw—Z/dpzw and W_Z/ (piw).

el el

Hence, to prove this theorem, it is enough to consider the case where supp w
is contained inside one coordinate neighborhood of the covering. Let us then
consider a (n — 1)-form w with compact support contained in a coordinate
neighborhood W. Let ¢ : U — W be the corresponding parametrization.
Then, the representation of w on U can be written as

n
orw = Zajdxl A AdEIE N dzITE A - A da™,
j=1
(where each a; : U — R is a C*°-function), and

n
0
p'dw = dp*w = Z( 1)7 13;; dz' Ao Adz™.
i=1

The functions a; can be extended to C*°-functions on H" by letting

1 (03 . 1 n
(el ny __ Clj(aj’..-,gc) 1f(:L',...,£L')EU
a](-’E 3 s L )_{ 0 if (.Z‘l,...,ilfn) EH”’\U

IfWnNoM = @, then i*w = 0. Moreover, if we consider a rectangle I

containing U defined by equations b; < 27 <¢; (j = 1,...,n) we have,
0a; 0a;
] 1 J 1, .. n ] 1 va; 1, .. "
/ dw = / g7 dx dz / E dz
7 Oa; 1
= Z( 1)7-1 Jd I ) dat - dz 7t dzI T - da”
j:l Rn— 1 ]
n . . .
= Z(—l)g_l/ (aj(xl,...,xj_l,c]-,w]+1,...,a:")—
j:l Rn—1
—aj(gvl, ... ,xj_l,bj,a:j+1, - ,x")) det - de? Yot dz™ =0,

where we used Fubini Theorem, the Fundamental Theorem of Calculus and
the fact that the a;’s are zero outside U. We conclude that, in this case,

faMi*w:fde:O.
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If, on the other hand, W N OM # & we take a rectangle I containing
U now defined by the equations b; < 27 < ¢; for 5 = 1,...,n — 1, and
0 < 2™ < ¢,,. Then, as in the preceding case, we have

oa; da;
J 19% L o J 1 vl g1, ="
/ dw / 8.’E-7 d.’L' d-?? / 8.’1)9 d

‘ Oa
_ -1 n—1 n n—1
0+ (-1) /RH( i Ba:”d )dm -dx

= (—1)”_1/]R » (an(xl,...,xn_l,cn) — an(xl,...,x”_l,(])) dgt - dg™ !

= (—1)”/ lan(xl,...,x"*I,O)dwl---dm”fl.
R

To compute |, ot w we need to consider a parametrization ¢ of M defined
on an open subset of R* ! which preserves the standard orientation on
R"~! when we consider the induced orientation on M. For that, we can
for instance consider the set

U={@'...,a" ) e R | (-1)"z!, 2% ...,2"",0) € U}
and the parametrization @ : U :— M given by

Gz,...,z" H =9 ((—1)”:{:1,:1:2, ... ,.2:”_1,0) .

Recall that the orientation on M obtained from ¢ by just dropping the last
coordinate is (—1)" times the induced orientation on dM (cf. Section 1.9).
Therefore ¢ gives the correct orientation. The local expression of 7 : OM —
M on these coordinates (2 : U — U such that 2 = ¢~ 0i 0 @) is given by

izt 2 ) = (-1)"z!,2?%,...,2"10).
Hence,
/ fw = [@*i*w:/(iogE)*w:/(woz)*w:[f*w*w.
oM U U U U
Moreover,
n . .
Fotw = i*Zajdxl Ao AdTEANdSITE A A da”

n
= (ajoi)dit A---ANdiT L ANdITE A A"
—

J
= (=1D)™apo2)dz A--- Adz" 1,
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since di' = (—1)"dz!, di" = 0 and di/ = dz, for j # 1 and j # n.
Consequently,

/ ifw o= (=1)" / (an 01)dzt -+ dz™?
oM U
= (—1)”/~ an ((-1)"z',2%,...,2"71,0) da' - - - dz" !

= (—1)"/ an(ml,xz,...,x”—l,o)dxl..,dmn—1:/ do
Rn—l v

(where we have used the Change of Variables Theorem). O

EXERCISES 4.2.
(1) Consider the manifolds
S ={(z,y,2,w) € R : 2?2 + 2 + 22+ w? = 2}
T2 = {(x,y,z,w) eR' 22+t =22+l = 1}.
The submanifold 72 C S3 splits S? into two connected components.
Let M be one of these components and let w be the 3-form
w = zdx Ndy N\ dw — zdy N\ dz N dw.

Compute the two possible values of || o W-

(2) (Homotopy invariance of the integral) Recall that two maps fo, f1 :
M — N are said to be smoothly homotopic if there exists a dif-
ferentiable map H : R x M — N such that H(0,p) = fo(p) and
H(1,p) = fi(p) (cf. Exercise 2.10.6). If M is a compact oriented
manifold of dimension n and w is a closed n-form on NV, show that

/fow—/flw

(3) (a) Let X € X(S™) be a vector field with no zeros. Show that

H(t,p) = cos(wt)p + sin(nt) ||X I

is a smooth homotopy between the identity map and the an-
tipodal map, where we make use of the identification

X, € T,8" C T,R**! = R+,
(b) Using the Stokes Theorem, show that
where

/ w >0,
n+1

w= Z(—l)”lxidwl Ao NdT P A Az A da T
=1
and S™ = 0{x € R**! : ||z|| < 1} has the orientation induced
by the standard orientation of R*t!,
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(c) Show that if n is even then X cannot exist. What happens
when 7 is odd?

5. Orientation and Volume Forms

In this section we will study the relation between orientation and differ-
ential forms.

DEFINITION 5.1. A volume form (or volume element) on a manifold
M of dimension n is an n-form w such that w, # 0 for allp € M.

The existence of a volume form determines an orientation on M:

PROPOSITION 5.2. A manifold M of dimension n is orientable if and
only if there exists a volume form on M.

PROOF. Let w be a volume form on M, and consider an atlas {(Ua, ¢a)}-
We can assume without loss of generality that the open sets U, are con-
nected. We will construct a new atlas from this one whose overlap maps
have derivatives with positive determinant. Indeed, considering the repre-
sentation of w on one of these open sets U, C R", we have

Ohw = agdzl A--- A dz?,
where the function a, cannot vanish, and hence must have a fixed sign.
If a, is positive, we keep the corresponding parametrization. If not, we
construct a new parametrization by composing ¢, with (z!,...,z")
(—z',22,...,2"). Clearly, in these new coordinates, the new function a,
is positive. Repeating this for all coordinate neighborhoods we obtain a
new atlas for which all the functions a, are positive, which we will also de-
note by {(Uq,¥a)}. Moreover, whenever W := ¢, (Us) N @g(Up) # @, we
have
(pa')*wa = (p57) wp
and so wy = (@El 0 q)*wg. Hence,
agdrt A--- Adx! = ((PEI 0 9q)ag dw}j A---dz
= (ago <p§1 0 pq) det (d((PEl 0 pg)) dzt Ao Ad?

and so det (d((,og1 0 q)) > 0. We conclude that M is orientable.

Conversely, if M is orientable, we consider an atlas {(Uy, ¢q)} for which
the overlap maps @El o g are such that det (al(gog1 ©¢q)) > 0. Taking a
partition of unity {p;}ics subordinate to the covering of M by the corre-
sponding coordinate neighborhoods, we may define the forms

wi == pidzy A--- A da?

with suppw; = supp p; C @q,; (Uy,;)- Extending these forms to M by making
them zero outside supp p;, we may define the form w := ), ; w;. Clearly
w is a well defined n-form on M so we just need to show that w, # 0 for
all p € M. Let p be a point in M. Hence there is an ¢ € I such that
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pi(p) > 0 and suppp; C @q,(Us;). Then, there are linearly independent
vectors v1,...,v, € TpM such that (w;)p(v1,...,vn) > 0. Moreover, for
all other j € I\{i}, (wj)p(v1,...,v5) > 0. Indeed, if p ¢ @q,;(Uy;), then
(wj)p(v1,--.,v) = 0. On the other hand, if p € @q,; (Uy; ), then equation (4)
yields

dzj A--- Adzf = det (d(py] © ¢a;))da; A--- Adz]

and hence
pi(p -
(wj)p(v,...,vp) = () det (d((pai1 © Pg; ) (wi)p(v1,...,v,) > 0.
pi(p)
Consequently, wy(v1,...,v,) > 0, and so w is a volume form. O
REMARK 5.3. Sometimes we call a volume form an orientation. In this
case the orientation on M is the one for which a basis {v1,...,v,} of T,M
is positive if and only if wy(v1,...,v,) > 0.

If we fix a volume form w € Q"(M) on the orientable manifold M, we
can define the integral of any compactly supported function f € C*°(M,R)

as
fr-1,

(where the orientation of M is determined by w). If M is compact, we define
its volume to be
vol(M) :/ 1 :/ w.
M M
EXERCISES 5.4.

(1) Show that M x N is orientable if and only if both M and N are
orientable.

(2) Let M be an oriented manifold with volume element w € Q"(M).
Prove that if f > 0 then fM fw > 0. (Remark: In particular, the volume
of a compact manifold is always positive).

(3) Let M™ be a compact orientable manifold, and let w be an (n — 1)-
form in M.

(a) Show that there exists a point p € M for which (dw), = 0.
(b) Prove that there exists no immersion f : S! — R, of the unit
circle into R.

(4) Let f : S™ — S™ be the antipodal map. Recall that the n-
dimensional projective space is the differential manifold RP" =
S™/Zs, where the group Zs = {1, -1} acts on S” through1-z =z
and (—1) -z = f(z). Let 7 : S™ — RP"™ be the natural projection.

(a) Prove that w € Q%(S") is of the form w = 7*8 for some @ €
QF(RP™) iff f*w = w.
(b) Show that RP™ is orientable iff n is odd, and that, in this case,

/ 0 = 2/ 0.
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(c) Show that for n even the sphere S™ is the orientable double
cover of RP™ (cf. Exercise 8.6.9 in Chapter 1).
Let M be a compact oriented manifold with boundary and w €
Q"(M) a volume element. The divergence of a vector field X €
X(M) is the function div(X) such that

Lxw = (div(X))w
(cf. Exercise 2.10.8). Show that

/M div(X) = /a X

(Brouwer Fized Point Theorem)

(a) Let M™ be a compact orientable manifold with boundary OM #
@. Show that there exists no smooth map f : M — OM sat-
isfying f|ans = id.

(b) Prove the Brouwer Fixed Point Theorem: Let B = {z €
R™ : |z| < 1}. Any smooth map g : B — B has a fixed point,
that is, there exists a point p € B such that g(p) = p. (Hint:
For each point « € B, consider the ray r, starting at g(z) and passing through
z. There is only one point y(x) different from g(z) on r; N dB. Consider the
map f: B — 9B, that maps = € B to y(w))

6. Notes on Chapter 2

Section 1.

Given a finite dimensional vector space V we define its dual space
as the space of linear functionals on V.

PROPOSITION 6.1. If {v1,...,v,} is a basis for V then there is
a unique basis {T1,...,Tp} of V* dual to {v1,...,v,}, that is, such
that Tj(vj) = d;;.

PROOF. By linearity, the equations T;(vj) = ;; define a unique
set of functionals 7; € V*. Indeed, for any v € V, we have v =

n
>_j=1a;v; and so

n n
Ty(v) = a;Ti(vj) = Y a;0ij = a;.
j=1 j=1

Moreover, these uniquely defined functionals are linearly indepen-
dent. In fact, if

n
T:=> bT; =0,
=1

then, for each j = 1,...,7n, we have 0 = T'(v;) = >, bTi(vj) =
bj. To show that {T1,...,T,} generates V*, we take any S € V*
and set b; := S(v;). Then, defining T := > | b;T;, we see that
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S(vj) =T(vj) for all j = 1,...,n. Since {v1,...,v,} is a basis for
V, we have S =T. O

Moreover, if {v1,...,v,} is a basis for V and {T1,...,T},} is its
dual basis, then, for any v = ) ajv; € Vand T = ) bT; € V*, we
have

n

n n n
T('U) = szTL('U) = Z G,jbiﬂ('vj) = Z ajbiéz-j = Za,bz

ij=1 ij=1
If we now consider a linear functional £ on V*, that is, an element of
(V*)*, we have F(T) = T(vg) for some fixed vector vy € V. Indeed,
let {v1,...,v,} be a basis for V' and {T1,...,T,} its dual basis.
Then if T' = Y7, bT;, F(T) = Y1, b;F(T;). Denoting the values
F(T;) by a;, we have F(T) = 37" | a;b; = T(vg) for vo = >_1" | a;v;.
This establishes a 1 — 1 correspondence between (V*)* and V', and
allows us to view V as the space of linear functionals on V*; for
veVand T € V*, we write v(T) = T'(v).
Changing from a basis {v1,...,v,} to a new basis {v],..., v} in
V', we obtain a change of basis matrix S, whose jth column is
the vector of coordinates of the new basis vector ’U;- in the old basis,
and we can write the symbolic matrix equation

(v1y---5v5) = (V1,-..,v,)S-

The coordinate (column) vectors a and b of a vector v € V (a
contravariant 1-tensor on V') with respect to the old basis and to
the new basis are related by

b1 a1
b= : | =51 =S 'a,
b, anp
since we must have (v!,...,v))b= (v1,...,v5)a = (v},...,v})S a.
On the other hand, if {T1,...,T,} and {T7,...,T}} are the dual
bases of {v1,...,v,} and {v},...,v],}, we have
T, !
: (V1,0 y0n) = : (v),...,0p) =1
T, T

(where, in the symbolic matrix multiplication above, each coor-
dinate is obtained by applying the covectors to the vectors), and
SO

Tl Tl
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implying that

T! T
=g :
T! T,
The coordinate (row) vectors a = (a1,...,a,) and b = (by,...,b,)

of a 1-tensor T' € V* (a covariant 1-tensor on V') with respect to
the old basis {T1,...,T,} and to the new basis {77,...,T.} are
related by

T ! ! !
a : =b : < aS : =b :
TI

n T,
and so aS = b. Note that the coordinate vectors of the covariant
1-tensors on V transform like the basis vectors of V' (that is, by
means of the matrix S) whereas the contravariant 1-tensors on V'

transform by means of the inverse of this matrix.

Section 3.

(Change of Variables Theorem) Let U,V C R"™ be open sets, g :
U — V a diffeomorphism and f : V — R an integrable function.

Then
[ 1= [ ol

To define smooth objects on manifolds it is often useful to define
them first on coordinate neighborhoods and then glue the pieces
together by means of a partition of unity:

THEOREM 6.2. Let M be a smooth manifold and V an open
cover of M. Then there is a family of differentiable functions on
M, {pitic1, such that:

(i) for every point p € M, there exists a neighborhood U of p such
that U Nsupp p; = & except for a finite number of p;’s;
(ii) for every pointp € M, Y . pi(p) = 1;
(iii) 0 < p; <1 and suppp; C V for some element V € V.

REMARK 6.3. This collection p; of smooth functions is called
partition of unity subordinate to the cover V.

PRrOOF. Step 1. If M is a compact manifold, we do the follow-
ing: for every point p € M we consider a coordinate neighborhood
W, = ¢p(Up) around p contained in an element V, of V, such that
¢p(0) = p and B3(0) C U, (where B3(0) denotes the ball of radius
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3 around 0); then we consider the C*°-functions (cf. Figure 1):

AR - R
T e@—l)l(w—?) fl<z<?2
0 otherwise

h:R — R
[2 () dt
z Jxz TNV TP
ZA(t) dt

B:R* —» R

z — h(|z]).

Notice that h is a decreasing function with values 0 < h(z) < 1,

\/

FIiGURE 1

which is equal to zero for z > 2 and equal to 1 for z < 1; hence,
we can consider bump functions vy, : M — [0, 1] defined by

ﬂ(‘P;l(Q))a if g € p(Up)
Y(q) =
0, otherwise;

then suppy, = ¢,(B2(0)) C ¢,(B3(0)) C W, is contained in-
side an element V,, of the covering; moreover, {¢,(B1(0))}pers is
an open covering of M and so we can consider a finite subcover
{¢p,(B1(0))}¥_; such that M = U¥_,p,.(B1(0)); finally we take the

2
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functions
Vpi

22?21 7

Note that Z?Zl Yp; (¢) # 0 since g is necessarily contained inside
some ¢, (B1(0)) and so 7;(g) # 0. Moreover, 0 < p; <1, > p;=1
and supp p; = supp-y,; C Vj,.

Step 2. If M is not compact we can use a compact exhaus-
tion, that is, a sequence {K;};cn of compact subsets of M such
that K; C intK;;1 and M = U2 K;. The partition of unity is
then obtained in the following way: the family {¢,(B1(0))}penr is
a covering of K71; hence, we can consider a finite subcover of K,

{n(B1O), - 0p, (B1(O) }
by induction, we obtain a finite number of points such that
{6 (B1O), .01 (B1(0) ]

covers K;\intK;_ 1 (a compact set); then, for each i, we consider
the corresponding bump functions

pi =

Wpia"'a’Yp%i ‘M — [Oal]a

note that vy, i +- - Wi > 0 for every ¢ € K;\intK;_; (as there is

always one of these functions which is different from zero); as in the
compact case, we can choose these bump functions so that supp,:
is contained in some element of V; we will also choose them so that
SUPP Yy C intK;;1\Ki_2 (an open set); hence, {’Yp;i}ieN,lgjgki is
locally finite, meaning that, given a point p € M, there exists
an open neighborhood V of p such that only a finite number of
these functions is different from zero in V; consequently, the sum
h ey Z?”Zl Toi is a positive, differentiable function on M; finally,

making
= s
pIrat} Zj;l Tpi
we obtain the desired partition of unity (subordinate to V). O

REMARK 6.4. Compact exhaustions always exist on manifolds.
In fact, if U is a bounded open set of R, one can easily construct
a compact exhaustion { K };en for U by setting

K; = {x e U : dist(z,0U) > l}
n

If M is a differentiable manifold, one can always take a countable
atlas A = {(Uj, ¢;j)} en such that each U; is a bounded open set,
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thus admitting a compact exhaustion { K ZJ }ien. Therefore

U ¢ (Ki] )
=t IEN
is a compact exhaustion of M.

6.3. Section 4. (Fubini Theorem) Let A C R" and B C R™ be com-
pact intervals and let f : A x B — R be a continuous function. Then

/AXBf:/A(/Bf(%y)dyl---dym> dol - da”
- /B (/Af(w’y)dml ' "dﬂﬁ") dy* - - dy™.

6.4. Bibliographical notes. The material in this chapter can be found
in most books on differential geometry (e.g. [Boo03], [GHLO04]). A text en-
tirely dedicated to differential forms and their applications is [dC94]. The
study of de Rham cohomology leads to a beautiful and powerful theory,
whose details can be found in [BT82].



CHAPTER 3

Riemannian Manifolds

In this chapter we begin our study of Riemannian geometry.

Section 1 introduces general tensor fields on a smooth manifold. A
Riemannian metric on a smooth manifold is simply a tensor field deter-
mining an inner product at each tangent space (Section 2).

In Section 3 we define affine connections, which provide a notion of
parallelism of vectors along curves, and consequently of geodesics (curves
whose tangent vector is parallel). Riemannian manifolds carry a special con-
nection, called the Levi-Civita connection (Section 4), whose geodesics
have special distance-minimizing properties (Section 5).

In Section 6 we prove the Hopf-Rinow Theorem, relating the prop-
erties of a Riemannian manifold as a metric space with the properties of its
geodesics.

1. Tensor Fields

In the same way as we defined a tensor field of alternating tensors (that
is, a form), we can define tensor fields of general type:

DEFINITION 1.1. A (k,m)-tensor field is a map that to each point
p € M assigns a tensor T € ’Tk’m(TI;‘M, T, M).

EXAMPLE 1.2. A vector field is a (0, 1)-tensor field (or a 1-contravariant
tensor field), that is, a map that to each point p € M assigns the 1-
contravariant tensor X, € T, M.

The space of (k,m)-tensor fields is clearly a vector space since linear
combinations of (k,m)-tensors are still (k,m)-tensors. Moreover, if W is a
coordinate neighborhood of M, we know that {(dz"),} is a basis for T,y M

and that {(a?m‘)p} is a basis for T,M. Hence, the value of a (k, m)-tensor
field T at a point p € W can be written as the tensor

; 0 0
Ji- Jm g ? _
T, = E aj, p)(dz™), ® ®(d$k)p®<8wjl)p® ®<8wjm)p

where the aj v Z],:" W — R are functions which at each p € W give us the

components of T}, relative to these bases of T)M and Ty M. Thus, just as
we did with forms, we say that a tensor field is differentiable if all these
functions are differentiable for all coordinate neighborhoods of the maximal

85
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atlas. Again, we only need to consider the coordinate neighborhoods of an
atlas, since all overlap maps are differentiable (cf. Exercise 1.4.1).

Just as we did for forms, we can define the pullback of a covariant tensor
field:

DEFINITION 1.3. Let f : M — N be a differentiable map between smooth
manifolds. Then, each differentiable k-covariant tensor field T on N defines
a k-covariant tensor field f*T on M in the following way:

(f*T)p(’Ul, P ,’Uk) = Tf(p)((df)pvl, ey (df)pvk),
forvi,...,v € T,M.

EXERCISES 1.4.

(1) Find the relation between coordinate functions of a tensor field in
two overlapping coordinate systems.
(2) (Lie derivative of a tensor field)
(a) Generalize the definition of Lie derivative of a k-form w along
a vector field X, Lxw, to the Lie derivative of a k-covariant
tensor field T along X, LxT (cf. Exercise 2.10.8 in Chapter 2).
(b) Show that

Lx (T(Y1,...,Yy)) = LxT(Y1,...,Y%)
+T(LXY1,--- ,Yk) + ... —I—T(Yl,... ,Lka),

i.e., show that

X (T(Wi,..., V%)) = LxT(Yi,...,Ys)
—|—T([X,Y1],...,Yk) + ... +T(Y1,,[X,Yk])

(cf. Exercises 6.10.10 and 6.10.11 in Chapter 1).
(c) How would you define the Lie derivative of a (k,m)-tensor
field?

2. Riemannian Manifolds

The metric properties of R" (distances, angles, volumes) are determined
by the canonical Cartesian coordinates. In a general differentiable manifold,
however, there are no such preferred coordinates; to define distances, angles
and volumes we must add more structure, namely a special tensor field called
a Riemannian metric.

DEFINITION 2.1. A tensor g € T*(T* M) is said to be
(i) symmetric if g(v,w) = g(w,v) for all v,w € T,M;
(i) nondegenerate if g(v,w) = 0 for all w € T, M implies v = 0;
(iii) positive definite if g(v,v) > 0 for all v € T,M \ {0}.
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A 2-covariant tensor field g is said to be symmetric, nondegenerate or
positive definite if g, is symmetric, nondegenerate or positive definite for all
peM. If x:V — R” is a local chart, we have

n
g= Z gijda:i (034 d.Tj
ig=1

_ (9 9
9ii = I\ 521 053 )

It is easy to see that g is symmetric, nondegenerate or positive definite if
and only if the matrix (g;;) has these properties (see Exercise 2.11.1).

in V, where

DEFINITION 2.2. A Riemannian metric on a smooth manifold M is
a symmetric positive definite smooth 2-covariant tensor field g. A smooth
manifold M equipped with a Riemannian metric g is called a Riemannian
manifold, and denoted by (M, g).

A Riemannian metric is therefore a smooth assignment of an inner prod-
uct to each tangent space. It is usual to write

9p(v,w) = (v, W)y

ExAMPLE 2.3. (Euclidean n-space) It should be clear that M = R"
and

n
g= Z dz' @ dz*
=1
define a Riemannian manifold.

PROPOSITION 2.4. Let (N, g) be a Riemannian manifold and f : M — N
an immersion. Then f*g is a Riemannian metric in M (called the induced
metric).

PROOF. We just have to prove that f*g is symmetric and positive defi-
nite. Let p € M and v,w € T, M. Since g is symmetric,

(f*9)p(v,w) = gf(p)((df)p"’a (df )pw) = gf(p)((df)pwa (df )pv) = (f*9)p(w,v).
On the other hand, it is clear that (f*g),(v,v) > 0, and

(f*g)P(UaU) =0=> gf(p)((df)pva (df)]lv) =0= (df)liv =0=v=0
(as (df)p is injective). O

In particular, any submanifold M of a Riemannian manifold (N, g) is
itself a Riemannian manifold. Notice that, in this case, the induced metric
at each point p € M is just the restriction of g, to T,M C T,N. Since R"
is a Riemannian manifold (cf. Example 2.3), we see that any submanifold
of R" is a Riemannian manifold. Whitney’s Theorem then implies that any
manifold admits a Riemannian metric.
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It was proved in 1954 by John Nash ([Nas56]) that any compact n-
dimensional Riemannian manifold can be isometrically embedded in RY for
N = "84 (that is, embedded in such a way that its metric is induced by
the Euclidean metric of RY). Gromov ([Gro70]) later proved that one can
take N = w Notice that for n = 2 Nash’s result gives an isometric
embedding of any compact surface into R'7, and Gromov’s into R!®. In
fact, Gromov has further showed that any surface isometrically embeds in
R5. This result cannot be improved, as the real projective plane with the
stfnda,rd metric (see Exercise 2.11.3) cannot be isometrically embedded into
R*.

ExAMPLE 2.5. The standard metric on

S" = {z e R*: ||z|| = 1}

is the metric induced on S™ by the Euclidean metric on R**!. A parametriza-
tion of the open set

U={zec8":z"" >0}
is for instance

o(zt,...,z") = (:cl,...,w",\/1—(:151)2—...—(:5")2),

and hence the coefficients of the metric tensor are

[ Op Op\ s xtad
95 =\ ae7) =~ T T (@2 ...~ @)
Two Riemannian manifolds will be regarded to be the same if they are
isometric:

DEFINITION 2.6. Let (M,g) and (N,h) be Riemannian manifolds. A
diffeomorphism f : M — N is said to be an isometry if f*h = g. Similarly,
a local diffeomorphism f : M — N is said to be a local isometry if f*h = g.

Particularly simple examples of Riemannian manifolds can be constructed
from Lie groups. Recall that given a Lie group G and z € G, the left trans-
lation by z is the diffeomorphism L, : G — G given by L,(y) = zy for all
y € G. A Riemannian metric on G is said to be left-invariant if L, is an
isometry for all z € G.

PROPOSITION 2.7. Let G be a Lie group. Then g(-,-) = (-,-) is a left-
invariant metric if and only if
(5) (v, w)g = ((dLy-1), v, (dLy-1), w)e
for allx € G and v,w € T,G, where e € G is the identity element and (-, "),
is an inner product on the Lie algebra g = T.G.

PROOF. If g is left-invariant, then (5) must obviously hold. Thus we
just have to show that (5) defines indeed a left-invariant metric on G. We
leave it as an exercise to show that the smoothness of the map

GxG>3(z,y)—z ly=L1yeqG
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implies the smoothness of the map
G xTG > (z,v) = (dLy-1),v € TG,

and that therefore (5) defines a smooth tensor field g on G. It should also
be clear from (5) that g is symmetric and positive definite. All that remains
to be proved is that g is left-invariant, that is,

((dLy), v, (dLy), w)yz = (v, w)s
for all v,w € T, G and all z,y € G. We have

((dLy), v, (dLy), w),, = ((dLga) 1), (@Ly), v, (dLigay 1), (dLy), w)

= <(d (walyfl ° Ly))zv’ (d (Lr%f1 e Ly))mw>e
= ((dLy-1), v, (dLy-1), w),
= (v, w)y.

O

Thus any inner product on the Lie algebra g = T.G determines a left-
invariant metric on G.

A Riemannian metric allows us to compute the length of any vector (as
well as the angle between two vectors with the same base point). Therefore
we can measure the length of curves:

DEFINITION 2.8. If (M,{(-,-)) is a Riemannian manifold and ¢ : I C
R — M is a differentiable curve, the length of its restriction to [a,b] C I is

The length of a curve segment does not depend on the parametrization
(see Exercise 2.11.5).

If M is an orientable n-dimensional manifold then it possesses volume
elements, that is, differential forms w € Q™(M) such that w, # 0 for all p €
M. Clearly, there are as many volume elements as differentiable functions
f € C*°(M) without zeros.

DEFINITION 2.9. If (M,g) is an orientable Riemannian manifold, w €
QO"(M) is said to be a Riemannian volume element if

wp(vi,...,v,) = %1
for any orthonormal basis {v1,...,v,} of T,M and allp € M.
Notice that if M is connected there exist exactly two Riemannian volume
elements (one for each choice of orientation). Moreover, if w is a Riemannian

volume element and z : V — R is a chart compatible with the orientation
induced by w, one has

w= fdz* A... Adz"
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for some positive function

PN
N oxl’ " ozn )

If S is the matrix whose columns are the components of 8%1’ ey Hom ON
some orthonormal basis with the same orientation, we have

f=det S = (det (52))% = (det (8°5))? = (det(gi;))?

since clearly the matrix S'S is the matrix whose (i, j)-th entry is the inner
product g (%, a—zj) = ij-

A Riemannian metric (-,-) on M determines a linear isomorphism be-
tween TpM and Ty M for all p € M, by mapping any vector v, € T,M to
the covector wy, given by wp(wp) = (vp, wp). This extends to an isomorphism
between X(M) and Q!(M). In particular, we have

DEFINITION 2.10. Let (M, g) be a Riemannian manifold and f : M — R
a smooth function. The gradient of f is the vector field grad f associated
to the 1-form df through the isomorphism determined by g.

EXERCISES 2.11.
(1) Let g = > 9ij dz' ® dz? € T*(T;yM). Show that:
(i) g is symmetric iff g;j = gji (4,5 =1,...,n);
(ii) ¢ is nondegenerate iff det(g;;) # 0;
(iii) g is positive definite iff (g;;) is a positive definite matrix;
(iv) if g is nondegenerate, the map ®, : T, M — Ty M given by

Dy (v)(w) = g(v, w)

for all v,w € T, M is a linear isomorphism;
(v) if g is positive definite then g is nondegenerate.

(2) Prove that any differentiable manifold admits a Riemannian struc-
ture without invoking Whitney’s Theorem. (Hint: Use partitions of
unity).

(3) (a) Let (M, g) be a Riemannian manifold and let G be a Lie group

acting freely and properly on M by isometries. Show that
M /G has a natural Riemannian structure (called the quotient
structure).

(b) How would you define the standard metric on the standard
n-torus T" = R" /Z"?

(c) How would you define the standard metric on the real pro-
jective n-space RP™ = S™/Zy?

(4) Show that the standard metric on S3 = SU(2) is left-invariant.

(5) We say that a differentiable curve y: J — M is obtained from the
curve ¢ : I -+ M by reparametrization if there exists a smooth
bijection f : I — J (the reparametrization) such that ¢ = y o f.
Show that if - is obtained from ¢ by reparametrization then the
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length of the restriction of ¢ to [a,b] C I is equal to the length of
the restriction of v to f([a,b]) C J.

(6) Let (M, g) be a Riemannian manifold and f € C*°(M). Show that
if a € R is a regular value of f then grad(f) is orthogonal to the
submanifold f~1(a).

(7) Let (M, g) be an oriented Riemannian manifold with boundary. For
each point p € M we define the linear isomorphism g, : T,M —
T, M given by (gy(v)) (w) = gp(v,w) for all v, w € T, M. Therefore,
we can identify T, M and Ty M, and extend this identification to
the spaces X(M) and Q'(M) of vector fields and 1-forms on M.

(a) Given two 1-forms w,n € Q'(M), we can define their inner
product (w,n) as the inner product of the associated vector
fields. If £ > 1, we define the inner product of a := a3 A-- - Aoy,
and B :=B1 A--- A By (Wlth Q1yeeeyQpy Py, Bk € QI(M))
to be (o, B) = det ({a, B;)). By linearity, we can define the
inner product of any two k-forms o, 8 € Q¥(M). Show that
this inner product is well defined, i.e., does not depend on
the representations of «, 3. Compute (w,7n) for the following
2-forms in R3:

adx Ndy +bdy Ndz + cdz N dx
n = edzANdy+ fdyANdz+gdzANdzx

(Remark: For k = 0 we define the inner product of functions f,g to be the
usual product fg).

(b) (Hodge *-operator) Consider the linear isomorphism  : AkT;M —
A”’kTIj‘M defined as follows: if {01,..., 60k, Okt1,...,0,} is any
positively oriented orthonormal basis of T M then (61 A--- A
0r) = Ok11 N --- A B,. Show that * is well defined.

(c) We can define x : QF (M) — Qm k(M) by setting (xw), = *(wp)
for all p € M and w € QF(M). Write out an expression for *w
in local coordinates, and show that it is a differential form.

(d) Prove that for all f,g € C*®°(M,R) and w,n € QF(M)

(i) *(fw+gn) =frwt+gxmn
(ii) * *w = (=1)k=k) o
(iii) w A *n =n A *w = (w,n)Ir;
(iv) *#(w A xn) = (0 A xw) = (w,n);
(v) (xw,*n) = (w,n),
where ¥ = *1 is the Riemannian volume element determined
by the metric ¢ and the orientation of M.

(e) (Divergence Theorem) Let X € X(M) be a vector field on M
and wx € Q'(M) be the 1-form determined by X. Defining
the divergence of X to be div X := *d * wx, show that if M
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is compact

/ diVX’l?M: <X,TL>’[93M
M oM

where n is the outward-pointing unit vector field on M.
(f) Assume that 0M = @. Show that

(w,) == /M<w,n> oy

is an inner product on Q¥(M). Moreover, show that (w,n) =
JyywAxn= [, nA*wand (xw,*n) = (w,n).

(g) Define the linear operator § : QF(M) — QFY(M) as § :=
(—1)k(+1)d*. Show that:

(1) & = (—1)Mk+HD+L & g
(ii) *6 = (—1)kdx;
(iii) 6% = (—1)*¥*! x q;
(iv) 00 =0;
(v)

v) (dw,n) = (w,dn).

(h) (Laplacian) Consider the Laplacian operator A := dd+dd :
QF(M) — QF(M). Show that if w,n are differential forms and
f is a differentiable function,

(i) *A = Ax;
(i) (Aw,n) = (w, An);
(iii) Aw =0« (dw =0 and dw = 0);
(iv) Af = —div (grad(f));
(v) A(fg) = fAg+gAf — 2(grad(f), grad(g))-

(i) A harmonic form is a differential form w such that Aw = 0.
Show that if M is connected then any harmonic function on
M must be constant, and any harmonic n-form (n = dim M)
must be a constant multiple of the volume element 9 ,;.

(j) Assume the following result (Hodge decomposition): Any
k-form w on a compact oriented Riemannian manifold M can
be uniquely decomposed in a sum w = wy + da + 03, where
wy is a harmonic form, a € Q¥ 1(M) and B € QFF(M).
Show that any cohomology class on M (cf. Exercise 2.10.5 in
Chapter 2) can be uniquely represented by a harmonic form.

(k) (Green’s formula) Let M be a compact Riemannian manifold
with boundary. The normal derivative of a smooth map
f : M — R is the differentiable map defined on M by % =
(grad(f),n), where n is the outward-pointing unit normal field
on OM. Show that

_ 0fa of1
/M(flAfQ  BAf) O = — /a ) (fla—n _ 237) Sonr.
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(1) Let M be a compact Riemannian manifold with boundary, and
suppose that Af =0 in M \ OM and that one of the following
boundary conditions holds:

(1) flom =0 (Dirichlet condition);
(ii) % = (0 (Neumann condition).
Show that f = 0 in the first case, and that f is constant in
the second case.
(8) (Degree of a map) Let M, N be compact, connected oriented man-
ifolds of dimension n, and let f : M — N be a smooth map.

(a) Show that there exists a real number & (called the degree of f,

and denoted by deg(f)) such that, for any n-form w € Q"(N),

forens

(Hint: Use the Hodge decomposition).

(b) If f is not surjective then there exists an open set W C N
such that f~'(W) = @. Deduce that if f is not surjective
then k£ = 0.

(c) Show that if f is an orientation-preserving diffeomorphism
then deg(f) = 1, and that if f is an orientation-reversing dif-
feomorphism then deg(f) = —1.

(d) Let f: M — N be surjective and let ¢ € N be a regular value
of f. Show that f!(q) is a finite set and that there exists a
neighborhood W of g in N such that f~!(W) is a disjoint union
of opens sets V; of M with fl|y;, : V; = W a diffeomorphism.

(e) Admitting the existence of a regular value of f, show that
deg(f) is an integer (Remark: Sard’s Theorem guarantees that the
set of critical values of a differentiable map f between manifolds with the same
dimension has zero measure, which in turn guarantees the existence of a regular
value of f).

(f) What is the degree of the natural projection 7 : S — RP"
for n odd?

(g) Given n € N, indicate a smooth map f : S' — S! of degree n.

(h) Let S® C R**! be the unit sphere with the metric induced by
the Euclidean metric of R**!. Let X be a vector field tangent
to S™ such that || X|| = 1. Consider the map F; : S" — R**!
given by Fi(z) = cos(nt)z + sin(nt)X,. Show that F} is a
smooth map of S™ on S”, and define k(t) = deg(F;). Show
that the map ¢ — k(t) is continuous.

(i) What are the values of £(0) and k(1)? Show that if n is even
then there exists no vector field X on S™ such that X, # 0 for
all p € S™.
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3. Affine Connections

If X and Y are vector fields in Euclidean space, we can define the di-
rectional derivative VxY of Y along X. This definition, however, uses
the existence of Cartesian coordinates, which no longer holds in a general
manifold. To overcome this difficulty we must introduce more structure:

DEFINITION 3.1. Let M be a differentiable manifold. An affine con-
nection on M is a map V : X(M) x X(M) — X(M) such that
(i) VixygvZ = fVXxZ + gVy Z;
(i) Vx(Y + Z) = VxY + VxZ;
(iir) Vx(fY) = (X - )Y + fVxY
for all X,Y,Z € (M) and f,g € C*®°(M,R) (we write VxY :=V(X,Y)).

The vector field V xY is sometimes known as the covariant derivative
of Y along X.

PROPOSITION 3.2. Let V be an affine connection on M, let X, Y € X(M)
and p € M. Then (VXY)p € T,M depends only on X, and on the values
of Y along a curve tangent to X at p. Moreover, if  : W — R" are local
coordinates on some open set W C M, we have

n n a
6 VxY = Xy e XIvk | =
(6) D'e ; +j%::1 ik Oz

where the n3 differentiable functions I‘;-k : W — R, called the Christoffel
symbols, are defined by

(1) v, 2 -y 2
807 Oxk pa Tk Qi
PRrROOF. It is easy to show that an affine connection is local, that is, if
X,Y € %X(M) coincide with X,Y € X(M) in some open set W C M then
VxY =V )'(f/ on W (see Exercise 3.6.1). Consequently, we can compute
VxY for vector fields X,Y defined on W only. Let W be a coordinate neigh-
borhood for the local coordinates  : W — R"™, and define the Christoffel

symbols associated with these local coordinates through (7). Writing out
= 0

— , i~

VxY = Vg xio, Zl Yo

‘7:

and using the properties listed in definition (3.1), we obtain (6). This for-
mula clearly shows that (VxY), depends only on X*(p),Y*(p) and (X -
Y*)(p). However, X*(p) and Y"*(p) depend only on X, and Y, and (X -

Y (p) = %Yi(c(t))|t:0 depends only on the values of Y* (or Y) along a
curve ¢ whose tangent vector at p = ¢(0) is X),. O
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REMARK 3.3. Locally, an affine connection is uniquely determined by
specifying its Christoffel symbols on a coordinate neighborhood. However,
the choices of Christoffel symbols on different charts are not independent,
as the covariant derivative must agree on the overlap.

A vector field defined along a differentiable curvec:1 — M is a
differentiable map V' : I — TM such that V(t) € T(;,)M for allt € I. An
obvious example is the tangent vector ¢(t). If V' is a vector field defined along
the differentiable curve ¢ : I — M with ¢ # 0, its covariant derivative
along c is the vector field defined along c¢ given by

DV

W(t) = VeV =(VxY)qs
for any vector fields X, Y € X(M) such that X ) = ¢(t) and Y, = V(s),
with s € (t—g,t+¢) for some € > 0 (if ¢(¢) # 0 such extensions always exist).
Proposition 3.2 guarantees that (VxY);) does not depend on the choice of
X,Y; in fact, if in local coordinates  : W — R™ we have z*(t) := z%(c(t))

and
Vo= v o ()

then

DV =3 (viey+ 3 rieonsiovie | (-
dt , . ik or’ ’
i=1 Gok=1 c(t)

DEFINITION 3.4. A wector field V' defined along a curve ¢ : I — M is
said to be parallel along c if

DV

E(t) =0
for allt € I. The curve c is said to be a geodesic of the connection V if ¢
is parallel along c, i.e., if

D¢

—() =0

Ly
forallt € 1.

In local coordinates = : W — R”, the condition for V' to be parallel
along c is written as

n
(8) Vig Y ThalVE=0 (i=1,...,n).
Gok=1

This is a system of first order linear ODE’s for the components of V. By
the Picard-Lindelof Theorem, given a curve ¢ : I — M, a point p € ¢(I) and
a vector v, € T, M, there exists a unique vector field V' : I — T'M parallel
along ¢ such that V' (0) = vp, which is called the parallel transport of v,
along c.
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Moreover, the geodesic equations are

n
(9) B4y ThiliF =0 (i=1,...,n).
Gok=1

This is a system of second order (nonlinear) ODE’s for the coordinates of
c(t). Therefore the Picard-Lindel6f Theorem implies that, given a point
p € M and a vector v, € T, M, there exists a unique geodesic ¢ : [ — M,
defined on a maximal open interval I such that 0 € I, satisfying ¢(0) = p
and ¢(0) = vp.

We will now define the torsion of an affine connection V. For that, we
note that, in local coordinates z : W — R", we have

0

n n
VaY —VyX =3 | X Yi-v-X+ YT (XY - vixh) |

i=1 Gk=1
n

. ‘ !
=[X. Y]+ Y (05 —Thy) XY=
i,5,k=1

DEFINITION 3.5. The torsion operator of a connection V on M is the
operator T : X(M) x X(M) — X(M) given by

T(X,Y) = VxY — VyX — [X,Y],
for all XY € X(M). The connection is said to be symmetric if T = 0.

The local expression of T'(X,Y) makes it clear that T'(X,Y’), depends
linearly on X, and Y,. In other words, T is the (2,1)-tensor field on M
given in local coordinates by

n
; ; ; 0
k
1,5,k=1
(recall that any (2, 1)-tensor 7' € T21(V*,V) is naturally identified with a
bilinear map &7 : V* x V* — V =2 V** through &7 (v,w)(a) = T(v,w, a)
for all v,w € V, a € V*).

Notice that the connection is symmetric iff VxY — Vy X = [X,Y] for
all X,Y € X(M). In local coordinates, the condition for the connection to
be symmetric is ‘ '

;’k = ?cj (Z’]ak = 17"'7”)
(hence the name).

EXERCISES 3.6.

(1) (a) Show thatif X, Y € X(M) coincide with X,Y € %(M) in some
open set W C M then VxY = VY on W. (Hint: Use bump

functions with support contained on W and the properties listed in definition

(3.1)).
(b) Obtain the local coordinate expression (6) for VxY'.
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(c) Obtain the local coordinate equations (8) for the parallel trans-
port law.
(d) Obtain the local coordinate equations (9) for the geodesics of
the connection V.
(2) Determine all affine connections on R". Of these, determine the
connections whose geodesics are straight lines.
(3) Let V be an affine connection on M. If w € Q'(M) and X € X(M),
we define Vxw € QY(M) by

Vxw(Y) =X - (w(Y)) — w(VxY)

for all Y € X(M).
(a) Show that this formula defines indeed a 1-form, i.e., show that
(Vxw(Y)) (p) is a linear function of Y.
(b) Show that

(i) Vixqgvw = fVxw+ ¢Vyuw;
(i) Vx(w+1n) = Vxw + Vxn;

(iif) Vx(fw) = (X - flw+ fVxw

for all X,Y € X(M), f,g € C®°(M,R) and w,n € Q' (M).

(c) Let z : W — R" be local coordinates on W C M, and take

n
w= E w;dz’
i=1

on W. Show that

n n
Vxw= Z X -w; — Z I‘?inwk dz’.
i=1 4.k=1

(d) Define VxT for an arbitrary tensor field T in M, and write
its expression in local coordinates.
4. Levi-Civita Connection

In the case of a Riemannian manifold, there is a special choice of con-

nection called the Levi-Civita connection, with very important geometric
properties.

DEFINITION 4.1. A connection V in a Riemannian manifold (M, (-, "))

is said to be compatible with the metric if

X (Y, Z) = (VxY,Z) + (Y, Vx Z)

for all X,Y,Z € X(M).

If V is compatible with the metric, then the inner product of two vector

fields V1 and V5, parallel along a curve, is constant along the curve:

%(Vl (), Va(t)) = (Ve Vi (1), Va(t)) + (Va(t), Vi Va(t)) = 0.
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In particular, parallel transport preserves lengths of vectors and angles be-

1
tween vectors. Therefore, if ¢ : I — M is a geodesic, then (¢(t),¢é(t))2 =k
is constant. If a € I, the length s of the geodesic between a and ¢ is

s:/:@(u),e(u))%du:/:kdu:k(t—a).

In other words, t is an affine function of the arclength s (and is therefore
called an affine parameter); this shows in particular that the parameters
of two geodesics with the same image are affine functions of each other).

THEOREM 4.2. (Levi-Civita) If (M, (-,-)) is a Riemannian manifold then
there exists a unique connection V on M such that

(i) V is symmetric;
(ii) V is compatible with (-,-).

In local coordinates (z,...,x"), the Christoffel symbols for this connection
are
1~ i (Ogu | Ogji  Ogjk
1 i il L b J
(10) L) Zg (BxJ t o0k T Bl

=1
where (g%) = (gij) "

PRrOOF. Let X,Y,Z € X(M). If the Levi-Civita connection exists then
we must have

X-(Y,Z)=(VxY,Z)+ (Y,VxZ);
Y (X,Z)=(VyX,Z)+ (X,VyZ);
—Z- <X7Y> = _<VZX7Y> - <X7 VZY>7

as V is compatible with the metric. Moreover, since V is symmetric, we
must also have

—([X,Z],Y) =—(VxZ,Y)+ (VzX,Y),
—([Y; 2}, X) = (Vv Z, X) +(V2Y, X),
(X,Y],Z) =(VxY,Z) — (Vv X, Z).
Adding these six equalities, we obtain the Koszul formula
AVxY,Z)=X-(Y,Z)+Y - (X,Z) - Z - (X,Y)
—([X,2],Y) = ([\, 2], X) + ([X, Y], Z).
Since (-,-) is nondegenerate and Z is arbitrary, this formula determines
VxY. Thus, if the Levi-Civita connection exists, it must be unique.
To prove existence, we define VxY through the Koszul formula. It is

not difficult to show that this defines indeed a connection (cf. Exercise 4.3.1).
Also, using this formula, we obtain

2AVXY — Vy X, Z) = 2(VxY, Z) — 2(Vy X, Z) = 2(X,Y], 2)
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for all X,Y,Z € X(M), and hence V is symmetric. Finally, again using the
Koszul formula, we have

2V XY, Z) +2(Y,VxZ) =2X - (Y, Z)

and therefore the connection defined by this formula is compatible with the
metric.
Choosing local coordinates (z',...,z"), we have

0 91, . [0 N\
Oz’ 0z | " ozt dzi | I

Therefore the Koszul formula yields

o 0 0 0 0
2 — TV =_"_. gy — — - q.
<V% ozk’ Ba:l> Bzd KT G I T Gt " 9k

n

, 0 0 1 (Ogk | Ogju  Ogjk

e, — = Y=z ¢ Jb J

< <Z:Z1 Ik i 8wl> 2 <8w9 T o0k T B

n
;1 (0gr  Ogji  0Ogjk
< Zgilr}k T2 (é)a:j ok T 0al )
i=1

EXERCISES 4.3.

(1) Show that the Koszul formula defines a connection.
(2) We introduce in R, with the usual Euclidean metric (-, ), the con-
nection V defined in Cartesian coordinates (z!,z2, z3) by

F;’k = WE&jk,
where w : R} — R is a smooth function and
+1 if (i,7,k) is an even permutation of (1,2, 3)

gije = & —1 if (4,7,k) is an odd permutation of (1,2,3)
0 otherwise.

Show that:
(a) V is compatible with (-, -);
(b) the geodesics of V are straight lines;
(c) the torsion of V is not zero in all points where w # 0 (therefore
V is not the Levi-Civita connection unless w = 0);
(d) the parallel transport equation is

3
Vit ) wepilVF =04V +w(@x V) =0
Jk=1
(where x is the cross product in R3); therefore, a vector paral-

lel along a straight line rotates about it with angular velocity
—Wwx.
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(3) Let (M, g) and (N, g) be isometric Riemannian manifolds with Levi-
Civita connections V and V, and let f : M — N be an isometry.
Show that: 5

(a) fuiVxY =V xf.Y forall X,Y € X(M);
(b) ifc: I — M is a geodesic then foc: I — N is also a geodesic.

(4) Consider the usual local coordinates (8, ) in S? C R?® defined by
the parametrization ¢ :]0, 7[x]0,27[— R3 given by

(0, @) = (sinf cos @, sin fsin @, cos §).

(a) Using these coordinates, determine the expression of the Rie-
mannian metric induced in $? by the usual Euclidean metric
of R3.

(b) Compute the Christoffel symbols for the Levi-Civita connec-
tion in these coordinates.

(c) Show that the equator is the image of a geodesic.

(d) Show that any rotation about an axis through the origin in R?
induces an isometry of S2.

(e) Show that the geodesics of S? traverse great circles.

(f) Find a geodesic triangle whose internal angles add up to 37”

(g) Let c: R — S? begiven by c(t) = (sinfy cost,sin y sint, cos 6y),
where 6y € (0,%) (therefore ¢ is not a geodesic). Let V be a
vector field parallel along ¢ such that V(0) = % (% is well
defined at (sinfp,0,cosfy) by continuity). Compute the an-
gle by which V is rotated when it returns to the initial point.
(Remark: The angle you have computed is exactly the angle by which the os-
cillation plane of the Foulcaut pendulum - which is just any sufficiently long
and heavy pendulum - rotates during a day in a place at latitude % — 6o, as it
tries to remain fixed with respect to the stars in a rotating Ea.rth).

(h) Use this result to prove that no open set U C S? is isometric
to an open set V C R? with the Euclidean metric.

(i) Given a geodesic ¢ : R — R? of R? with the Euclidean metric
and a point p ¢ c(R), there exists a unique geodesic é : R — R?
(up to reparametrization) such that p € ¢(R) and ¢(R)Né(R) =
@ (parallel postulate). Is this true in S27?

(5) Let H be the group of proper affine transformations of R, that is,
the group of functions g : R — R of the form

g(t) =yt+=z

with y > 0 and z € R (the group operation being composition).

Taking (z,y) € Rx RT as global coordinates, we induce a differen-

tiable structure in H, and H, with this differentiable structure, is

a Lie group (cf. Exercise 7.16.6 in Chapter 1).

(a) Determine the left-invariant metric induced by the Euclidean
inner product

g=dr®dr+dy Qdy
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in h=TonH (H endowed with this metric is called the hy-
perbolic plane).

Compute the Christoffel symbols of the Levi-Civita connection
in the coordinates (z,y).

Show that the curves o, 8 : R — H given in these coordinates
by

a(t) = (0,e")
B(t) = (tanht, L)

cosht
are geodesics. What are the sets a(R) and S(R)?
Determine all images of geodesics.
Show that, given two points p,q € H, there exists a unique
geodesic through them (up to reparametrization).
Give examples of connected Riemannian manifolds contain-
ing two points through which there are (i) infinitely many
geodesics (up to reparametrization); (ii) no geodesics.
Show that no open set U C H is isometric to an open set V' C
R? with the Euclidean metric. (Hint: Show that in any neighborhood
of any point p € H there is always a geodesic quadrilateral whose internal angles
add up to less than 27r).
Does the parallel postulate hold in the hyperbolic plane?

(6) Let (M, (,-)) be a Riemannian manifold with Levi-Civita connec-
tion V, and let (N, ((-,))) be a submanifold with the induced met-
ric and Levi-Civita connection V.

(a)

Show that
ViV = (V7))

for all X,Y € %(N), where X,Y are any extensions of X,Y
to X(M) and T : TM|y — TN is the orthogonal projection.
Use this result to indicate curves that are, and curves that are
not, geodesics of the following surfaces in R3:
(i) the sphere S

(ii) the torus of revolution;

(iii) the surface of a cone;

(iv) a general surface of revolution.
Show that if two surfaces in R? are tangent along a curve,
then the parallel transport of vectors along this curve in both
surfaces coincides.
Use this result to compute the angle Af by which a vector
V is rotated when it is parallel transported along a circle on
the sphere (Hint: Consider the cone which is tangent to the sphere along
the circle (cf. Figure 1); notice that the cone minus a ray through the vertex is

isometric to an open set of the Euclidean plane) .
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Al

Vo

FiGUuRE 1. Parallel transport along a circle on the sphere.

Let (M, g) be a Riemannian manifold with Levi-Civita connection
V. Show that g is parallel along any curve, i.e., show that

VXg:()

for all X € X(M) (cf. Exercise 3.6.3).
Let (M, g) be a Riemannian manifold with Levi-Civita connection
V, and let ¢ : M — M be a one-parameter group of isometries.
The vector field X € X(M) defined by
d

X = =
Pdt|,,
is called the Killing vector field associated to ;. Show that:
(a) Lxg =0 (cf. Exercise 1.4.2);
(b) X satisfies (VyX,Z) + (VzX,Y) = 0 for all vector fields

Y, Z € X(M);

(c) if c: I — M is a geodesic then (¢é(t), Xc(t)> is constant.
Recall that if M is an oriented differential manifold with volume

element w € Q"(M), the divergence of X is the function div(X)
such that

Pt (p)

Lyw = (div(X))w

(cf. Exercise 5.4.5 in Chapter 2). Suppose that M has a Riemann-
ian structure and w is a Riemannian volume element.
(a) Show that this definition of divergence coincides with the def-
inition in Exercise 2.11.7.
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(b) Show that at each point p € M,

n
div(X) = 3 (Y X, Vi),
i=1
where {Y7,...,Y,} is an orthonormal basis of T, M and V is
the Levi-Civita connection.

(10) Let M be an oriented Riemannian manifold of dimension 3. The
curl of a vector field X € X(M) is the vector field curl(X) as-
sociated to the 1-form xdwy, where wx € QY(M) is the 1-form
associated to X (cf. Exercise 2.11.7). Show that:

(a) curl(grad(f)) =0 for f € C*°(M,R);

(b) div(curl(X)) =0 for X € X(M);

(c) curl(X) = 37, 4 €iju (Vy; X, Vi) Vi, where {Y,Y, Y3} is a
positive basis of orthonormal vector fields, X = > i ; X'V;
and €;;; was defined on Exercise 4.3.2.

5. Minimizing Properties of Geodesics

Let M be a differentiable manifold with an affine connection V. As we
saw in Section 3, given a point p € M and a tangent vector v € T, M, there
exists a unique geodesic ¢, : I — M defined on a maximal open interval
I C R such that 0 € I, ¢,(0) = p and ¢,(0) = v. Consider now the curve
v :J — M defined by v(t) = ¢,(at), where a € R and J is the inverse image
of I by the map t — at. We have

Y(t) = acy(at)
and, consequently,
Vi = Ve, (aéy) = a?Vi, &, = 0.

Therefore + is also a geodesic. Since v(0) = ¢,(0) = p and ¥(0) = ac,(0) =
av, we see that v is the unique geodesic with initial velocity av € T, M, that
is, 7 = cqy- Therefore, we have c,y(t) = ¢y (at) for all ¢ € I. This property
is sometimes referred to as the homogeneity of geodesics. Notice that we
can make the interval J arbitrarily large by making a sufficiently small.

If 1 € I, we define exp,(v) = c,(1). By homogeneity of geodesics, we
can define exp,(v) for v in some open neighborhood U of the origin in 7, M.
The map exp, : U C T,M — M thus obtained is called the exponential
map at p.

PROPOSITION 5.1. There exists an open set U C T,M containing the
origin such that exp, : U — M is a diffeomorphism onto some open set
V C M containing p (called a normal neighborhood).

PROOF. The exponential map is clearly differentiable as a consequence
of the smooth dependence of the solution of an ODE on its initial data
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exp, (v)

FIGURE 2. The exponential map.

(cf. [Arn92]). If v € T,M is such that exp,(v) is defined, we have, by
homogeneity, that exp,(tv) = ¢ (1) = ¢y(t). Consequently,

d d
(dexpp)ov =2 exp,, (tv)]i=o0 = Ecv(t)\t:() = .

We conclude that (d expp)0 : To(TyM) = T,M — T, M is the identity map.
By the Inverse Function Theorem, exp, is then a diffeomorphism of some
open neighbourhood U of 0 € T, M onto some open set V C M containing

p = exp,(0). O

EXAMPLE 5.2. Consider the Levi-Civita connection in §? with the stan-
dard metric, and let p € S2. Then exp,(v) is well defined for all v € T,5?,
but is not a diffeomorphism, as it clearly is not injective. However, its re-
striction to the open ball B;(0) C 7,5 is a diffeomorphism onto S?\ {—p}.

Now let (M, (-,-)) be a Riemannian manifold and V its Levi-Civita con-
nection. Since (-,-) defines an inner product in T, M, we can think of T, M
as the Euclidean n-space R".

Let E be the vector field defined on T, M \ {0} by

v

el

E,
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and define X = (exp,)«E on V' \ {p}, where V C M is a normal neighbor-
hood. We have

d v
Xexp,(v) = (dexpy), By = — exp, (” * tm)
— ().

= ic (1 + i)
dt ™ [0l /=0 ol

Since ||éy(1)|| = [|é(0)]] = ||v||, we see that Xexp,(v) 18 the unit tangent
vector to the geodesics ¢,. In particular, X must satisfy

t=0
1

VxX =0.

If ¢ > 0 is such that B.(0) C U := exp,'(V), the normal ball
with center p and radius ¢ is the open set B.(p) := exp,(B:(0)), and
the normal sphere of radius ¢ centered at p is the compact submani-
fold S¢(p) := exp,(0B:(0)). We will now prove that X is (and hence the
geodesics through p are) orthogonal to normal spheres.

For that, we choose a local parametrization ¢ : W Cc R*~! — §n~! ¢
T,M, and use it to define a parametrization ¢ : (0,+o00) x W — T,M
through

G(r,0t,...,0" ) =rp(@,...,0" 1)

(hence (r,0%,...,6m""1) are spherical coordinates on T,M). Notice that
0
Y _E
or ’
and consequently
0
11 X = -
(1) (exp,). o
Since % is tangent to {r = e}, the vector fields
Y; = 9
(12) T (expp)*w
are tangent to S:(p). Notice also that ”% = H% =r H% is propor-

tional to r, and consequently % — 0 as r — 0, implying that (Y;); — 0,
as q — p.

Since exp,, is a local diffeomorphism, the vector fields X and Y; are
linearly independent at each point. Also,

0 0 g 0
[X7 Yl] = (epr)*E, (expp)* %] = (expp)* [Ea ﬁ] = 07

or, since the Levi-Civita connection is symmetric,

VxY; = Vy X.
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To prove that X is orthogonal to the normal spheres S.(p), we show
that X is orthogonal to each of the vector fields Y;. In fact, since VxX =0
and || X|| = 1, we have

X (X,%) = (VxX,¥) + (X, Vx¥) = (X, 95.X) =¥+ (306.00) =0,

and hence (X,Y;) is constant along each geodesic through p. Consequently,

(X, Yi)(epr v) = <Xexpp(v)a (Yi)expp(v)> = %1_>m0 <Xexpp(tv)a (Yi)expp(tv)> =0

(as |X]| = 1 and (), — 0, as g — p).

PROPOSITION 5.3. Let v : I — M be a differentiable curve such that
v(0) = p, v(1) € Sc(p), where Sc(p) is a normal sphere. Then the length
I(y) of the restriction of v to [0,1] satisfies I(y) > €, and I(y) = € if and
only if v is a reparametrized geodesic.

PROOF. We can assume that y(t) # p for all ¢t € (0,1): if that were
not so, we could easily construct a curve 4 : I — M with 4(0) = p, 3(1) =
v(1) € Sc(p) and I(5) < I(7y). For the same reason, we can assume that

7([0,1)) C B:(p). Let

V(t) = expy(r(t)n(t)),
where r(t) € (0,¢] and n(t) € S~ ! are well defined for ¢ € (0,1]. Note that
r can be extended to [0,1] as a smooth function. We have

V() = (expy)« (F(E)n(t) + r(t)n(t)) .

Since (n(t),n(t)) = 1, we have (n(t),n(t)) = 0, and consequently 7n(t) is
tangent to 0B, (;(0). Noticing that n(t) = (%)r(t)n( yy We conclude that

() = 7(t) Xy + Y (1),
where Y (t) = r(t)(exp,).n(t) is tangent to S, (p), and hence orthogonal
to X,(y). Consequently,

D=

I(y) = /0 () X + Y (), 1) X, ) + Y (1)) dt

= [ Gy iR a
> /0 r(t)dt =r(1) —r(0) = e.

It should be clear that I(y) = ¢ if and only if [|[Y(¢)|| = 0 and 7(¢) > 0
for all ¢ € [0,1]; but then n(t) = 0 (implying that n is constant), and
v(t) = exp,(r(t)n) = c,n(1) = cu(r(t)) is, up to reparametrization, the
geodesic through p with initial condition n € T, M. O
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DEFINITION 5.4. A piecewise differentiable curve is a continuous
map ¢ : [a,b] = M such that the restriction of ¢ to [ti—1,t;] coincides with
the restriction of a differentiable curve to the same interval fori =1,...,n,
where a =ty < t1 < ... <tp_1 <t, =0b. We say that c connects p € M
to g € M if c(a) = p and c(b) = q.

The definition of length of a piecewise differentiable curve offers no
difficulties. It should also be clear that Proposition 5.3 easily extends
to piecewise differentiable curves, if we now allow for piecewise differen-
tiable reparametrizations. Using this extended version of Proposition 5.3,
the properties of the exponential map and the invariance of length under
reparametrization, one easily shows the following result:

THEOREM b5.5. Let (M,(-,-)) be a Riemannian manifold, p € M and
B:(p) a normal ball centered at p. Then, for each point q € B(p), there
exists a geodesic ¢ : I — M connecting p to q; moreover, if v :J — M s
any other piecewise differentiable curve connecting p to q, then I(y) > Il(c),
and l(y) = l(c) if and only if v is a reparametrization of c.

Conversely, we have

THEOREM 5.6. Let (M, (-,-)) be a Riemannian manifold and p,q € M.
If ¢ : I — M is a piecewise differentiable curve connecting p to q and
l(c) <I(y) for any piecewise differentiable curve v : JJ — M connecting p to
g then c is a reparametrized geodesic.

To prove this theorem, we need the following definition:

DEFINITION 5.7. A normal neighborhood V. C M is called a totally
normal neighborhood if there exists € > 0 such that V. C B.(p) for all
peV.

We will now prove that totally normal neighborhoods always exist. To do

so, we recall that local coordinates (z!,...,z") on M yield local coordinates
(z!,...,z™v',...,v") on TM labeling the vector
0 0
1Y n_~-
v 92 + ...+ 9z

The geodesic equations,

n
4y Thilib =0 (i=1,...,n),
Jakzl
correspond to the system of first order ODE’s

it = .
{ ot — _E?,kzl j-k’vj’uk (1=1,...,n).
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These equations define the local flow of the vector field X € X(T'M) given
in local coordinates by

i=1 ij, k=1
called the geodesic flow. As was seen in Chapter 1, for each point v € TM
there exists an open neighborhood W C T'M and an open interval I C R
containing 0 such that the local flow F': W x I — T'M of X is well defined.
In particular, for each point p € M we can choose an open neighborhood U
containing p and € > 0 such that the geodesic flow is well defined in W x I
with
W ={vg € TM | q€U,|lvg| <&}

Using homogeneity of geodesics, we can make the interval I as large as we
want by making e sufficiently small. Therefore, for € small enough we can
define a map G : W — M x M by G(vq) := (q,exp,(vq)). Since exp,(04) = g,
the matrix representation of (dG)o, in the above local coordinates is (19),
and hence G is a local diffeomorphism. Reducing U and ¢ if necessary, we
can therefore assume that G is a diffeomorphism onto its image G(W), which
contains the point (p,p) = G(0,). Choosing an open neighborhood V' of p
such that V' xV C G(W), it is clear that V is a totally normal neighborhood:
for each point ¢ € V' we have {q} X exp,(B:(0,)) = G(W) N ({g} x M) D
{g} x V, that is, exp,(B:(04)) D V.

Notice that, given any two points p, ¢ in a totally normal neighborhood
V', there exists a geodesic ¢ : I — M connecting p to ¢; if v : J — M is
any other piecewise differentiable curve connecting p to g, then I(y) > I(c),
and I(y) = I(c) if and only if 7 is a reparametrization of c. The proof of
Theorem 5.6 is now an immediate consequence of the following observation:
if c: I — M is a piecewise differentiable curve connecting p to g such that
I(c) < () for any curve v : J — M connecting p to ¢, we see that ¢ must be
a reparametrized geodesic in each totally normal neighborhood it intersects.

EXERCISES 5.8.

(1) Let (M,g) be a Riemannian manifold and f : M — R a smooth
function. Show that if || grad(f)|| = 1 then the integral curves of
grad(f) are geodesics.

(2) Let M be a Riemannian manifold and V the Levi-Civita connection
on M. Given p € M and a basis {v1,...,v,} for T, M, we consider
the parametrization ¢ : U C R* — M given by

o(zt,...,z") = expp(mlm + ...+ 2"vy)
(the local coordinates (z', ..., z") are called normal coordinates).
Show that:
(a) in these coordinates, F;'k (p) =0 (Hint: Consider the geodesic equa-
tion);

(b) if {v1,...,v,} is an orthonormal basis then g;;(p) = d;;.
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(3) Let G be a Lie group endowed with a bi-invariant Riemannian
metric (i.e., such that L, and R, are isometries for all x € G), and
let i : G — G be the diffeomorphism defined by i(z) = z7!.

(a) Compute (di). and show that

(di)g = (dRy-1), (di)e (dLy-1),

for all x € G. Conclude that 7 is an isometry.

(b) Let v € g = T.G and ¢, be the geodesic satisfying ¢,(0) =
e and ¢,(0) = v. Show that if ¢ is sufficiently small then
co(—t) = (cy(t)) '. Conclude that ¢, is defined in R and
satisfies ¢, (t + s) = cy(t)cy(s) for all ¢,s € R (Hint: Recall that
any two points in a totally normal neighborhood are connected by a unique
geodesic in that neighbourhood).

(c) Show that the geodesics of G are the integral curves of left-
invariant vector fields, and that the maps exp (in the Lie
group) and exp, (in the Riemannian manifold) coincide.

(d) Let V be the Levi-Civita connection of the bi-invariant metric
and X,Y two left-invariant vector fields. Show that

1
VxY = J[X,Y]

(4) Use Theorem 5.5 to prove that if f : M — N is an isometry and
c:I — M is a geodesic then foc:I — N is also a geodesic.

(5) Let f : M — M be an isometry whose set of fixed points is a
connected 1-dimensional submanifold N C M. Show that N is the
image of a geodesic.

(6) Let (M, (-,-)) be a geodesically complete Riemannian manifold and
let pe M.

(a) Consider a geodesic ¢ : R — M parametrized by the arclength
such that ¢(0) = p. Let X and Y; be the vector fields defined as
in (11) and (12) (so that X4 = ¢(t)). Show that Y; satisfies
the Jacobi equation

DY,
dt?
where R : X(M) x X(M) x X(M) — X(M), defined by
R(X, Y)Z = VXVYZ - VYVXZ - V[ny]Z,

= R(X,Y))X,

is called the curvature operator (cf. Chapter 4). A solution
of the Jacobi equation is called a Jacobi field.
(b) Show that Y is a Jacobi field with Y'(0) = 0 if and only if

-9
- Oa a=0

where v : R x (—¢,¢) — M is such that y(¢,0) = ¢(t) and for
each « the curve (¢, ) is a geodesic with (0, a) = p.

Y () v(t, @),
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A point ¢ € M is said to be conjugate to p if it is a critical
value of exp,. Show that ¢ is conjugate to p if and only if
there exists a nonvanishing Jacobi field Y along a geodesic ¢
connecting p = ¢(0) to ¢ = ¢(r) such that Y(0) = Y(r) = 0.
Conclude that if g is conjugate to p then p is conjugate to g.
The manifold M is said to have nonpositive curvature if
(R(X,Y)X,Y) >0 for all X,Y € X(M). Show that for such
a manifold no two points are conjugate.
Given a geodesic ¢ : I — M parametrized by the arclength
such that ¢(0) = p, let ¢, be the supremum of the set of values
of ¢ such that ¢ is the minimizing curve connecting p to c(t)
(hence t. > 0). The cut locus of p is defined to be the set of
all points of the form c(t.) for ¢, < 4+o00. Determine the cut
locus of a given point p € M when M is:

(i) the torus 7™ with the standard metric.

(ii) the sphere S™ with the standard metric;

(iii) the projective space RP™ with the standard metric.
Check that any point in the cut locus is either conjugate to p
or joined to p by two geodesic arcs with the same length but
different images.

6. Hopf-Rinow Theorem

Let (M, g) be a Riemannian manifold. The existence of totally normal

neighborhoods implies that it is always possible to connect two sufficiently
close points p,q € M by a minimizing geodesic. We now address the same
question globally.

EXAMPLE 6.1.

(1) Given two distinct points p,q € R" there exists a unique (up to
reparametrization) geodesic arc for the Euclidean metric connecting
them.

(2) Given two distinct points p,q € S™ there exist at least two geo-
desic arcs for the standard metric connecting them which are not
reparametrizations of each other.

(3) If p # 0 then there exists no geodesic arc for the Euclidean metric
in R* \ {0} connecting p to —p.

In many cases (for example in R" \ {0}) there exist geodesics which

cannot be extended for all values of its parameter. In other words, exp,(v)
is not defined for all v € T}, M.

DEFINITION 6.2. A Riemannian manifold (M, (-,-)) is said to be geodesi-

cally complete if, for every point p € M, the map exp, is defined in T, M.

There exists another notion of completeness of a connected Riemannian

manifold, coming from the fact that any such manifold is naturally a metric

space.
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DEFINITION 6.3. Let (M, (-,-)) be a connected Riemannian manifold and
p,q € M. The distance between p and q is defined as

d(p,q) = inf{l(y) | v is a piecewise differentiable curve connecting p to q}.

Notice that if there exists a minimizing geodesic ¢ connecting p to ¢ then
d(p,q) = l(c). The function d : M x M — [0,+0o0) is indeed a distance, as
stated in the following proposition (whose proof is left as an exercise):

PROPOSITION 6.4. (M,d) is a metric space, that is,

(i) d(p,q) > 0 and d(p,q) = 0 if and only if p = ¢;
(%) d(p,q) = d(q,p);
(ii) d(p,r) < d(p,q) + d(g,7),

for all p,q,r € M. The metric space topology induced on M coincides with
the topology of M as a differentiable manifold.

Therefore, we can discuss the completeness of M as a metric space (that
is, whether Cauchy sequences converge). The fact that completeness and
geodesic completeness are equivalent is the content of

THEOREM 6.5. (Hopf-Rinow) Let (M, (-,-)) be a connected Riemannian
manifold and p € M. The following assertions are equivalent:

(i) M is geodesically complete.

(i) (M,d) is a complete metric space;

(iii) exp,, is defined in TpM.
Moreover, if (M,(-,-)) is geodesically complete then for all ¢ € M there
ezxists a geodesic ¢ connecting p to q with l(c) = d(p,q).

PRrROOF. It is clear that (i) = (ii3).

We begin by showing that if (4i7) holds then for all ¢ € M there exists
a geodesic ¢ connecting p to ¢ with I(c) = d(p,q). Let d(p,q) = p. If
p = 0 then ¢ = p and there is nothing to prove. If p > 0, let ¢ € (0, p) be
such that S¢(p) is a normal sphere (which is a compact submanifold of M).
The continuous function z + d(z,q) will then have a point of minimum
To € Se(p). Moreover, 9 = exp,(ev), where [[v|| = 1. Let us consider
the geodesic c,(t) = exp,(tv). We will show that ¢ = c,(p). For that, we
consider the set

A={t€0,p] | d(cv(t),q) = p—t}

Since the map t — d(cy(t),q) is continuous, A is a closed set. Moreover,
A # &, as clearly 0 € A. We will now show that no point ¢y € [0, p) can be
the maximum of A, which implies that the maximum of A must be p, and
consequently that d(c,(p),q) = 0, i.e., ¢,(p) = ¢ (hence ¢, connects p to ¢
and I(c,) = p). Let tg € ANJ0,p), r = cy(to) and & € (0, p — ty) such that
Ss(r) is a normal sphere. Let yo be a point of minimum of the continuous
function y — d(y,q) on the compact set Ss(r). Then yo = ¢,(to + J). In
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FI1GURE 3. Proof of the Hopf-Rinow Theorem.

fact, we have

p—to=d(r,q) =6+ min d(y,q) =+ d(yo,q),
y€Ss(r)

and so

(13) d(yo,q) = p — to — 6.
The triangular inequality then implies that

d(p,v0) > d(p,q) — d(yo,q) = p— (p —to — 6) = to + 6,

and since the piecewise differentiable curve which connects p to r through
¢y and 7 to gyo through a geodesic arc has length ty + §, we conclude that
this is a minimizing curve, hence a (reparametrized) geodesic. Therefore,
Yo = ¢y(to + 0). Consequently, equation (13) can be written as

d(Cv(tO + 5)7Q) =p— (tO =+ 6)7

indicating that tg + € A. Therefore ¢ty cannot be the maximum of A.

We can now prove that (74i) = (i). To do so, we begin by showing that
any bounded closed subset K C M is compact. Indeed, if K is bounded
then K C Bpg(p) for some R > 0, where

Br(p) ={q € M | d(p,q) < R}.

As we have seen, p can be connected to any point in Br(p) by a geo-

desic of length smaller than R, and so Bg(p) C exp, (BR(O)>. Since

exp,, : TpM — M is continuous and Bg(0) is compact, the set exp, (B R(O))

is also compact. Therefore K is a closed subset of a compact set, hence com-
pact. Now, if {p,} is a Cauchy sequence in M, then its closure is compact.
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Thus {p,} must have a convergent subsequence, and therefore must itself
converge.

Finally, we show that (i) = (7). Let ¢ be a geodesic defined for ¢ < o,
which we can assume without loss of generality to be normalized, that is,
l¢(®)|| = 1. Let {¢,} be an increasing sequence of real numbers converging to
to. Since d(c(ty), c(tn)) < |tm—1tn|, we see that {c(t,)} is a Cauchy sequence.
As we are assuming M to be complete, we conclude that c(t,) - p € M,
and it is easily seen that c(f) — p as t — t9. Let B.(p) be a normal ball
centered at p. Then ¢ can be extended past ¢y in this normal ball. O

COROLLARY 6.6. If M is compact then M 1is geodesically complete.
PROOF. Any compact metric space is complete. O

COROLLARY 6.7. If M is a closed connected submanifold of a complete
connected Riemannian manifold with the induced metric then M is complete.

PROOF. Let M be a closed connected submanifold of a complete con-
nected Riemannian manifold N. Let d be the distance determined by the
metric on N, and let d* be the distance determined by the induced metric
on M. Then d < d*. Let {p,} be a Cauchy sequence on (M,d*). Then
{pn} is a Cauchy sequence on (NN, d), and consequently converges in N to a
point p € M (as N is complete and M is closed). Since the topology of M
is induced by the topology of N, we conclude that p, — p on M. O

EXERCISES 6.8.

(1) Prove Proposition 6.4.
(2) Consider R? \ {(z,0) | =3 < z < 3} with the Euclidean metric.
Determine B7(0,4).
(3) (a) Prove that a connected Riemannian manifold is complete if
and only if the compact sets are the closed bounded sets.
(b) Give an example of a connected Riemannian manifold contain-
ing a noncompact closed bounded set.
(c) A Riemannian manifold (M, (-,-)) is said to be homogeneous
if given any two points p,q € M there exists an isometry f :
M — M such that f(p) = ¢. Show that any homogenous
Riemannian manifold is complete.

7. Notes on Chapter 3

7.1. Section 6. In this Section we use several definitions and results
about metric spaces, which we now discuss. A metric space is a pair
(M,d), where M is a set and d : M x M — [0,400) is a map satisfying the
properties enumerated in Proposition 6.4. The set

B:(p) ={q € M | d(p,q) <e}

is called the open ball with center p and radius €. The family of all such
balls is a basis for a Hausdorff topology on M, called the metric topology.
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Notice that in this topology p, — p if and only if d(p,,p) — 0. Although a
metric space (M, d) is not necessarily second countable, it is still true that
F C M is closed if and only if every convergent sequence in F' has limit in
F, and K C M is compact if and only if every sequence in K has a sublimit
in K.

A sequence {p,} in M is said to be a Cauchy sequence if for all
e > 0 there exists N € N such that d(p,,pm) < € for all m,n > N. It is
easily seen that all convergent sequences are Cauchy sequences; the converse,
however, is not necessarily true (but if a Cauchy sequence has a convergent
subsequence then it must converge). A metric space is said to be complete
if all its Cauchy sequences converge. A closed subset of a complete metric
space is itself complete.

A set is said to be bounded if it is a subset of some ball. For instance,
the set of all terms of a Cauchy sequence is bounded. It is easily shown that
if K C M is compact then K must be bounded and closed (but the converse
is not necessarily true). A compact metric space is necessarily complete.

7.2. Bibliographical notes. The material in this chapter can be found
in most books on Riemannian geometry (e.g. [Boo03], [dC93], [GHLO04]).
For more details on general affine connections, see [KN96]. Bi-invariant
metrics on a Lie group are examples of symmetric spaces, whose beautiful
theory is studied in [Hel01].



CHAPTER 4

Curvature

This chapter addresses the fundamental notion of curvature of a Rie-
mannian manifold.

In Section 1 we define the curvature operator of a general affine con-
nection, and, for Riemannian manifolds, the equivalent (more geometric)
notion of sectional curvature.

Section 2 establishes Cartan’s structure equations, a powerful com-
putational method which employs differential forms to calculate the cur-
vature. We use these equations in Section 3 to prove the Gauss-Bonnet
Theorem, relating the curvature of a compact surface to its topology; we
show in the Exercises how to use this theorem to interpret the curvature
of a surface as a measure of the excess of the sum of the inner angles of a
geodesic triangle over 7.

We enumerate all complete Riemannian manifolds with constant cur-
vature in Section 4. These provide important examples of curved geome-
tries.

Finally, in Section 5 we study the relation between the curvature of a
Riemannian manifold and the curvature of a submanifold (with the induced
metric). This can again be used to give different geometric interpretations
of the curvature. In particular, as shown in the Exercises, any sectional
curvature is the curvature of a submanifold of dimension 2.

1. Curvature

As we saw in Exercise 4.3.4 of Chapter 3, no open set of the 2-sphere
S? with the standard metric is isometric to an open set of the Euclidean
plane. The geometric object that locally distinguishes these two Riemannian
manifolds is the so-called curvature operator, which appears in many
other situations (cf. Exercise 5.8.6 of Chapter 3):

DEFINITION 1.1. The curvature R of a connection V is a correspon-
dence that, to each pair of vector fields X, Y € x(M), associates a map
R(X,)Y): x(M) — x(M) defined by

R(X,Y)Z =VxVyZ—-VyVxZ~-Vixy Z

Hence, it is a way of measuring the non-commutativity of the connection.
We leave it as an exercise to show that this defines a (3, 1)-tensor, meaning
that

115
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(i) R(X, fY1+gY2)Z = fR(X,Y1)Z + gR(X,Y2)Z,

(iii) R(X,Y)(fZ1 + 9Z2) = fR(X,Y)Z1 + gR(X,Y)Z,,
for all vector fields X, X1, X5,Y,Y1,Ys,Z, 71,75 € X(M) and all smooth
functions f,g € C*°(M,R). Locally, choosing a coordinate system z : V —
R™ on M, this tensor can be written as

" G,
Z Rijkldac ®dr’ @ dz* @ —

l 7
iyjkyl=1 Oz
where each coefficient R; g kl is the [-coordinate of the vector field R( a?ci , %) %,
that is,
o 9\ o S 0
R (8:6” a:w) oxk lz_; Wk dgl
Using [ ai] = 0, we have
o 0 0 0 0
R (8:5” Bwﬂ) zk dai | 9a7 Ok 527 o7 OxF
- 0
- v (B ) v (Za)
n
0 0 PN
) (@‘Pﬁ‘aﬁ‘ k) SN Pkl im) gt
m=1 I,m=1
", [or $ 0
jk l
= : 7 — Tielim | 27
< oz’ 8:1:3 Z Z ) oz’
=1 m=1 m=1
and so
orh, oart, & ‘
U L k !
Rijy' = 523 3;7*‘221’ m= D Tl
m=1

ExAMPLE 1.2. Consider M = R” with the Euclidean metric and the cor-
responding Levi Civita connection (that is, with Christoffel symbols Fk =
0). Then R, k = 0, and the curvature R is zero. Thus, we interpret the
curvature as a measure of how much a connection on a given manifold differs
from the Levi-Civita connection of Euclidean space.

When the connection is symmetric (as in the case of the Levi-Civita
connection), the tensor R satisfies the following property, known as the
Bianchi Identity:

PROPOSITION 1.3. (Bianchi Identity) If M is a manifold with a sym-
metric connection then the associated curvature satisfies

R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0.
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PRrooOF. This property is a direct consequence of the Jacobi identity of
vector fields. Indeed,

R(X,Y)Z+R(Y,Z)X + R(Z,X)Y =VxVy Z -VyVxZ - Vixy| Z
tVyVzX -VzVy X =V X +VzVxY -VxVzY - Vz 1Y
=Vx(VyZ-VzY)+Vy(VzX -VxZ)+Vz(VxY — Vy X)
—Vixy)1Z — V21X —Vizx1Y,

and so, since the connection is symmetric, we have

R(X,Y)Z+R(Y,Z)X + R(Z,X)Y

Vx Y, Z|+Vy [Z, X]+Vz[X,Y] - Vy X - Vizx1Y = Vixy Z
= [X,[Y,Z]|+[Y,[Z,X]] +[Z,[X,Y]] =0.
|

We will assume from this point on that (M, g) is a Riemannian manifold
and V its Levi-Civita connection. We can define a new covariant 4-tensor,
known as the curvature tensor:

R(X,Y,Z,W) = g(R(X,Y)Z,W).

Again, choosing a coordinate system z : V' — R" on M, we can write this
tensor as

n
R(X,Y,Z,W) = Z Rijidz' ® di’ ® di* @ dz' | (X,Y, 2, W)
i,j,k,l=1
where
Row—alr(2. 9\ 9 0\_ f:R m 0 0 _2":3 m
ijkl =9 dri’ xi ) 0k 0zl ) ~ Y — Uk ggm’ gyl _mzl ijk - Jmi-

This tensor satisfies the following symmetry properties:

ProrosiTiON 1.4. If X,Y,Z W are vector fields in M and V 1is the
Levi-Civita connection, then
(G,) R(XaYa Z,W) +R(Y,Z,X,W) +R(ZaX7Y7W) =0;
(b) R(X7 Ya Za W) = _R(Y7 X7 Z7 w ;
(C) R(X,Y, ZaW) = _R(XaYaVVaZ ;
(d) R(X,Y,Z,W)=R(Z,W,X,Y).

PROOF. Property (a) is an immediate consequence of the Bianchi iden-
tity, and property (b) holds trivially.

Property (c) is equivalent to showing that R(X,Y, Z, Z) = 0. Indeed, if
(c) holds then clearly R(X,Y, Z, Z) = 0. Conversely, if this is true, we have

R(X,)Y,Z+W,Z+W)=0% R(X,Y,Z,W) + R(X,Y,W,Z) = 0.
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Now, using the fact that the Levi-Civita connection is compatible with the
metric, we have
X- (Vv Z,Z)=(VxVy Z,Z)+ (Vy Z,Vx Z)
and
[(X,Y]-({Z,Z) =2(Vix vy Z, Z).

Hence,
R(X,Y,2,Z) = (VxVy Z2,Z)-(VyVxZ,Z) —(Vixy|Z,Z)

= X-(VvZ,Z)—(Vy Z,Vx Z)-Y - (Vx Z,7)

(VX 2,y 2) - 5[X,Y](2,2)
= JX-(V{Z,2) - JY (X -{7,2)) - (X, Y] (2,2)

_ %[X,Y] 2, 7) — %[X,Y] {2, 7) = 0.

To show (d), we use (a) to get

R(X7Y7Z7W) + R(Y7Z’X7W) +
R(Y,Z,W,X) + R(Z,W,Y,X) +
R(Z,W,X,)Y) + RW,X,Z)Y) +
RW,X,Y,Z) + R(X,Y,W,Z) +

and so, adding these and using (c), we have
R(Z,X,Y,W) + RW,Y, Z,X) + R(X, Z,W,Y) + R(Y,W, X, Z) = 0.
Using (b) and (c), we obtain
2R(Z,X,Y,W) — 2R(Y,W, Z, X) = 0.

=
=
N
vv\%v
I
oSO OO

O

An equivalent way of encoding the information about the curvature of
a Riemannian manifold is by considering the following definition:

DEFINITION 1.5. Let II be a 2-dimensional subspace of T,M and let
Xp,Y, be two linearly independent elements of II. Then, the sectional
curvature of Il is defined as

_ R(Xpay;)aXpaYp)
1 Xpl21Y5* = (Xp, V)

Note that || X, |?||Y,|I? — (X,, Yp)? is the square of the area of the paral-
lelogram in T}, M spanned by X,,,Y),, and so the above definition of sectional
curvature does not depend on the choice of the linearly independent vec-
tors X,,,Y,. Indeed, when we change of basis on II, both R(X,,Y,, X),,Y})
and || X, ||?||Yp||? — (X, Yp)? change by the square of the determinant of the
change of basis matrix (cf. Exercise 1.11.2.). We will now see that knowing
the sectional curvature of every section of T, M completely determines the
curvature tensor on this space.

K(II) :=
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PROPOSITION 1.6. The Riemannian curvature tensor at p is uniquely
determined by the values of the sectional curvatures of sections (that is, 2-
dimensional subspaces) of TyM.

PROOF. Let us consider two covariant 4-tensors Ri, Ry on T, M sat-
isfying the symmetry properties of Proposition 1.4. Then the tensor T :=
R1— Ry also satisfies these symmetry properties. We will see that, if the val-
ues R (X,,Yy, X,,Y,) and Ry(X,,Y,, Xp,Y,) agree for every X, Y, € T,M
(that is, if T(Xp,Y,, Xp,Y,) = 0 for every X,,,Y, € T,M), then Ry = Ry
(that is, T'= 0). Indeed, for vectors X,,,Y,, Z, € T,M,

0 = T(Xp+ Zp, Yy, Xp + Zp,Yy) = T(Xy, Yy, Zp, Yy) + T(Zp, Y, X, Yp)
= 2T(Xp, Yy, Zp,Y)).
Then T(X,,Y),, Zp,Y,) =0 for all X,,Y,, Z, € T,M, and so
0= T(Xpa Yp + Wy, Zp, Yy + Wp) = T(Xpa Yp, Zp, Wp) + T(Xpa W, Zp, Y;,)
= T(Zpa WanpaY})) - T(Wanpa ZpaY}o),
that is, T(Z,, Wy, Xp,Y,) = T(Wy, Xp, Zp,Y,). Hence T is invariant by

cyclic permutations of the first three elements and so, by the Bianchi Iden-
tity, we have 37'(X),Y,, Z,, W,) = 0. |

A manifold is called isotropic at a point p € M if its sectional cur-
vature is constant K, for every section II C T, M. Moreover, it is called
isotropic if it is isotropic at all points. Note that every 2-dimensional man-
ifold is trivially isotropic. Its sectional curvature K(p) := K, is called the
Gauss curvature. We will see later on other equivalent definitions of this
curvature (cf. Exercise 2.8.9, Exercise 3.6.7 and Section 5). We will also
see that the sectional curvature is actually the Gaussian curvature of special
2-dimensional submanifolds, formed by geodesics tangent to the sections (cf.
Exercise 5.7.5).

PROPOSITION 1.7. If M s isotropic atp and z : V — R™ is a coordinate
system around p, then the coefficients of the Riemannian curvature tensor
at p are given by

Rijii(p) = —Kp(gir gj1 — gir Ijk)-

ProOF. We first define a covariant 4-tensor A on T, M as

n
A= Z —Ky(9ik 91 — 91 9jk) de' ® di! ® dz* @ dx'.
1,5,k,0=1
We leave it as an exercise to check that A satisfies the symmetry properties
of Proposition 1.4. Moreover,

n
AXp Yo, Xp, Yp) = D —Kp(gix gt — 9a9j8) X, Y] X3 Y,
2,5,k,l=1
_KP ((X;Da Xp)<yzl’17 Y;D) - <XP7 YP>2)
= R(Xp7 )/pa Xp7 Y}I)a
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and so, from Proposition 1.6, we conclude that A = R. O

DEFINITION 1.8. A Riemannian manifold is called a manifold of con-
stant curvature if it is isotropic and K, is the same at all points of M.

ExAMPLE 1.9. The Euclidean space is a manifold of constant curvature
K, =0.
Another geometric object, very important in General Relativity, is de-

fined as follows:

DEFINITION 1.10. The Ricci curvature tensor is the covariant 2-tensor
locally defined as

Ric(X,Y) Zdw( (6k,X)Y)

Note that the above definition is independent of the choice of coordi-
nates. Indeed, we can see Ric,(X),Y,) as the trace of the linear map from
T,M to TyM given by Z, — R(Zy, X,)Y), hence independent of the choice of
basis. Moreover, this tensor is symmetric. In fact, choosing an orthonormal
basis {E ..., Ep} of T,M we have

Ricp(XpaYp) = ZREk" P pa ZR EkaEka )

= ZR(EMYP’X:D’E/C) = Ricy(Yp, Xp).
k=1

Locally, we can write

n
Ric= ) Rjjdz’ ® dz’
i,j=1

where the coefficients R;; are given by

. 0
RZ] = R’lC (a Z’ag;.7> Zd ( (8 k’a.IZ) —> ZRIm] ’

that is, R;; = 22:1 Rlcz'jk'

Note that from a (3,1)-tensor we obtained a (2,0)-tensor. This is an
example of a general procedure called contraction, where we obtain a (k —
1,m — 1)-tensor from a (k,m)-tensor. To do so, we first choose two indices,
one covariant and other contravariant, and then set them equal and take
summations, obtaining a (k — 1, m — 1)-tensor. On the example of the Ricci
tensor, we took the (3, 1)-tensor R defined by the curvature,

R(X,Y,Z,w) = w(R(X,Y)Z),
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chose the first covariant index and the first contravariant index, set them
equal and summed over them:

Ric(X,Y) = § R (—aak,X,Y,da:k> )
XL
k=1

Similarly, we can use contraction to obtain a function (0-tensor) from
the Ricci tensor (a covariant 2-tensor). For that, we first need to define a
new (1, 1)-tensor field T using the metric,

T(X,w) := Ric(X,Y),

where Y is such that w(Z) = (Y, Z) for every vector field Z. Then, we
set the covariant index equal to the contravariant one and add, obtaining
a function S : M — R called the scalar curvature. Locally, choosing a
coordinate system z : V — R", we have

n
) 0
ZT (W,dﬂi ) = ;R’LC (@,Yk) ;
where, for every vector field Z on V,

7k = da®(Z2) = (Z,Y}) = Z 9i; Z2°Y}.
1,J=1

Therefore, we must have Yj = g’* (where (¢"/) = (gij)™!), and hence Y}, =
Yo gk 6‘91 We conclude that the scalar curvature is given by

0 < 0 no
(p) = Z Ric (W’ > g* ) Z Riig™ = > g% Ry
k=1 iz

i,k=1 i,k=1
(since Ric is symmetric).

EXERCISES 1.11.

(1) (a) Show that the curvature operator satisfies
(i) R(X, fY; + g¥2)Z = fR(X,Y1)Z + gR(X,Y)Z;
(i) R(X,Y)(fZ1 + 9Z2) = fR(X,Y)Z, + gR(X,Y)Z,,
for all vector fields X, X1, X9,Y,Y1,Yo, Z,Z1,Z5 € X(M) and
smooth functions f,g € C®(M,R).

(b) Show that (R(X,Y)Z), € T,M depends only on X,,Y,, Z,.
Conclude that R defines a (3,1)-tensor. (Hint: Choose local coor-
dinates around p € M ) .

(c) Recall that if G is a Lie group endowed with a bi-invariant
Riemannian metric, V is the Levi-Civita connection and X,Y
are two left-invariant vector fields then

1
VxY = J[X,Y]
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(cf. Exercise 5.8.3 in Chapter 3). Show that if Z is also left-
invariant, then

R(X,Y)Z = %[Z, X, Y]],

(2) Show that || X,|%||Ypl|? — (X, Yp)? gives us the square of the area
of the parallelogram in T, M spanned by X,,Y,. Conclude that the
sectional curvature does not depend on the choice of the linearly
independent vectors X,,Y), that is, when we change of basis on II,
both R(Xp,Yp, Xp,Y,) and || X,|%||Yp||? — (Xp, Yp)? change by the
square of the determinant of the change of basis matrix.

(3) Show that Ric is the only independent contraction of the curvature
tensor: choosing any other two indices and contracting, one either
gets 0 or +Ric.

(4) Let M be a 3-dimensional manifold. Show that the curvature tensor
is entirely determined by the Ricci tensor.

(5) Let (M, g) be an n-dimensional isotropic Riemannian manifold with
sectional curvature K. Show that Ric = (n — 1)Kg and S =
n(n —1)K.

(6) Let g1,g2 be two Riemannian metrics on a manifold M such that
g1 = pgo, for some constant p > 0. Show that:

(a) the corresponding sectional curvatures K and Ky satisfy K (IT) =

p 'K5(II) for any 2-dimensional section of a tangent space of

M;

(b) the corresponding Ricci curvature tensors satisfy Ric; = Rico;
(c) the corresponding scalar curvatures satisfy S; = p~1S,.

(7) If V is not the Levi-Civita connection can we still define the Ricci

curvature tensor Ric? Is it necessarily symmetric?

2. Cartan’s Structure Equations

In this section we will reformulate the properties of the Levi-Civita con-
nection and of the Riemannian curvature tensor in terms of differential
forms. For that we will take an open subset V' of M where we have de-
fined a field of frames X;,...X,,, that is, a set of n vector fields that, at
each point p of V, form a basis for T, M (for example, we can take a coordi-
nate neighborhood V' and the vector fields X; = %; however, in general, the
X,’s are not associated to a coordinate system). Then we consider a field of
dual co-frames, that is, 1-forms w',...,w™ on V such that w'(X;) = d;;.
Note that, at each point p € V, wzl,, ... ,wp I8 a basis for TYM. From the
properties of a connection, in order to define Vx Y we just have to establish
the values of

n
Vx, Xj =Y TEX,
k=1
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where Ffj is defined as the k' component of the vector field V x; Xj on the
basis {X;}" ;. Note that if the X;’s are not associated to a coordinate system
then the Ffj’s cannot be computed using formula (10), and, in general, they
are not even symmetric in the indices 7, 5. Given the values of the Ti-“j’s on
V', we can define 1-forms wf (j,k=1,...,n) in the following way:

n

k E : k

(14) wj = Pijwz.
i=1

Conversely, given these forms, we can obtain the values of 1";-“]- through

Il = wh(X;).
The connection is then completely determined from these forms: given two
vector fields X = )"0 a'X; and Y = 37" | b'X;, we have

n

n
(15) Vx Xj = Vz?zlaixi Xj :ZGZVXi Xj = Z azri‘chk

i=1 i k=1
= ) dwi(X) X =) wh(X) Xy,
ik=1 k=1
and hence
(16) VxY = Vx (Z bZXz-> = Z (X -0)X; +b'VxX;)
=1 i=1
= > (X b+ Zb’wf(X)) X;.
j=1 i=1

Note that the values of the forms w;? at X are the components of Vx X;
relative to the field of frames, that is,

(17) wi(X) = o' (VxX;).

The w;-“’s are called the connection forms. For the Levi-Civita connection,
these forms cannot be arbitrary. Indeed, they have to satisfy some equations
corresponding to the properties of symmetry and compatibility with the
metric.

THEOREM 2.1. (Cartan) Let V be an open subset of a Riemannian mani-
fold M on which we have defined a field of frames X1,...,X,. Letw',... w"
be the corresponding field of co-frames. Then the connection forms of the
Levi-Civita connection are the unique solution of the equations

(i) do' = Y27 7 A,
(ii) dgij = Zzzl(gkj wf + Gki w;?);
where gi; = (X, X;).
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ProOOF. We begin by showing that the Levi-Civita connection forms,
defined by (14), satisfy (i) and (i7). For this, we will use the following
property of 1-forms (cf. Exercise 2.10.2 of Chapter 2):

dw(X,Y)=X-(w(Y))-Y - (w(X)) —w([X,Y]).
We have

Jj=1 Jj=1

Vy X =Vy (Z wj(X)Xj) =3 (V- /(X) X; + o/ (X) Vy X;),
which implies
(18) w'(VyX) = ) + Z W (X)W (Vy X;).

Using (17) and (18), we have

j=1 j=1

(ij/\w;) (X,Y) = > (o (X)wi(Y) - (V) wi(X))

= > (W(X)e'(Vy X)) — o’ (V) ' (Vx X;))
j=1
= W(Vy X)-Y -w'(X) - (VxY)+ X - (Y),

and so
. n . .
dw' — Zwﬂ Awj | (X,Y) =
j=1

= X -W'(Y)-Y (X) - (X,Y]) - Z“’j A WiH(X,Y)
= W' (VxY -VyX-[X,Y]) =0.

Note that equation () is equivalent to symmetry of the connection. To show
that (i) holds, we notice that

dgi;(Y) =Y - (X, Xj),
and, on the other hand,

n n
(zgkj o+ w;-c> ) = Y00+ gt

k=1
k=1

= <vy XZ,XJ ).
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Hence, equation (iz) is equivalent to
Y. <XZaXJ> = <VY Xian> + <Xla VYXj)a

for every i,7, that is, it is equivalent to compatibility with the metric (cf.
Exercise 2.8.1). We conclude that the Levi-Civita connection forms satisfy
() and ().

To prove unicity, we take 1-forms w? (z j =1,...,n) satisfying (i) and
(74). Using (15) and (16), we can define a connectlon, which is necessarily
symmetric and compatible with the metric. By uniqueness of the Levi-Civita
connection, we have uniqueness of the set of forms w? satlsfymg () and (1)
(note that each connection determines a unique set of n? connection forms
and vice-versa). O

REMARK 2.2. If on an open set we have a field of frames, we can perform
Gram-Schmidt orthogonalization and obtain a smooth field of orthonormal
frames {E1, ..., Ep} (the norm function is smooth on T, M\{0}). Then, as
9ij = (E;, Ej) = 0;5, equations (i) and (ii) above become

(i) dg)i = Z?Zl wl A w;-,
(ii) w! + wj = 0.

In addition to connection forms, we can also define curvature forms.

Again we consider an open subset V' of M where we have a field of frames

{X1,...,X,} (hence a corresponding field of dual coframes w',...,w"). We
then define 2-forms ch (k,t=1,...,n) by

QL(X,Y) = W (R(X,Y)X}),

for all vector fields X,Y in V (i.e., R(X,Y) Xy = > [ QL(X,Y)X;). Using
the basis {w® A w’};<; for 2-forms, we have

O = D OUX, X)) w AW = Wl (R(X, X5) Xp) ' A w!

1<j i<j
1 n
= ZRijkl UJZ /\UJ'] = 5 Z Rijk:l (.(Jz /\w],
1<j 2,j=1

where R, j kl are the coefficients of the curvature relative to these frames:

n
R(X;, Xj))Xp = R’ X
=1
These forms satisfy the following equation:
PROPOSITION 2.3. In the above notation,
(111) Qg = dwzj — > wEA wi,

for everyi,7 =1,...,n.
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PrROOF. We will show that

R(X,Y)X; = En: Q(X,Y)X; = En: ((dw{ - f: wh A wi) (X, Y)) X;.
k=1

7=1 7j=1
Indeed,
]%CY,Y))Q ==V1Xx7y;¥i—-VHfVB(X%——VqXJq}Q =

= Vx (Z wf(Y)Xk> ~Vy (Z wf(X)Xk) - > WX, Y] X,
= > (X wk@) - ¥ - wf () - Wf(X, V) Xi +
=1

El

n
wf(V)Vx Xp — > wf(X)Vy X
k=1 k=1

+

3

= S dtEX )X+ Y (b ¥)w(X) X; - WF(X) (V) X;)
k=1 k,j=1

- (dwg'(X, Y) - En:(wf Awl) (X, Y)) Xj.

=1 k=1

S

O

Equations (), (#4) and (447) are known as Cartan’s structure equa-
tions. We list these equations below, as well as the main definitions:

(i) dw' = 327 w? A,
(i) dgij = 3o5—1(gk; WF + gri w}),
(iii) dw! = Qf + Y5y wl Aw,

(X)) — 8. ok — S ki J_ J ok A ol
where w'(X;) = 05, wj =YL Thw' and 4 = 7 Ry w® Aw'

REMARK 2.4. If we consider an orthonormal field of frames {E1, ..., E, },
the above equations become:

(i) dg)i =30 wl A w;,
(i) w! +wk =0,
(ili) dw] = Qf + Y p_, wf Aw] (and so Q] + Q% =0).
EXAMPLE 2.5. For an orthonormal field of frames in R® with the Eu-

clidean metric, the curvature forms must vanish (as R = 0), and we obtain
the following structure equations:

(i) dg)i =30 wl A w;,
(i) w! +wh =0,
(i) dw! =35, wF Aw].
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To finish this section, we will consider in detail the special case of a
2-dimensional Riemannian manifold. In this case, the structure equations
for an orthonormal field of frames are particularly simple: equation (i7)
implies that there is only one independent connection form (wi = w2 = 0

and w} = —w?), which can be computed from equation (3):
dw' = —w? ANw?;
dw? = w! A w?.
Equation (#77) then yields that there is only one independent curvature form

Q2 = dw?. This form is closely related to the Gauss curvature of the mani-
fold:

PROPOSITION 2.6. If M is a 2-dimensional manifold, then for an or-
thonormal frame we have Q% = —Kw!' A w?, where K = K(p) is the Gauss
curvature of M (that is, its sectional curvature).

PRrOOF. Let p be a point in M and let us choose an open set containing
p where we have defined an orthonormal field of frames {E;, E2}. Then

K = —R(E1, By, By, Ez) = —Rigia,
and consequently
Q2 = DBy, E)w' Aw? = W?(R(E1, B2)Ey) w! A w?
= (R(E1, Es)E1, Es) W' Aw? = Rigpaw! Aw? = —K w! A w2
d

Note that K does not depend on the choice of the field of frames, since it
is a sectional curvature (cf. Definition 1.5). However, the connection forms
do: Let {E1, Ea}, {F1, F2} be two orthonormal fields of frames on an open
subset V of M. Then

(FF F,)=(E E;)S

where S : V' — O(2) has values in the orthogonal group of 2 x 2 matrices.
Note that S has one of the following two forms

a —b a b
S:(b a) or Sz(b —a)’

where a,b: V — R are such that a® + b?> = 1. The determinant of S is then
+1 depending on whether the two frames have the same orientation or not.
Then we have the following proposition:

PROPOSITION 2.7. If {E1, Es} and {F1, Fo} have the same orientation

then, denoting by w? and W? the corresponding connection forms, we have

w? — w? = o, where 0 = adb — bda.
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PROOF. Denoting by {w!,w?} and {@!,w?} the fields of dual co-frames
corresponding to {E1, Eo} and {Fi, Fp}, we define the column vectors of

1-forms o -,
w:(wg) and 52(52)
and the matrices of 1-forms
(o) meoa-(a )
The relation between the frames can be written as
v=Swew=S8Sw
and the Cartan structure equations as
dw=—-AANw and do=-ANG.
Therefore
do=8do+dSANG=-SANG+dS ANS™'w
= -SAANST'w+dSAST'w=—(SAST! —dSS7!) Aw,
and unicity of solutions of the Cartan structure equations implies
A=SAS™' —dSs!.
Writing this out in full one obtains
0 w2\ [0 -w? ada+bdb bda—adb
(w% 0 )_(w% 0 )_(adb—bda ada+bdb>’
and the result follows (we also obtain ada + bdb = 0, which is clear from
det A=a?+0b>=1). O

Let us now give a geometric interpretation of o. Locally, we can define
at each point p € M the angle 6(p) between (E1), and (F1),. Then the
change of basis matrix S has the form

a —b\ [ cosf® —sinf
b a ) \ sinf cos@ |-

o = adb—bda=cosfd(sinf) — sinfd (cos )
= cos®0df + sin® 0dO = db.

Therefore, integrating o along a curve yields the angle by which F; rotates
with respect to E; along the curve.
Notice that in particular o is closed. This is also clear from

do =dw? —dw? = ~Kw' A& + Kw' Aw? =0.

Hence,

We can use the connection form w? to define the geodesic curvature
of a curve on an oriented Riemannian 2-manifold M. Let ¢ : I — M be
a smooth curve in M parametrized by its arclength s (hence ||é(s)]| = 1).
Let V' be a neighborhood of a point ¢(s) in this curve where we have a field
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of orthonormal frames {E1, By} satisfying (E1).;) = ¢(s). Note that it is
always possible to consider such a field of frames: we start by extending the
vector field ¢(s) to a unit vector field F defined on a neighborhood of ¢(s),
and then consider a unit vector field Ey orthogonal to the first, such that
{E1, Ey} is positively oriented. Since

VElEl = w%(El)E'l + w%(El)EQ = w%(El)EQ,
the covariant acceleration of c is
Vi)6(8) = Vi, (5)B1(s) = wi(Ei(s)) Ea(s).

We define the geodesic curvature of the curve c to be ky(s) := w?(E1(s))
(in particular |kg(s)| = [|[V4)¢(s)]). It is a measure of how much the curve
fails to be a geodesic at c¢(s). In particular, c¢ is a geodesic if and only if its
geodesic curvature vanishes.

EXERCISES 2.8.
(1) Let X31,...,X, be a field of frames on an open set V of a Rie-

mannian manifold (M, (-,-)).Show that a connection V on M is
compatible with the metric on V if and only if

for all 4, 7, k.

(2) Show that Cartan’s structure equations (z) and (7i7) hold for any
symmetric connection.

(3) Compute the Gauss curvature of:

(a) the sphere S? with the standard metric;
(b) the hyperbolic plane, i.e., the upper half-plane

H = {(z,y) R |y >0}

with the metric
1
g= y—Q(dx®dm+dy®dy)

(cf. Exercise 4.3.5 of Chapter 3).

(4) Determine all surfaces of revolution with constant Gauss curvature.
(5) Compute the Gauss curvature of the graph of a function f : U C

R? — R with the metric induced by the Euclidean metric of R3.
(6) Let M be the image of the parametrization ¢ : (0, +00) x R — R?

given by

o(u,v) = (ucosv,usinv,v),
and let N be the image of the parametrization v : (0, +00) xR — R3
given by
P(u,v) = (ucosv,usinv,logu).
Consider in both M and N the Riemannian metric induced by the
Euclidean metric of R®. Show that the map f : M — N defined by

f(p(u,v)) = P(u,v)
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preserves the Gaussian curvature but is not a local isometry.
Consider the metric

g=dr®dr+ f*(r)df ® do

on M = I x S', where r is a local coordinate on I C R and @ is the
usual angular coordinate on S'.

(a) Compute the Gaussian curvature of this metric.

(b) For which functions f(r) is the scalar curvature constant?
Consider the metric

g = A%(r)dr @ dr +r?df ® df + r*sin* 0 dp ® dyp

on M = I x S?, where r is a local coordinate on I C R and (6, @)
are spherical local coordinates on S2.

(a) Compute the Ricci tensor and the scalar curvature of this met-

ric.

(b) What happens when A%(r) = (1 — r2)~! (that is, when M is

locally isometric to S3)?

(c) And when A%(r) = (1 + r?)~! (that is, when M is locally

isometric to the hyperbolic 3-space)?

(d) For which functions A(r) is the scalar curvature constant?
Let M be a Riemannian 2-manifold and let p be a point in M. Let
D be a neighborhood of p in M homeomorphic to a disc, with a
smooth boundary @D. Consider a point ¢ € dD and a unit vector
X, € TyM. Let X be the parallel transport of X, along 0D. When
X returns to g it makes an angle Af with the initial vector X,.
Parameterizing 0D with arc length (¢ : I — 0D) and using fields
of orthonormal frames {F, Es} and {F, Fy} positively oriented
and such that F; = X, show that

AHz/K.
D

Conclude that the Gauss curvature of M at p satisfies

Af
K(p) = ginp vol(D)"

Compute the geodesic curvature of a circle in R? with the Euclidean
metric and the usual orientation.

Let ¢ be a smooth curve on an oriented 2-manifold M as in the
definition of geodesic curvature. Let X be a vector field parallel
along ¢ and let € be the angle between X and ¢é(s) along ¢ in the
given orientation. Show that the geodesic curvature of c, kg, is
equal to % (Hint: Consider two fields of orthonormal frames {F;,E2} and
{F1, F>} positively oriented and such that F; = ”f‘,—”)
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3. Gauss-Bonnet Theorem

We will now use Cartan’s structure equations to prove the Gauss-
Bonnet Theorem, relating the curvature of a compact surface to its topol-
ogy. Let M be a compact, oriented, 2-dimensional manifold and X a vector
field on M.

DEFINITION 3.1. A point p € M 1is said to be a singular point of X
if X, = 0. A singular point is said to be an isolated singularity if there

exists a neighborhood V. C M of p such that p is the only singular point of
X inV.

Since M is compact, if all the singularities of X are isolated then they
are in finite number (as otherwise they would accumulate on a non-isolated
singularity).

To each isolated singularity p € V of X € X(M) one can associate an
integer number, called the index of X at p, as follows:

(i) fix a Riemannian metric in M;
(ii) choose a positively oriented orthonormal frame {F;, F5}, defined on
V'\ {p}, such that
X
O T
let {w!,w?} be the dual co-frame and let W? be the corresponding
connection form;

(iii) possibly shrinking V', choose a positively oriented orthonormal frame
{E1, By}, defined on V, with dual co-frame {w!,w?} and connection
form w?;

(iv) take a neighborhood D of p in V, homeomorphic to a disc, with a
smooth boundary 8D, endowed with the induced orientation; we then
define the index I, of X at p through

27rIp:/ o,
oD

where ¢ := w% — w% is the form defined in Section 2.

Recall that o satisfies o = df, where 0 is the angle between Fy and Fj.
Therefore I, must be an integer. Intuitively, the index of a vector field
X measures the number of times that X rotates as one goes around the
singularity anticlockwise, counted positively if X itself rotates anticlockwise,
and negatively otherwise.

EXAMPLE 3.2. In M = R? the following vector fields have isolated sin-
gularities at the origin with the indicated indeces (cf. Figure 1):
(1) X(z,y) = (z,y) has index 1;
(z,y) = (—y,z) has index 1;
(z,y) = (y,z) has index —1.
W(z,y) = (z,—y) has index —1.
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(2)

F1 = ”§—H
(3) (4)
— Z

Fl = ﬁ
!
F1 = ||VV5—||

FiGUure 1. Computing the indices of the vector fields X, Y,
Z and W.

We will now check that the index is well defined. We begin by observ-
ing that, since o is closed, I, does not depend on the choice of D. Indeed,
the boundaries of any two such discs are necessarily homotopic (cf. Exer-
cise 4.2.2 of Chapter 2). Next we prove that I, does not depend on the
choice of the frame {E;, E5}. More precisely, we have

1
I, = lim — / w?,
r—0 27 Sr(p)

where S;(p) is the normal sphere of radius r centered at p. Indeed, if r; >

ro > 0 are radii of normal spheres, one has

(19) /Srl(p)

w2 —

Sry (D) A1z

—2
dwi = —

Ko' Aw? = -

A1z

where Ao = By, (p) \ By, (p)- Since K is continuous, we see that
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as 71 — 0. Therefore, if {r,} is a decreasing sequence of positive numbers
converging to zero, the sequence

S’"n (p)
is a Cauchy sequence, and therefore converges. Thus the limit
- 1
I, = lim — / w?
r—0 27 Sr(p)

exists. Making 79 — 0 on (19) one obtains

/ U%—Qﬂ'jp = —/ K = —/ Kw'Aw? = / dw? :/ w?,
Sr1(p) By, (p) By (p) By, (p) Sry (p)

and hence
2rl, = / o= / @ — w? = 2],
Sry (p) Sry (p)

Finally, we show that I, does not depend on the choice of Riemannian
metric. Indeed, if (-,)o, (*,+)1 are two Riemannian metrics on M, it is easy
to check that

71 71

{3t i= (=) ()0 + 2,01

is also a Riemannian metric on M, and that the index I,,(t) computed using
the metric (-, -); is a continuous function of ¢ (cf. Exercise 3.6.1). Since I,,(?)
is an integer for all ¢ € [0,1], we conclude that I,,(0) = I,(1).

Therefore I, depends only on the vector field X € X(M). We are now
ready to state the Gauss-Bonnet Theorem:

THEOREM 3.3. (Gauss-Bonnet) Let M be a compact, oriented, 2-dimensional

manifold and let X be a vector field in M with isolated singularities p,...,pg.
Then

k
(20) /MKzznZIi
=1

for any Riemannian metric on M, where K is the Gauss curvature.

PROOF. We consider the positively oriented orthonormal frame {F, F,},
with
X

Fl = v’
[1X1]

defined on M \ U¥_,{p;}, with dual co-frame {@',®©?} and connection form
w?. For r > 0 sufficiently small, we take B; = B,(p;) such that B; N Bj=0



134

4. CURVATURE

for ¢ # j and note that

/ K= le/\EQ:—/ dw?
M\U}_, B; M\U}_, B; M\U}_, B;

—2 —2
[, &= a
U;_,9B; i— I9B;

where 0B; have the orientation induced by the orientation of B;. Making
r — 0, one obtains

k
/ K=2r) I,
M i=1

O

REMARK 3.4.

(1)

(2)

Since the right-hand side of (20) does not depend on the metric,
we conclude that [,, K is the same for all Riemannian metrics on
M.
Since the left-hand side of (20) does not depend on the vector field
X, we conclude that x(M) := % | I is the same for all vector
fields on M with isolated singularities. This is the so-called Euler
characteristic of M.
Recall that a triangulation of M is a decomposition of M in a
finite number of triangles (i.e., images of Euclidean triangles by
parametrizations) such that the intersection of any two triangles is
either a common edge, a common vertex or empty (it is possible to
prove that such a triangulation always exists). Given a triangula-
tion, one can construct a vector field with the following properties
(cf. Figure 2):

(a) each vertex is a singularity, which is a sink;

(b) each face contains exactly one singularity, which is a source;

(c) each edge is formed by integral curves of the vector field and

contains exactly one singularity.

It is easy to see that all singularities are isolated, that the singulari-
ties at the vertices and faces have index 1 and that the singularities
at the edges have index —1. Therefore,

x(M)=V —E+F,
where V is the number of vertices, F is the number of edges and F

is the number of faces on any triangulation. This is the definition
we used in Exercise 1.8.5 of Chapter 1.

EXAMPLE 3.5.

(1)

Choosing the standard metric in S2, we have

x(S?) = i/ 1= ivol(SQ) =2.
52 2

o i
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FI1GURE 2. Vector field associated to a triangulation.

From this one can derive a number of conclusions:

(a) there is no zero curvature metric on S2, for this would imply
x(8%) = 0.

(b) there is no vector field on S? without singularities, as this
would also imply x(5?) = 0.

(c) for any triangulation of S?, one has V — E 4+ F = 2. In par-
ticular, this proves Euler’s formula for convex polyhedra with
triangular faces, as these clearly yield triangulations of S2.

(2) As we saw in Section 4, the torus 72 has a zero curvature metric,
and hence x(72) = 0. This can also be seen from the fact that
there exist vector fields on T2 without singularities.

EXERCISES 3.6.
(1) Show that if (-,)o, (-,+)1 are two Riemannian metrics on M then

(e s= (@ =10+ (50
is also a Riemannian metric on M, and that the index I,(t) com-
puted using the metric (-,-); is a continuous function of ¢.
(2) (Gauss-Bonnet Theorem for non-orientable manifolds) Let (M, g)
be a compact, non-orientable, 2-dimensional Riemannian manifold
and let 7 : M — M be its orientable double cover (cf. Exercise 8.6.9

in Chapter 1). Show that:

(a) x(M) =2x(M);

(b) K = n*K, where K is the Gauss curvature of the Riemannian
metric g = 7*g on M;

© x(n) =4[ X
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(Remark: Even though M is not orientable, we can still define the integral of a

function f on M through / f= %/_ﬂ'*f; with this definition, the Gauss-Bonnet
M M

Theorem holds for non-orientable Riemannian 2—manifolds).

Let M be a compact, oriented, 2-dimensional manifold with bound-
ary and let X be a vector field in M transverse to dM (i.e.,
such that X, ¢ T,0M for all p € OM), with isolated singularities
Pi,..-,Pk € M\ OM. Prove that

k
K+ kq(s)ds = 27 I,
| x+ [ ko >

for any Riemannian metric on M, where K is the Gauss curvature
of M, kg4 is the geodesic curvature of M and s is the arclength.
Let (M, g) be a compact orientable 2-dimensional Riemannian man-
ifold, with positive Gauss curvature. Show that any two non-self-
intersecting closed geodesics must intersect each other.

(Hessian) Let M be a differentiable manifold, f : M — R a smooth
function and p € M a critical point of f (ie. (df), = 0). For
v,w € TyM we define the Hessian of f at p to be the map (Hf), :
oM x T,M — R given by

32
T 0tos|,_,_,

where v : U C R? — M is such that v(0,0) = p, %(0,0) = v and
91(0,0) = w. Show that (Hf),

(a) is well-defined;

(b) is a symmetric 2-tensor (if (Hf), is nondegenerate then p is

called a nondegenerate critical point).

(Morse Theorem) A smooth function f : M — R is said to be a
Morse function if all its critical points are nondegenerate. If M
is compact then the number of critical points of any Morse function
on M is finite. Prove that if M is a 2-dimensional compact manifold
and f : M — R is a Morse function with m maxima, s saddle points
and n minima, then

xX(M)=m—s+n.

(Hf )p(v, w) fo(s:1),

(Hint: Choose a Riemannian metric on M and consider the vector field X = grad f )
Let (M,g) be a 2-dimensional Riemannian manifold and A C M
a geodesic triangle, i.e., an open set homeomorphic to a disc
whose boundary is contained in the union of the images of three
geodesics. Let «, 3,7 be the inner angles of A, i.e., the angles
between the geodesics at the intersection points contained in OA.
Prove that for small enough A one has

a—l—ﬂ-l—’yzw—i—/K,
A
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where K is the Gauss curvature of M, using:

(a) the fact that [, K is the angle by which a vector parallel-
transported once around QA rotates;

(b) the Gauss-Bonnet Theorem for manifolds with boundary.

(Remark: We can use this result to give another geometric interpretation of the

atf4+y—m )
vol(ay /-

(8) Let M be a simply connected 2-dimensional Riemannian manifold
with nonpositive Gauss curvature. Show that any two geodesics
intersect at most in one point. (Hint: Note that if two geodesics intersect

Gauss curvature: K(p) = lima_,p

in more than one point then one would have a geodesic biangle, i.e., an open set
homeomorphic to a disc whose boundary is contained in the union of the images of

two geodesics.) .

4. Manifolds of Constant Curvature

Recall that a manifold is said to have constant curvature if all sectional
curvatures at all points have the same constant value K. There is an easy
way to identify these manifolds using their curvature forms:

LEMMA 4.1. If M is a manifold of constant curvature K, then, around
each point p € M, all curvature forms ¥} satisfy
(21) QZ = —Kuw' A,
where {w', ... ,w"} is any field of orthonormal co-frames defined on a neigh-
borhood of p. Conversely, if on a neighborhood of each point of M there is
a field of orthonormal frames F1, ..., E, such that the corresponding field
of co-frames {w',...,w"} satisfies (21) for some constant K, then M has
constant curvature K.

PROOF. If M has constant curvature K then

ol = D QB E) vt AWt = W (R(Ey, E)E;) wb AW

7

k<l k<l
= Z(R(Ek, El)Ei, Ej)(.dk A wl = Z Rklij wk A wl
k<l k<l
= - Z K(&kiélj — 5kj6li) W AW = —Kw' Awl.
k<l

Conversely, let us assume that there is a constant K such that on a neigh-
borhood of each point p € M we have Q) = —Kw" A w?. Then, for every
section II of the tangent space T, M, the corresponding sectional curvature
is given by

K(II) = -R(X,Y, X,Y)

where XY are two linearly independent vectors spanning II (which we
assume to span a parallelogram of unit area). Using the field of orthonormal



138 4. CURVATURE

frames around p, we have X =Y | X'F; and Y = Y ; Y'E; and so,

n
K@) = - Y XY/X'Y'R(E; Ej, Ey, E)
iokl=1

n
= - Y XYIXx'YW'O(E, Ej)
i,5.k1=1
n
= K Y XYx"W'F Al (B, E))
1,5k, 0=1
n
= K Y XYIxty! (wk(Ei)wl(Ej)—wk(Ej)wl(Ei))
1,5k, 0=1
n
= K Y XYIX"Y' (6 — dindu)
1,5k, 0=1
K (XY - (X,Y)?) = K.

O
Let us now see an example of how we can use this lemma;:
EXAMPLE 4.2. Let a be a positive real number and let
H"(a) = {(z},...2") € R" : 2" > 0}.
We will see that the Riemannian metric in H"(a) given by
2
a
gij(l') = W di,
has constant sectional curvature K = —a%. Indeed, using the above lemma,
we will show that on H"(a) there is a field of orthonormal frames F; ..., E,
whose dual field of co-frames w'...w" satisfies
(22) Qg = —Kuw'Aw’
for K = —a%. For that, let us consider the natural coordinate system
z : H"(a) — R" and the corresponding field of coordinate frames X1, ..., X,
with X; = % Since
a2
(Xi, X;) = W%’,
we obtain a field of orthonormal frames Fi, ..., E, with E; = %X,-, and the

1

corresponding dual field of co-frames w!,...w" where w' = ;Lndwi. Then

a , 1 . i 1 .
dz* Ndz" = - A" = Zwk A (——&me) ,
k=1 a

i
dw' = oL .
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and so, using the structure equations

n
dw' :z:wk/\w,zc
k=1
w! 4+ wh =0
i T W=

we can guess that the connection forms are given by wj- = %(&nwj — §jpwt).
We can easily verify that these forms satisfy the above structure equations

since
" R 1. 4
E:wk/\wlzc:_E :wlc/\(é‘mwlc_ékan):_wz/\wn:dwz
a a
k=1 k=1

and ) )

w! = a(éjnwZ — dipw?) = —E(dinwj — djpw’) = —w;-.

Hence, by unicity of solution of these equations, we conclude that these forms
are indeed given by w] = 1(§;,0' — inw’). With the connection forms it
is now easy to compute the curvature forms 2} using the third structure
equation

n
dw! :wa/\wi—i-ﬁg.

k=1
In fact,
j Lis o j 1 i J AW
dwj =d E(éjnw —dipw?) | = ﬁ(éjnw AW = Gipw? Aw™)
and
n ) 1 n ) .
wa ANwl = = Z(éknw’ — Ginw®) A (6jnwk — Onw?)
k=1 k=1
1 <& ) ) . .
= 3 Z(dknéjnwz AwF = Spnw A w? + 8inOpnw® A w?)
k=1
1 ) ) ) .
= 3 (Ojnw’ Aw™ — w' Aw? + dpw™ A w?),
and so,
Q= o) (0jnw' Aw"™ =dinw! Aw™ =6 jpw Aw" +w" Aw? —0iw" Aw’ ) = ol Awd.
We conclude that K = —‘11—2. Note that these spaces give us examples in

any dimension of Riemannian manifolds with arbitrary constant negative
curvature.

The Euclidean spaces R" give us examples of Riemannian manifolds
with constant curvature equal to zero. Moreover, we can easily see that the
spheres S™(r) C R**! of radius 7 have constant curvature equal to %2 (cf.

Exercise 5.7.2), and so we have examples in any dimension of spaces with
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arbitrary constant positive curvature. Note that all of the examples given
so far in this section are simply connected and are geodesically complete.
Indeed, the geodesics of the Euclidean space R" traverse straight lines, S™(r)
is compact and the geodesics of H"(a) traverse either half circles perpen-
dicular to the plane ™ = 0 and centered on this plane, or vertical half lines
starting at the plane z" = 0.

Every simply connected geodesically complete manifold of constant cur-
vature is isometric to one of these examples as it is stated in the following
theorem (which we will not prove). In general, if the manifold is not simply
connected (but still geodesically complete), it is isometric to the quotient of
one of the above examples by a free and proper action of a discrete subgroup
of the group of isometries (it can be proved that the group of isometries of
a Riemannian manifold is always a Lie group).

THEOREM 4.3. (Killing-Hopf)

(1) Let M be a simply connected Riemannian manifold geodesically
complete. If M has constant curvature K then it is isometric to one

of the following: S™ (\/%) if K>0,R*" if K=0, or H" (ﬁ)
if K <O0.

(2) Let M be a geodesically complete manifold (not necessarily simply
connected) with constant curvature K. Then M is isometric to a
quotient M/I‘, where M is one of the above simply connected spaces
and T is a discrete subgroup of the group of isometries of M acting
properly and freely on M.

EXAMPLE 4.4. Let M = R2. Then the subgroup of isometries ' cannot
contain any rotation (since it acts freely). Hence it can only contain trans-
lations and gliding reflections (that is, reflections followed by a translation
in the direction of the reflection axis). Moreover, it is easy to check that T’
has to be generated by at most two elements. Hence we obtain that:

(1) if T is generated by one translation, then the resulting surface will
be a cylinder;

(2) if T is generated by two translations we obtain a torus;

(3) if T' is generated by a gliding reflection we obtain a Moébius band;

(4) if T is generated by a translation and a gliding reflection we obtain
a Klein bottle.

Note that if ' is generated by two gliding reflections then it can also be gen-
erated by a translation and a gliding reflection (cf. Exercise 4.7.4). Hence,
these are all the possible examples of geodesically complete Euclidean sur-
faces (2-dimensional manifolds of constant zero curvature).

ExAMPLE 4.5. The group of orientation-preserving isometries of the hy-
perbolic plane H? is PSL(2,R) = SL(2,R)/{%Id}, acting on H? through

a b P az+b
c d Yoz 4d’
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where we make the identification R?2 = C (cf. Exercise 4.7.5). To find
orientable hyperbolic surfaces, that is, surfaces with constant curvature K =
—1, we have to find discrete subgroups I' of PSL(2,R) acting properly and
freely on H?. Here there are many more possibilities. As an example, we can
consider the group I' = (to,) generated by the translation to,(z) = z + 2.
The resulting surface is known as pseudosphere and is homeomorphic to
a cylinder (cf. Figure 3). However, the width of the end where y — +o00
converges to zero, while the width of the end where y — 0 converges to +oo.
Its height towards both ends is infinite. Note that this surface has geodesics
which transversely autointersect a finite number of times (cf. Figure 4).

Other examples can be obtained by considering hyperbolic polygons
(bounded by geodesics) and identifying their sides through isometries. For
instance, the surface in Figure 5-(b) is obtained by identifying the sides of the
polygon in Figure 5-(a) through the isometries g(2) = z+2 and h(z) = 3/75.
Choosing other polygons it is possible to obtain compact hyperbolic sur-
faces. In fact, there exist compact hyperbolic surfaces homeomorphic to any
topological 2-manifold with negative Euler characteristic (the Gauss-Bonnet
Theorem does not allow non-negative Euler characteristics).

-2 0 27 47

FIGURE 3. Pseudosphere.

EXAMPLE 4.6. To find Riemannian manifolds of constant positive cur-
vature we have to find discrete subgroups of isometries of the sphere that
act properly and freely. Let us consider the case where K = 1. Then
I' C O(n +1). Since it must act freely on S™, no element of I'\{Id} can
have 1 as an eigenvalue. We will see that, when n is even, S™ and RP"
are the only geodesically complete manifolds of constant curvature 1. In-
deed, if A € T', then A is an orthogonal (n + 1) X (n + 1) matrix and so all
its eigenvalues have absolute value equal to 1. Moreover, its characteristic
polynomial has odd degree (n + 1), implying that, if A # I, this polynomial
has a real root equal to —1 (since it cannot have 1 as an eigenvalue). Con-
sequently, A% has 1 as an eigenvalue and so it has to be the identity. Hence,
the eigenvalues of A are either all equal to 1 (if A = Id) or all equal to —1,
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4l M

—27 0 2 47

FIGURE 4. Trajectories of geodesics on the pseudosphere.

(a) (b)

FIGURE 5. (a) Hyperbolic polygon, (b) Pair of pants.

in which case A = —Id. We conclude that I' = {+Id} implying that our
manifold is either S™ or RP™. If n is odd there are other possibilities which
are classified in [Wol78].

EXERCISES 4.7.

(1) Prove that if the forms w’ in an orthonormal co-frame satisfy dw® =
a Aw' (with a a 1-form), then the connection forms w?
by wlj = a(Ej)w’! — a(Ej)w' = —w;'-. Use this to confirm the results
in Example 4.2.

(2) Let K be a real number and let p = 1 + (£) 3" | (292 Let V =
©(U) be a coordinate neighborhood of a manifold M of dimension
n, with U = B.(0) C R* (for some ¢ > 0). Show that, for the

are given
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Riemannian metric defined in V' by

1
9ij(p) = 2 Jij
the sectional curvature is constant equal to K. Note that in this
way we obtain manifolds with an arbitrary constant curvature.

(3) (Schur Theorem) Let M be a connected isotropic Riemannian man-
ifold of dimension n > 3. Show that M has constant curvature.
(Hint: Use the structure equations to show that dK = O).

(4) To complete the details in Example 4.4, show that:

(a) any discrete group of isometries of the Euclidean plane R? act-
ing properly and freely on R? can only contain translations and
gliding reflections and is generated by at most two elements;

(b) show that any group generated by two gliding reflections can
also be generated by a translation and a gliding reflection.

(5) Let H? be the hyperbolic plane. Show that:

(a)
a b __az+b
(C d> T ot d
defines an action of PSL(2,R) = SL(2,R)/{+Id} on H? by
orientation-preserving isometries;

(b) for any two geodesics ci,cy : R — H?, parametrized by the
arclength, there exists ¢ € PSL(2, R) such that c1(s) = g-c2(s)
for all s € R;

(c) if f : H?> — H? is an orientation-preserving isometry then it
must be a holomorphic function. Conclude that all orientation-
preserving isometries are of the form f(z) = g - z for some
g € PSL(2,R).

(6) Check that the isometries g, h of the hyperbolic plane in Exam-
ple 4.5 identify the sides of the hyperbolic polygon in Figure 5.
(7) A tractrix is the curve described parametrically by

= u — tanhu
y = sechu

(u>0)

(its name derives from the property that the distance between any
point in the curve and the z-axis along the tangent is constant equal
to 1). Show that the surface of revolution generated by rotating a
tractrix about the z-axis (tractroid) has constant Gauss curvature
K = —1. Determine an open subset of the pseudosphere isometric
to the tractroid. (Remark: The tractroid is not geodesically complete; in fact,
it was proved by Hilbert in 1901 that any surface of constant negative curvature
embedded in Euclidean 3-space must be incomplete).

(8) Show that the group of isometries of S™ is O(n + 1).

(9) Let G be a compact Lie group of dimension 2. Show that:
(a) G is orientable;
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(b) x(G) =0;
(c) any left-invariant metric on G has constant curvature;
(d) G is the 2-torus T?.

5. Isometric Immersions

Many Riemannian manifolds arise as submanifolds of another Riemann-
ian manifold, by taking the induced metric (e.g. S™ C R**!). In this section,
we will analyze how the curvatures of the two manifolds are related.

Let f : N - M be an immersion of an n-manifold N on an m-manifold
M. We know from Section 5 of Chapter 1 that, for each point p € N,
there is a neighborhood V' C N of p where f is an embedding onto its
image. Hence f(V) is a submanifold of M. To simplify notation, we will
proceed as if f were the inclusion map, and will identify V' with f(V), as
well as every element v, € T,N with (df),v, € Ty M. Let (-,-) be a
Riemannian metric on M and ((-,-)) the induced metric on N (we then call
f an isometric immersion). Then, for every p € V, the tangent space
T, M can be decomposed as follows:

T,M = T,N @ (T,N)*.

Therefore, every element v, of T, M can be written uniquely as v, = v;,r —I—'upL,
where ’U;— € TN is the tangential part of v, and 1);; € (T,N)* is the normal
part of v,. Let V and V be the Levi-Civita connections of (M, (-,-)) and
(N, {{-,-))), respectively. Let X,Y be two vector fields in V C N and let X,

Y be two extensions of X,Y to a neighborhood W C M of V. Using the
Koszul formula, we can easily check that

. AT
VxY = (V5 ¥)
(cf. Exercise 4.3.6 of Chapter 3). We define the second fundamental form
of N as
B(X,Y):=V3Y -VxY.

Note that this map is well defined, that is, it does not depend on the ex-
tensions X,Y of X and Y (cf. Exercise 5.7.1). Moreover, it is bilinear,
symmetric, and, for each p € V, B(X,Y), € (T,N)* depends only on the
values of X, and Y.

Using the second fundamental form, we can define for each vector n, €
(T,N)* a symmetric bilinear map H,, :T,N x T,N — R through

an(Xp,Y;,) = <B(Xp,Yp),’er).
Hence, we have a quadratic form II,,, : T,N — R, given by
1L, (Xp) = Hyp, (Xp, Xp),

which is often called the second fundamental form of f at p along the
vector n,,.
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Finally, since Hy,, is bilinear, there exists a linear map Sy, : T,N — T, N
satisfying
<<Snp(Xp)aYp>) =H, (XpaY}J) = <B(XP7YP)anp>
for all X,,,Y, € T,M. It is easy to check that this linear map is given by
Sn, (Xp) = —(6;(71)T

P

P

where 7 is a local extension of 7, normal to N. Indeed, since (Y, n) = 0 on
N and X is tangent to N, we have

({(Su(X),Y)) = (B(X,Y),n)=(V3Y —VxY,n)
= (@X?,n):)?-(?,n)—(l?,~)~(n)
= (=Vgn,Y) = {(-(Vgn)',Y))

~

Therefore
((Sn, (Xp), V) = ((—=(Vgn)p, V)
for all Y, € T,,N.

EXAMPLE 5.1. Let N be a hypersurface in M, i.e., let dim N = n and
dimM = n + 1. Consider a point p € V (a neighborhood of N where f is
an embedding), and a unit vector n, normal to N at p. As the linear map
Sn, : TpN — T, N is symmetric, there exists an orthonormal basis of T, N
formed by eigenvectors {(E1)p, ..., (Fy)p} (called principal directions at
p) corresponding to a set of real eigenvalues \A1,..., A, (called principal
curvatures at p). The determinant of the map S, (equal to the product
A1-++ Ap) is called the Gauss curvature of f and H := % tr Sp, = %(Al +
-+~ 4+ \,) is called the mean curvature of f. When n = 2 and M = R3
with the Euclidean metric, the Gauss curvature of f is in fact the Gauss
curvature of N as defined in Section 1 (cf. Example 5.5).

EXAMPLE 5.2. If, in the above example, M = R**! with the Euclidean
metric, we can define the Gauss map g : V C N — S™, with values on
the unit sphere, which, to each point p € V', assigns the normal unit vector
np. Since ny, is normal to T, N, we can identify the tangent spaces T, N
and Ty, S™ and obtain a well-defined map (dg), : T,N — T, N. Note that,
for each X, € T,N, choosing a curve ¢ : I — N such that ¢(0) = p and
¢(0) = X, we have

d d
(dg)p(Xp) = %(g oc)lt=0 = %nc(tﬂtzo = (Ven)p,

where we used the fact V is the Levi-Civita connection for the Euclidean
metric. However, since ||n|| = 1, we have

0= C(t) ) <’)’I,,7’L> = 2(6[;71;,”),
implying that

(dg)p(Xp) = (Vien)p = (Ve ”);;r = _Snp(Xp)-
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We conclude that the derivative of the Gauss map at p is =5y,
Let us now relate the curvatures of N and M.

PROPOSITION 5.3. Let p be a point in N, let X}, and Y, be two linearly
independent vectors in T,N C T,M and let II C T,N C T,M be the two
dimensional subspace generated by these vectors. Let K™ (II) and KM (IT)
denote the corresponding sectional curvatures in N and M, respectively.
Then

<B(Xp’ Xp)a B(Y;?’ Yp)) — ||B(XP’ Y;U)HQ .

KN(1) — KM(11) =
[ Xpl21Y[1* — (Xp, ¥p)?

PROOF. Observing that the right-hand side depends only on II, we can
assume without loss of generality that {X,,Y,} is orthonormal. Let X,Y be
local extensions of X,,Y}, defined on a nelghborhood of p in N and tangent
to N, also orthonormal. Let X,Y be extensions of X,Y to a neighborhood of
pin M. Moreover, consider a ﬁeld of frames {F1, ..., E, 4k}, also defined on
a neighborhood of p in M, such that F1,..., E, are tangent to N, F1 = X,
Ey; =Y on N, and Ep41,...,E, are normal to N (m = n+ k). Then,
since B(X,Y) is normal to N,

k k

B(X,Y) = Z(B(X,Y),ETH_,) n+i — ZHEn_H X Y) En—|—z
i=1 i=1

On the other hand,
KN(I) - KM(I) = —RY (X}, Y,, X,,Y;) + RY (X, Yy, X3, Y))
=((— VXvYX-FVYVXX‘FV[XY}
+Vg Ve X =V VX = Vi 1 X)p )
=((— VXVyX+VyVXX+V V X - V A X)p,Y),

where we have used the fact that V[X y]X — Vix,y] X is normal to N (cf.
Exercise 5.7.1). However, since on N

Vy(B(X,X)+Vx X) =

G,V X

Il
<
~h

k
Z HEn+i (Xa X)En+i +Vx X)
=1

I
M=

(HEn+i(X’ X)ﬁff Enti + Y- (HEn+i(X’X))En+i) + 6{/ Vx X,

i=1

we have

k
(Ve V3 X,Y) =Y Hpg, (X,X)(Vy Enyi,Y) +(Vy Vx X,Y).
=1
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Moreover,
0 = Y- (Epii,Y)=(Vy Enyi,Y) + (Enyi, Vs V)
(V Entis ) + <En+ia B(Y, Y) + Vy Y)
= (V§ EnyisY) + (Bnpi, BY,Y))
= <V Entis >+HEn+i(Y’ Y),
and so

k
(Vg V5 X,Y) ==Y Hg, (X,X)Hg,, (Y,Y)+(Vy Vx X,Y)
=1

k
= - Hg,, (X,X)Hg,,,(Y,Y)+ (Vy Vx X,Y).
=1

Similarly, we can conclude that

k
<6)~( 617)2,1/) = _ZHEn+i(X’Y)HEn+i(X’ Y)+(Vx Vy X,Y),
=1
and then

KN(T) — KM(11) =
k
= Z n+l Yp))2 +HEn+i(Xanp)HEn+i(1/P’YvP))

= _”B(XPa p)||2 <B(vaXp)aB(Y}”Y}J))-
O

EXAMPLE 5.4. Again in the case of a hypersurface N, we choose an
orthonormal basis {(E1)p, ..., (En)p} of T,N formed by eigenvectors of S, ,
where n, € (T,N ). Hence, considering a section II of T, N generated by
two of these vectors (E;),, (Ej)p, and using B(X,,Y,) = ((Sn, (Xp), Yp))np,
we have

KN (1) - KM () =
= —||B((Ei)p; (Ej)p)|I* + (B((Ex)p, (Ei)p), BUE))p, (E)p))

= —((Sn, (Ei)p), (Ej)p))>+ ((Sn, (Ei)p), (Ei)p))((Sn, (Ej)p), (Ej)p))
= Ai)j.

EXAMPLE 5.5. In the special case where N is a 2-manifold, and M = R3
with the Euclidean metric, we have K™ = 0 and hence K% (p) = A \g, as
promised in Example 5.1. Therefore, although A; and Ay depend on the
immersion, their product depends only on the intrinsic geometry of N.
Gauss was so pleased by this discovery that he called it his Theorema
Egregium (‘Remarkable Theorem’).
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Let us now study in detail the particular case where N is a hypersurface
in M = R""! with the Euclidean metric. Let ¢: I — N be a curve in N
parametrized by arc length s and such that ¢(0) = p and ¢(0) = X, € T, N.
We will identify this curve ¢ with the curve f o ¢ in R**!. Considering the
Gauss map g : V — S™ defined on a neighborhood V of p in N, we take
the curve n(s) := g oc(s) in S”. Since V is the Levi-Civita connection
corresponding to the Euclidean metric in R?, we have (V¢ é,n) = (¢,n). On
the other hand,
Hence, at s = 0, Iy (X,) = (€(0),np). This value ky, := (¢(0),nyp) is
called the normal curvature of ¢ at p. Since k;,, is equal to Il ) (X)),
it does not depend on the curve, but only on its initial velocity. Because
Hg(p)(Xp) = ({Sgp)(Xp), Xp)), the critical values of these curvatures subject
to || X,|| = 1 are equal to A1,...,\,, and are called the principal curva-
tures. This is why in Example 5.1 we also called the eigenvalues of Sy,
principal curvatures. The Gauss curvature of f is then equal to the product
of the principal curvatures, K = A;...\,. As the normal curvature does
not depend on the choice of curve tangent to X, at p, we can choose c to
take values on a 2 containing n,. Then ¢(0) is parallel to the normal vector
np, and

|kn| = [(€(0), )| = [[E(0)]| = ke,

where k. := [|¢(0)] is the so-called curvature of the curve ¢ at ¢(0).

EXAMPLE 5.6. Let us consider the following three surfaces: the 2-sphere,
the cylinder and a saddle surface.

(1) Let p be any point on the sphere. Intuitively, all points of this
surface are on the same side of the tangent plane at p, implying
that both principal curvatures have the same sign (depending on
the chosen orientation), and consequently that the Gauss curvature
is positive at all points.

(2) If p is any point on the cylinder, one of the principal curvatures
is zero (the maximum or the minimum, depending on the chosen
orientation), and so the Gauss curvature is zero at all points.

(3) Finally, if p is a saddle point, the principal curvatures at p have
opposite signs, and so the Gauss curvature is negative.

EXERCISES 5.7.

(1) Let M be a Riemannian manifold with Levi-Civita connection V,
and let N be a submanifold endowed with the induced metric and
Levi-Civita connection V. Let X,Y € X(M) be local extensions
of X,Y € X(N). Recall that the second fundamental form of the
inclusion of N in M is the map B : T,N x T,N — (T,N)" defined
at each point p € N by

B(X,Y):=V3iY -VxY.



(2)

(3)
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Show that: o
) B(X,Y) does not depend on the choice of the extensions X,Y;
) B(X,Y) is orthogonal to N;

) B is symmetric, i.e. B(X, Y) B(Y, X);

) B(X,Y), depends only on the values of X, and Y,

(e) V (X,7] X - Vix,y] X is orthogonal to N.

Let S”( ) C R**! be the n dimensional sphere of radius .

a) Choosing at each point the outward pointing normal unit vec-
tor, what is the Gauss map of this inclusion?

b) What are the eigenvalues and eigenvectors of its derivative7

c) Show that all sectional curvatures are equal to r2; conclude
that S™(r) has constant curvature le.
Let M be a Riemannian manifold. A submanifold N C M is said
to be totally geodesic if the image of any geodesic of M tangent
to N at any point is contained in N. Show that:

(a) N is totally geodesic iff B = 0, where B is the second funda-
mental form of N;

(b) if N is totally geodesic then the geodesics of N are geodesics
of M;

(c) if N is the set of fixed points of an isometry then N is totally
geodesic. Use this result to give examples of totally geodesic
submanifolds of R*, S™ and H™.

Let N be a hypersurface in R**! and let p be a point in M. Show
that

(a

(b
(c
(d

K| = Jim )

where D is a neighborhood of p and g: V C N — S™ is the Gauss
map.
Let M be a smooth Riemannian manifold, p a point in M and II
a section of T, M. Considering a normal ball around p, B(p) :=
expy, (B:(0)), take the set N, := exp,(B:(0) N1II). Show that:
a) The set N, is a 2-dimensional submanifold of M formed by
the segments of geodesics in B.(p) which are tangent to II at
b;
b) If in N, we use the metric induced by the metric in M, the
sectional curvature KM (II) is equal to the Gauss curvature of
the 2-manifold N,,.
Let M be a Riemannian manifold with Levi-Civita connection V
and let N be a hypersurface in M. Show that the absolute values of
the principal curvatures are the geodesic curvatures (in M) of the
geodesics of N tangent to the principal directions (the geodesic
curvature of a curve ¢ : I C R — M, parametrized by arclength,
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is kq(s) = ||V y¢(s)[l; in the case of an oriented 2-dimensional Rie-
mannian mamfold kg is taken to be positive or negative according
to the orientation of {é(s), @é(s)é(s)}, cf. Section 2).

(7) (Surfaces of revolution) Consider the map f : R x (0,27) — R?
given by

f(s,0) = (h(s) cos 0, h(s) sin0, g(s))
with A > 0 and g smooth maps such that

(R ())* + (¢'(s)” = 1.
The image of f is the surface of revolution S with axis Oz, ob-
tained by rotating the curve a(s) = (h(s), g(s)), parametrized by
the arclength s, around that axis.
(a) Show that f is an immersion.
(b) Show that f, := (df) (Z) and fp := (df)(Z;) are orthogonal.
(c) Determine the Gauss map and compute the matrix of the sec-
ond fundamental form of S associated to the frame {E;, Ey},
where E; := f; and Ey := mfg.
(d) Compute the mean curvature H and the Gauss curvature K

of S.
(e) Using this result, give examples of surfaces of revolution with:
(i) K = 0

(i) K

(iii) K = —1

(iv) H=0 (not a plane).

(Remark Surfaces with constant zero mean curvature are called minimal surfaces;
it can be proved that if a compact surface with boundary has minimum area among

all surfaces with the same boundary then it must be a minimal surface).

6. Notes on Chapter 4

6.1. Bibliographical notes. The material in this chapter can be found
in most books on Riemannian geometry (e.g. [Boo03], [dC93], [GHLO04]).
The proof of The Gauss-Bonnet theorem (due to S. Chern) follows [dC93]
closely. See [KN96], [Jos02] to see how this theorem fits within the gen-
eral theory of characteristic classes of fiber buldles. A more elementary
discussion of isometric immersions of surfaces in R? (including a proof of
the Gauss-Bonnet Theorem) can be found in [dC76], [Mor98].



CHAPTER 5

Relativity

In this chapter we study one of the most important applications of Rie-
mannian geometry, namely General Relativity.

In Section 1 we discuss the Galileo spacetime, which is the geometric
structure underlying Newtonian mechanics. This structure hinges on the
existence of arbitrarily fast motions; if a maximum speed is assumed to exist
then it must be replaced by the Minkowski spacetime, whose geometry
is studied in Special Relativity (Section 2).

Section 3 shows how to include Newtonian gravity in Galileo’s spacetime
by introducing the symmetric Cartan connection. By trying to general-
ize this procedure we are lead to consider general Lorentzian manifolds
satisfying the Einstein field equation, of which Minkowski spacetime is
the simplest example (Section 4).

Other simple solutions are analyzed in the subsequent sections: the
Schwarzschild solution, modeling the gravitational field outside spher-
ically symmetric bodies or black holes (Section 5), and the Friedmann-
Robertson-Walker models of cosmology, describing the behavior of the
Universe as a whole (Section 6).

The chapter concludes with a discussion causal structure of a Lorentz
manifold (Section 7), in preparation for the proof of one of the Hawking-
Penrose singularity theorems (Section 8).

1. Galileo Spacetime

The set of all physical occurrences can be modeled as a connected 4-
dimensional manifold M, which we call spacetime, and whose points we
refer to as events. We assume that M is diffeomorphic to R*, and that
there exists a special class of diffeomorphisms z : M — R*, called iner-
tial frames. An inertial frame yields global coordinates (z°,z!,z2, z%) =
(t,z,y,2). We call the coordinate ¢t : M — R the time function associated
to a given inertial frame. T'wo events p,q € M are said to be simultaneous
on that frame if ¢(p) = t(g). The level functions of the time function are
therefore called simultaneity hypersurfaces. The distance between two
simultaneous events p,q € M is given by

3
d(p,q) = (zi(p) — 2(q)).
=1

k3

151
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The motions of particles are modeled by smooth curves ¢ : I — M
such that dt(¢) # 0. A special class of motions are the motions of free
particles, i.e., particles which are not acted upon by any external forces.
The special property of inertial frames is that the motions of free particles
are represented on any inertial frame by straight lines. In other words, free
particles move with constant velocity relative to inertial frames (Newton’s
law of inertia). In particular, motions of particles at rest in an inertial
frame are motions of free particles.

Inertial frames are not unique: if z : M — R* is an inertial frame and
T : R* - R* is an invertible affine transformation then 7' o z is another
inertial frame. In fact, any two inertial frames must be related such an
affine transformation (cf. Exercise 1.1.2).

The Galileo spacetime, which underlies Newtonian mechanics, is ob-
tained by further requiring that inertial frames should:

(1) Agree on the time interval between any two events (and hence on
whether two given events are simultaneous).
(2) Agree on the distance between simultaneous events.

Therefore, up to translations and reflections, all coordinate transfor-
mations between inertial frames belong to the Galileo group Gal(4), the
group of linear orientation-preserving maps which preserve time functions
and the Euclidean structures of the simultaneity hypersurfaces.

When analyzing problems in which only one space dimension is impor-
tant, we can use a simpler 2-dimensional Galileo spacetime. If (¢,z) are
the spacetime coordinates associated to an inertial frame and T € Gal(2)
is a Galileo change of basis to a new inertial frame with global coordinates

(t',z"), then
0 0 o 0
o L (a) oo
0 0 0
Pria (%) =

with v € R, as we must have

o\ (90
0 (2)<ar (2) 1

T must be orientation-preserving and an isometry of {t = 0} = {t' = 0}.
The change of basis matrix is

10
5= 1)

with inverse
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Therefore the corresponding coordinate transformation is

t'=t

=z —vt
(Galileo transformation), and hence the new frame is moving with veloc-
ity v with respect to the old one (as the curve ' = 0 is the curve z = vt).
Notice that S—! is obtained from S simply by reversing the sign of v, as one

would expect, as the old frame must be moving relative to the new one with
velocity —v. We shall call this observation the Relativity Principle.

EXERCISES 1.1.

(1) (Lucas Problem) By the late 19" century there existed a regular
transatlantic service between Le Havre and New York. Every day
at noon (GMT) a transatlantic ship would depart Le Havre and
another one would depart New York. The journey took exactly
seven days, so that arrival would also take place at noon (GMT).
Therefore, a transatlantic ship traveling from Le Havre to New
York would meet a transatlantic ship just arriving from New York
at departure, and another one just leaving New York on arrival.
Besides these, how many other ships would it meet? At what times?
What was the total number of ships needed for this service? (Hint:
Represent the ships’ motions as curves in a 2-dimensional Galileo spacetime).

(2) Let f:R* — R" (n > 2) be a bijection that takes straight lines to
straight lines. Show that f must be an affine function, i.e., that

flz)=Az+0b

for all z € R*, where A € GL(n,R) and b € R".
(3) Prove that the Galileo group Gal(4) is the subset of GL(4,R)
formed by matrices of the form

10

v R
where v € R? and R € SO(3). Conclude that Gal(4) is isomorphic
to the group of orientation-preserving isometries of the Euclidean

3-space R3.
(4) Show that Gal(2) is a subgroup of Gal(4).

2. Special Relativity

The Galileo spacetime assumption that all inertial observers should agree
on the time interval between two events is intimately connected with the pos-
sibility of synchronizing clocks in different frames using signals of arbitrarily
high speeds. Experience reveals that this is actually impossible. Instead,
there appears to be a maximum propagation speed, the speed of light, which
is the same at all events and in all directions, and that we can therefore take
to be 1 by choosing suitable units (for instance, measuring time in years and
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distance in light-years). Therefore a more accurate requirement is that all
inertial frames should

(1’) Agree on whether a given particle is moving at the speed of light.

Notice that we no longer require that different inertial frames should
agree on the time interval between two events, or even if two given events
are simultaneous. However we still require that all inertial frames should

(2’) Agree on the distance between events which are simultaneous in both
frames.

Fix a particular inertial frame with coordinates (z°,z',z2 23). A free
particle moving at the speed of light will be a straight line whose tangent
vector

00 ox! 0x? ox3
must satisfy
(,UO)2 — (,U1)2 + (,02)2 + (,03)2.
In other words, v must satisfy (v,v) = 0, where
3
(v,w) = ="’ + v'w! + v?w? + V3w = Z Nuorw”,
=0

with (n,,) = diag(—1,1,1,1). Notice that (-, -) is a symmetric non-degenerate
tensor which is not positive definite; we call it the Minkowski (pseudo)
inner product. The coordinate basis

0 9 9 9
020’ 9z’ 02’ O3

is an orthonormal basis for this inner product (cf. Exercise 2.2.1), as

0 0\ _
oz’ v | M
(Hal/: 0715273)'

By assumption (1), given a motion of a free particle at the speed of light,
all inertial observers must agree that the particle is moving at this (maxi-
mum) speed. Therefore, if (2%, z!/, %', 2%') are the coordinates associated
to another inertial frame, the vectors

0 0
0 " Bzl

(1 =1,2,3) must be tangent to a motion at the speed of light, i.e.,

0 g 0 0
<8m0’ + o’ Hxo! + 3$i/> =0.
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o 9 AN
90" 9% / ~ "\ ox ba¥' ]’

8 9\ _
920" 5z ) = O

Similarly, we must have

9 8 9 9
<\/§a+a.+ V2 + 7 + >:0

0xz% = Oz¥  Oxi’ T oz oz Ogd!

(¢ # j), and hence
9 9 \N_,
oz’ oxi' |

Since (-,-) is non-degenerate, we conclude that there must exist k& # 0 such

that
0 0 &
Ok’ ' | Ny
(HaV =0, 15273)'

Since the simultaneity hypersurfaces are 3-planes in R*, there exist at
least 2-planes of events simultaneous in both frames. Let v # 0 be a vector
tangent to one of these 2-planes. Then dt(v) = dt'(v) = 0, and hence

This implies that

_ zi zli
v ;v ozt o'’
By assumption (2’), we must have
3 3
() =3 (")
i=1 i=1

Consequently, from

3., 3. 9 3.9
Z(“Z) :(”7“>:< ")uaxil’zvuami/>:k

=1 =1 i=1

(v")’
1
we conclude that we must have k¥ = 1. Therefore the coordinate basis

0 0 0 0
awOI’ &Cl/’ ax2/’ 8563’

must also be an orthonormal basis. In particular, this means that the
Minkowski inner product (-,-) is well defined (i.e., is independent of the in-
ertial frame we choose to define it), and that we can identify inertial frames
with orthonormal bases of (R%, (-, -)).

3
1=

DEFINITION 2.1. (R*,(,-)) is said to be the Minkowski spacetime.
The length of a vector v € R* is |v| = ‘<’U,’U>|%.
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The study of the geometry of Minkowski spacetime is usually called
Special Relativity. A vector v € R* is said to be:

(1) Timelike if (v,v) < 0. In this case, there exists an inertial frame
(%, 2! 22" 23") such that

v = ‘U| 00!
(cf. Exercise 2.2.1), and consequently any two events p and p +
v occur on the same location in this frame, separated by a time
interval |v| .

(2) Spacelike if (v,v) > 0. In this case, there exists an inertial frame
(%, z!", z?', 23") such that

0

oxrl!
(cf. Exercise 2.2.1), and consequently any two events p and p + v
occur simultaneously in this frame, a distance |v| apart.

(3) Lightlike, or null, if (v,v) = 0. In this case any two events p and

p+v are connected by a motion at the speed of light in any inertial
frame.

v =|v|

The set of all null vectors is called the light cone, and in a way is
the structure that replaces the absolute simultaneity hypersurfaces of the
Galileo spacetime. It is the boundary of the set of all timelike vectors,
which has two connected components; we represent by C(v) the connected
component of a given timelike vector v. A time orientation for Minkowski
spacetime is a choice of one of these components, whose elements are said
to be future-pointing; this is easily extended to nonzero null vectors.

An inertial frame (z°,z!, 22, 2®) determines a time orientation, namely
that for which the future-pointing timelike vectors are the elements of C (8%0).
Up to translations and reflections, all coordinate transformations between in-
ertial frames belong to the (proper) Lorentz group SO (3, 1), the group of
linear maps which preserve orientation, time orientation and the Minkowski
inner product (hence the light cone).

A curve c: I C R — R? is said to be timelike if {¢,¢) < 0. Timelike
curves represent motions of particle with nonzero mass, since only for these
curves is it possible to find an inertial frame in which the particle is instanta-
neously at rest. In other words, massive particles must always move at less
than the speed of light (cf. Exercise 2.2.13). The proper time measured
by the particle between events c(a) and c(b) is

(e) = /ab 16(s)|ds.

When analyzing problems in which only one space dimension is impor-
tant, we can use a simpler 2-dimensional Minkowski spacetime. If (¢,z) are
the spacetime coordinates associated to an inertial frame and T' € SOy(1,1)
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timelike future-pointing

null )

spacelike 9

FIGURE 1. Minkowski geometry (it is traditional represent
the t-axis pointing upwards).

is a Lorentzian change of basis to a new inertial frame with global coordi-
nates (t',z'), we must have

9 =T (2> = coshu2 + sinhui

ot ot ot oz
0 0 . 0 0
@ =T (@) = SlnhUa + COSh’U,a—x

with u € R (cf. Exercise 2.2.3). The change of basis matrix is
g - coshu sinhu
~ \sinhu coshu/’

g-1_ coshu —sinhu
~ \—sinhw coshu /°

with inverse

Therefore the corresponding coordinate transformation is

t' = tcoshu — zsinhu
z' = zcoshu — tsinhu

(Lorentz transformation), and hence the new frame is moving with ve-
locity v = tanh u with respect to the old one (as the curve z' = 0 is the curve
T = vt; notice that |v] < 1). The matrix S~! is obtained from S simply
by reversing the sign of u, or, equivalently, of v; therefore, the Relativity
Principle still holds for Lorentz transformations.
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Since

coshu = (1 — U2)_%

Nl .

sinhu = v (1 —v?)"?,

one can also write the Lorentz transformation as

th = (1—v2)_%t—v(1—02)_%m
T = (1—02)7%$—v(1—v2)7%t

In everyday life situations, we deal with frames whose relative speed is much
smaller that the speed of light, |v| < 1, and with events for which |z| < [¢|
(distances traveled by particles in one second are much smaller that 300,000
kilometers). Thus an approximate expression for the Lorentz transforma-
tions in everyday life situations is

=t
=z — vt
which is just a Galileo transformation. In other words, the Galileo group is
a convenient low-speed approximation of the Lorentz group.
Suppose that two distinct events p and ¢ occur in the same spatial loca-
tion in the inertial frame (¢',z'),
0 0

0 0 . 0
qg—p= At'@ = At coshua + At smhu% = At& + Am%.

We see that the time separation between the two events in a different inertial
frame (¢, z) is bigger,

At = At' coshu > At

Loosely speaking, moving clocks run slower when compared to stationary
ones (time dilation).

If on the other hand two distinct events p and ¢ occur simultaneously in
the inertial frame (', ),

0 0 0 0 0
—p=Az-L — Adsinhul ! Ay
q—p=Ar — = Az’ sinhu t—}—Aw coshui At§t+ xi ,

then they will not be simultaneous in the inertial frame (¢,z), where the
time difference between them is

At = Azx'sinhu # 0

(relativity of simultaneity).

Finally, consider two particles at rest in the inertial frame (¢',z'). Their

motions are the lines 2’ = xj, and 2’ = z{, +I'. In the inertial frame (¢, z),
these lines have equations

! ! !

z =20 +ovt  and w:$0+l

coshu coshu

+ vt,
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which describe motions of particles moving with velocity v and separated
by a distance

! ,
= .
coshu <

Loosely speaking, moving objects shrink in the direction of their motion
(length contraction).

EXERCISES 2.2.

(1) Let (-,-) be a nondegenerate symmetric tensor 2-tensor on an n-
dimensional vector space V. Show that there always exists an or-
thonormal basis {v1,...,v,}, i.e. a basis such that (v;,v;) = €,
where ¢;; = £1 and ¢;; = 0 for ¢ # j. Moreover, show that
s =Y. €y (known as the signature of (-,-)) does not depend on
the choice of orthonormal basis.

(2) Consider the Minkowski inner product (-,-) on R* with a given time
orientation.

(a) Let v € R* be timelike and future-pointing. Show that:
(i) if w € R* is timelike or null and future-pointing then
(v, w) < 0;
(ii) if w € R* is timelike or null and future-pointing then
v + w is timelike and future-pointing;
(iii) {v}* = {w € R* | (v, w) = 0} is a hyperplane containing
only spacelike vectors (and the zero vector).
(b) Let v € R* be null and future-pointing. Show that:
(i) If w € R* is timelike or null and future-pointing then
(v,w) <0, with equality iff w = Av for some X > 0;
(i) If w € R* is timelike or null and future-pointing then
v + w is timelike or null and future-pointing, being null
iff w = Av for some A > 0;
(iii) {v}* is a hyperplane containing only spacelike and null
vectors, all of which are multiples of v.
(c) Let v € R* be spacelike. Show that {v}* is a hyperplane
containing timelike, null and spacelike vectors.

(3) Show that if (¢,z) are the spacetime coordinates associated to an
inertial frame and T' € SOy(1,1) is a Lorentzian change of basis to
a new inertial frame with global coordinates (¢, z'), we must have

i =T (2> = coshu2 + sinhui

ot ot ot oz
0 0 . 0 0
@ =T (@) = SlnhUa + COSh’U,a—x

for some u € R.

(4) (Twin Paradoz) Twins Alice and Bob separate on their 20" an-
niversary: while Alice stays on Earth (which is approximately an
inertial frame), Bob leaves at 80% of the speed of light towards a
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planet 8 light-years away from Earth, which he therefore reaches 10
years later (as measured in Earth’s frame). After a short stay, Bob
returns to Earth, again at 80% of the speed of light. Consequently,
Alice is 40 years old when they meet again.

(a) How old is Bob at this meeting?

(b) How do you explain the asymmetry in the twin’s ages? Notice
that, from Bob’s point of view, he is the one who is stationary,
while the Earth moves away and back again.

(c) Imagine that each twin has a very powerful telescope. What
does each of them see? In particular, how much time elapses
for each of them as they see their twin experiencing one year?

(5) (Car and Garage Paradoz) A 5-meter long car moves at 80% of light
speeed towards a 4-meter long garage with doors at both ends.

(a) Compute the length of the car in the garage’s frame, and show
that if the garage doors are closed at the right time the car
will be completely inside the garage for a few moments.

(b) Compute the garage’s length in the car’s frame, and show that
in this frame the car is never completely inside the garage.
How do you explain this apparent contradiction?

(6) Let (#,z') be an inertial frame moving with velocity v with respect
to the inertial frame (¢, z). Prove the velocity addition formula:
if a particle moves with velocity w' in the frame (', '), the particle’s
velocity in the frame (¢, ) is

w 4+ v
W= —
1+ w'v

What happens when w' = £17
(7) (Hyperbolic angle)
(a) Show that
0 u

(i) s0(1,1) = {(u 0
.. 0 wu coshu sinhu
(if) exp (u 0) ~ \sinhu cosh u) = 5(u);

(iii) S(u)S(u') = S(u + ).

(b) Consider the Minkowski inner product (-,-) on R? with a given
time orientation. If v, w € R? are unit timelike future-pointing
vectors then there exists a unique u € R such that w = S(u)v
(which we call the hyperbolic angle between v and w). Show
that:

(1) |u| is the length of the curve formed by all unit timelike
vectors between v and w;
(ii) 1|u|is the area of the region swept by the position vector
of the curve above;
(iii) hyperbolic angles are additive;

|u€eRp;
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(iv) the velocity addition formula of Exercise 6 is simply the
formula for the hyperbolic tangent of a sum.

(8) (Generalized Twin Paradoz) Let p,q € R* be two events connected

(10)

by a timelike line /. Show that the proper time between p and
q measured along [ is bigger than the proper time between p and
g measured along any other timelike curve connecting these two
events. In other words, if an inertial observer and a (necessarily)
accelerated observer separate at a given event and are rejoined at
a later event, then the inertial observer always measures a bigger
(proper) time interval between the two events. In particular, prove
the reversed triangle inequality: if v,w € R* are timelike vec-
tors with w € C(v) then |v +w| > |v| + |w|.

(Doppler effect) Use the spacetime diagram in Figure 2 to show that
an observer moving with velocity v away from a source of light of
period T measures the period to be

1+w
1—w

T =T

(Remark: This effect allows astronomers to measure the radial velocity of stars and

galaxies relative to the Earth).

t

T,

FiGURE 2. Doppler effect.

(Aberration) Suppose that the position in the sky of the star Sir-
ius makes an angle § with the z-axis of a given inertial observer.
Show that the angle 6’ measured by a second inertial observer mov-
ing with velocity v = tanhu along the z-axis of the first observer
satisfies

sinf
coshu cos @ + sinhu’
Minkowski geometry can be used in many contexts. For instance,
let [ = Ra—at represent the motion of an observer at rest in the
atmosphere and choose units such that the speed of sound is 1.

tanf' =
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Let 7 : R* — R the map such that 7(p) is the ¢ coordinate of
the event in which the observer hears the sound generated at
p. Show that the level surfaces of 7 are the conical surfaces

0
77 (to) = {p eR! | t()a — p is null and future-pointing} .

(b)

()

Show that ¢ : I — R* represents the motion of a supersonic
particle iff

. 0 ..
<C’E><O and  (¢¢) > 0.

Argue that the observer hears a sonic boom whenever c is tan-
gent to a surface 7 = constant. Assuming that c is a straight
line, what does the observer hear before and after the boom?

(12) Let ¢ : R — R* be the motion of a particle in Minkowski spacetime
parametrized by the proper time 7.

(a)

Show that

(¢,e) = -1
and

(¢,é) =0.
Conclude that ¢ is the particle’s acceleration as measured in
the particle’s instantaneous rest frame, i.e., in the inertial
frame (¢, z,y, z) for which ¢ = %. For this reason, ¢ is called
the particle’s proper acceleration, and |¢| is interpreted as
the acceleration measured by the particle.
Compute the particles’s motion assuming that it is moving
along the z-axis with constant proper acceleration |¢| = a.
Consider a spaceship launched from Earth towards the center
of the Galaxy (at a distance of 30,000 light-years) with a = g,
where g represents the gravitational acceleration at the surface
of the Earth. Using the fact that g ~ 1 year™! in units such
that ¢ = 1, compute the proper time measured aboard the
spaceship for this journey. How long would the journey take
as measured from Earth?

(13) (The faster-than-light missile) While conducting a surveillance mis-
sion on the home planet of the wicked Klingons, the Enterprise un-
covers their evil plan to build a faster-than-light missile and attack
Earth, 12 light-years away. Captain Kirk immediately orders the
Enterprise back to Earth at its top speed (% of the speed of light),
and at the same time sends out a radio warning. Unfortunately, it
is too late: eleven years later (as measured by them), the Klingons
launch their missile, moving at 12 times the speed of light. There-
fore the radio warning, traveling at the speed of light, reaches Earth
at the same time as the missile, twelve years after its emission, and
the Enterprise arrives on the ruins of Earth one year later.
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(a) How long does the Enterprise trip take according to its crew?

(b) On Earth’s frame, let (0,0) be the (¢,z) coordinates of the
event in which the Enterprise discovers the Klingon plan, (11,0)
the coordinates of the missile’s launch, (12,12) the coordinates
of Earth’s destruction and (13,12) the coordinates of the En-
terprise’s arrival on Earth’s ruins. Compute the (#',z') coor-
dinates of the same events on the Enterprise’s frame.

(c) Plot the motions of the Enterprise, the Klingon planet, Earth,
the radio signal and the missile on Enterprise’s frame. Does
the missile motion according to the Enterprise crew make
sense?

3. The Cartan Connection

Let (20, 2!, 22, 2%) = (¢, z, v, 2) be an inertial frame on Galileo spacetime,
7 7 7 7 7y7

which we can therefore identify with R*. Recall that Newtonian gravity
is described by a gravitational potential ® : R* — R. This potential
determines the motions of free-falling particles through

d*z’ 0%

W o
(1t =1,2,3), and is in turn determined by the matter density function
p: R* — R through the Poisson equation

0?® N 0’® N 0?®
0x?  Oy? 022

(we are using units in which Newton’s universal gravitation constant G is
set equal to 1). The vacuum Poisson equation (corresponding to the case
in which all matter is concentrated on singularities of the field) is the well
known Laplace equation

o’ 9’e  0*® 0
0x? + oy? + 022
Notice that the equation of motion is the same for all particles, irre-
spective of their mass. This observation, dating back to Galileo, was made
into the so-called Equivalence Principle by Einstein. Thus a gravita-
tional field determines special curves on the Galileo spacetime, namely the
motions of free-falling particles. These curves are the geodesics of a sym-

metric connection, known as the Cartan connection, defined through the
nonvanishing Christoffel symbols

=4mp

;09
00 — ot
(cf. Exercise 3.1.1), corresponding to the nonvanishing connection forms

. 0P
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Cartan’s structure equations
3
Qb = dwﬁ—Fng/\w,‘j‘
a=0
still hold for this connection (cf. Exercise 2.8.2 in Chapter 4), and hence we
have the nonvanishing curvature forms

3
. 8%2d )
Qb = ——dz’ Ndt.
0 = 0zl 0x" T

The Ricci curvature tensor of this connection is

. 92 9% 9%
Ric = (83:2 + 37 + 8z2>dt®dt

(cf. Exercise 3.1.2), and hence the Poisson equation can be written as
Ric = 4wp dt @ dt.
In particular, the Laplace equation can be written as
Ric = 0.

EXERCISES 3.1.

(1) Check that the motions of free-falling particles are indeed geodesics
of the Cartan connection. What other geodesics are there? How
would you interpret them?

(2) Check the formula for the Ricci curvature tensor of the Cartan
connection.

(3) Show that the Cartan connection V is compatible with Galileo
structure, i.e., show that

(a) Vxdt =0 for all X € X(R*) (cf. Exercise 3.6.3 in Chapter 3).

(b) If E, F € X(R*) are tangent to the simultaneity hypersurfaces
and parallel along some curve ¢ : R — R*, then (E,F) is
constant.

(4) Show that the Cartan connection is not the Levi-Civita connection
of any pseudo-Riemannian metric on R* (cf. Section 4).

4. General Relativity

Gravity can be introduced in Newtonian mechanics through the sym-
metric Cartan connection, which preserves the Galileo spacetime structure.
A natural idea for introducing gravity in Special Relativity is then to search-
ing for symmetric connections preserving the Minkowski inner product. To
formalize this, we introduce the following

DEFINITION 4.1. A pseudo-Riemannian manifold is a pair (M,g),
where M is a connected n-dimensional differentiable manifold and g is a
symmetric nondegenerate differentiable 2-tensor field (g is said to be a pseudo-
Riemannian metric in M). The signature of a pseudo-Riemannian
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manifold is just the signature of g at any tangent space. A Lorentzian
manifold is a pseudo-Riemannian manifold with signature n — 2.

The Minkowski spacetime (R*,(-,-)) is obviously a Lorentzian mani-
fold. It is easily seen that the Levi-Civita Theorem still holds for pseudo-
Riemannian manifolds: given a pseudo-Riemannian manifold (M, g) there
exists a unique symmetric connection V which is compatible with g (given
by the Koszul formula). Therefore there exists just one symmetric connec-
tion preserving the Minkowski metric: the trivial connection (obtained in
Cartesian coordinates by taking all Christoffel symbols equal to zero), whose
geodesics are straight lines.

To introduce gravity through a symmetric connection we must therefore
consider more general 4-dimensional Lorentzian manifolds, which we will
still call spacetimes. These are no longer required to be diffeomorphic to
R*, or to have inertial charts. The study of the geometry of these spacetimes
is usually called General Relativity.

Each spacetime comes equipped with its unique Levi-Civita connection,
and hence with its geodesics. If ¢ : I C R — M is a geodesic, then (¢, ¢) is

constant, as
Deé
Slee. e =2 (200660 ) =

A geodesic is called timelike, null, or spacelike according to whether
(¢,¢) <0, (¢,¢) =0o0r (¢ ¢) > 0 (i.e. according to whether its tangent vector
is timelike, spacelike or null). By analogy with the Cartan connection, we
will take timelike geodesics to represent the free-falling motions of massive
particles. This ensures that the Equivalence Principle holds. Null geodesics
will be taken to represent the motions of light rays.

In general, any curve ¢ : I C R — M is said to be timelike if (¢, ¢) < 0.
In this case, c represents the motion of a particle with nonzero mass (which
is accelerating unless ¢ is a geodesic). The proper time measured by the
particle between events c(a) and ¢(b) is

a

(c) = /b 16(s)|ds.

To select physically relevant spacetimes we must impose some sort of
constraint. By analogy with the formulation of the Laplace equation in
terms of the Cartan connection, we make the following

DEFINITION 4.2. We say that the Lorentzian manifold (M,g) is a vac-
uum solution of the Einstein field equation if its Levi- Civita connection
satisfies Ric = 0.

The general Einstein field equation is

Ric = 8T,
where T' is the so-called reduced energy-momentum tensor of the mat-
ter content of the spacetime. The simplest model of such a matter content
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is that of a pressureless perfect fluid, which is described by a rest den-
sity function p € C*°(M) and a unit velocity vector field U € X(M)
(whose integral lines are the motions of the fluid particles). The reduced
energy-momentum tensor for this matter model turns out to be

1
T:p<l/®l/+§g>,

where v € Q'(M) is the 1-form associated to U by the metric g. Conse-
quently, the Einstein field for this matter model is

Ric =4mp(2v Q v + g)

(compare this to Poisson’s equation in terms of the Cartan connection).
It turns out that spacetimes satisfying the Einstein field equation model
astronomical phenomena with great accuracy.

EXERCISES 4.3.

(1) Show that the signature of a pseudo-Riemannian manifold (M, g)
is well defined, i.e., show that the signature of g, € T72(T,M) does
not depend on p € M.

(2) Let (M,g) be a pseudo-Riemannian manifold and f : N — M an
immersion. Show that f*g is not necessarily a pseudo-Riemannian
metric on N.

(3) Let (M,g) be the (n + 1)-dimensional Minkowski spacetime, i.e.,
M =Rl and

g=—d’ ®ds® +dz' @ da' + ... + dz" @ dz".

Let

N={veM: (vv)=—-1and v° > 0},
and i : N — M the inclusion map. Show that (N,i*g) is the
n-dimensional hyperbolic space H".

(4) Let ¢ : I C R — R* be a timelike curve in Minkowski space
parametrized by the proper time, U = ¢ the tangent unit vector
and A = ¢ the proper acceleration. A vector field V : I — R* is
said to be Fermi-Walker transported along c if

DV
— =(V,A)U — A.
o= VAT - (V,0)

(a) Show that U is Fermi-Walker transported along c.

(b) Show that if V and W are Fermi-Walker transported along ¢
then (V, W) is constant.

(c) I (V,U) = 0 then V is tangent at U to the submanifold

N={veR: (v,0) = —1and 2° > 0},

which is isometric to the hyperbolic 3-space. Show that in this
case V is Fermi-Walker transported iff it is parallel transported
along U : I —+ N.
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(d) Assume that ¢ describes a circular motion with constant speed
v and (V,U) = 0. Compute the angle by which V varies
(or precesses) after one revolution. (Remark: It is possible to
prove that the angular momentum vector of a spinning particle is Fermi-Walker
transported along its motion and orthogonal to it; the above precession, which
has been observed for spinning particles such as electrons, is called the Thomas
precession) .

(5) (Twin Paradoz on a Cylinder) Consider the vacuum solution of the
Einstein field equation obtained by quotienting Minkowski space-
time by the discrete isometry group generated by the translation
£ :R* —» R* defined by &(t,z,y,2) = (t,z + 8,y,2). Assume that
Earth’s motion is represented by the line £ = y = z = 0, and that
once again as Bob turns 20 he leaves his twin sister Alice on Earth
and departs at 80% of the speed of light along the z-axis. Because
of the topology of space, the two twins meet again after 10 years
(as measured on Earth), without Bob ever having accelerated.

(a) Compute the age of each twin in their meeting.

(b) From Bob’s viewpoint, it is the Earth which moves away from
him. How do you explain the asymmetry in the twins’ ages?

(6) (Rotating frame)

(a) Show that the metric of Minkowski spacetime can be written
as

g=—dtQdt+dr ®dr+r*d0 ® df + dz @ d=

by using cylindrical coordinates (r,0,z) in R3.

(b) Let w > 0 and consider the coordinate change given by 6 =
0" + wt. Show that in these coordinates the metric is written
as

g=—(1-w’?dt ®dt + wridt ® d0' + wr’df’ ® dt
+dr @ dr +r?df' @ df' + dz ® dz.

(c) Show that in the region U = {r < 1} the coordinate curves of
constant (7,6, 2) are timelike curves corresponding to (accel-
erated) observers rotating rigidly with respect to the inertial
observers of constant (r, 0, z).

(d) The set of the rotating observers is a 3-dimensional smooth
manifold 3 with local coordinates (7,6, z), and there exists a
natural projection 7w : U — ¥. We introduce a Riemannian

metric h on ¥ as follows: if v € Ty ()Y then

h(v,v) =g (’UT,’UT) ,
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where v € T,U satisfies

0
T = LI —
(dm)pv'=v and ¢ (’U ) (Bt)p> 0.

Show that A is well defined and
r2
h=dr®dr+ ——df' ®dd +dz ® dz.
1 — w?r?
(Remark: This is the metric resulting from local distance measurements be-
tween the rotating observers; Einstein used the fact that this metric has cur-
vature to argue for the need to use non-Euclidean geometry in the relativistic
description of gravity) .
The image of a curve ¢ : R — U consists of simultaneous
events from the point of view of the rotating observers if ¢ is
orthogonal to % at each point. Show that this is equivalent to
requiring that «(¢) = 0, where

(JJ’I“2

/

a=dt 1 _w2r2d9.
In particular, show that in general synchronization of the ro-
tating observers’ clocks around closed paths leads to inconsis-
tencies. (Remark: This is the so-called Sagnac effect; it must be taken into
account when synchronizing the very precise atomic clocks on the GPS system

ground stations) .

(7) Let (2,h) be a 3-dimensional Riemannian manifold and consider
the 4-dimensional Lorentzian manifold (M, g) determined by M =
R x ¥ and

g=—e*®Tdt @ dt + 7*h,

where t is the usual coordinate in R, 7 : M — ¥ is the natural
projection and @ : 2 — R is a smooth function.

(a)

Let ¢: I C R — M be a timelike geodesic, and v = 7o c.
Show that
Dy

where G = — grad(®) is the vector field associated to —d® by
h and can be thought of as the gravitational field. Show that
this equation implies that the quantity

E = (1+h(},%))3¢®

is a constant of motion.

Let ¢ : I C R — M be a lightlike geodesic, ¢ its reparametriza-
tion by the coordinate time ¢, and 4 = 7w o ¢. Show that ¥ is a
geodesic of the Fermat metric

[ =e 2%,
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(c) Show that the vacuum Einstein field equation for g is equiva-
lent to

divG = h(G, G);
Ric+ Vdd = do ® d,

where Ric and V are the Ricci curvature and the Levi-Civita
connection of h; Vd® is the tensor defined by Vd®(X,Y) =
(Vxd®) (Y) for all X,Y € X(2) (cf. Exercise 3.6.3 in Chap-
ter 3).

5. The Schwarzschild Solution

The vacuum Einstein field equation is nonlinear, and hence much harder
to solve that the Laplace equation. One of the first solutions to be discovered
was the so-called Schwarzschild solution, which can be obtained from the
simplifying hypotheses of time independence and spherical symmetry, i.e.
looking for solutions of the form

g = —A%(r)dt ® dt + B*(r)dr ® dr +r*df ® df + r*sin® 8dy @ dy

for unknown positive smooth functions A, B : R — R. Notice that this
expression reduces to the Minkowski metric in spherical coordinates for A =
B=1).

It is easily seen that Cartan’s structure equations still hold for pseudo-
Riemannian manifolds. We have

g=—-w’' @+ @w +w @w +wf @w?

with
w® = A(r)dt;
w" = B(r)dr;
w’ = rde;

w? = rsinfdyp,

and hence {wo,wT,wa,w‘p} is an orthonormal coframe. The first structure
equations,

3
dwt = Z w” A wh;
v=0
3
dguu = Z guawg + guawga

a=0
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together with

!

A
dw® = EwT Adt;
dw” = 0;

1
dw® = Ewr A do;

in @
dw? = Slg w" A dg + cos 0w’ A do,
yield
AI

wl = wh = Edt’

= wp=Lap
Wp = —Wy = B

sin 6

wy = —w, = B de;
wp = —wz, = cos Odp.

The curvature forms can be computed from the second structure equa-
tions
3

Qﬁ:dw,’j+2w5/\w3‘,

a=0
and are found to be
AIIB_AIBI
AI
0 [4 () 0
ngSZO:TAB2w ANw™;
!
0 _ oY _ 0.
Q,=Q5 = TABQw""/\w :
BI
Qf = — g —B3w6 /\wr,
T
BI
Q7 =-Q, = ng‘p ANw';
T
B2 -1
Y _ g __ [/}
Qp =-Q, = 2752 w? Aw’.

Thus the components of the curvature tensor on the orthonormal frame
can be read off from the curvature forms using

Ok = ZRaﬂlf‘wa/\w’B,
a<f

and in turn be used to compute the components of the Ricci curvature tensor
Ric on the same frame. The nonvanishing components of Ric on this frame
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turn out to be
A"B - A'B’ 24’

Ro=——p — T 752
A"B- A'B' 2B
R =——p  + 55
A’ B B?2-1
Rop = Rypp = - rAB? + rB3 + r2B2 °

Thus the vacuum Einstein field equation Ric = 0 is equivalent to the
ODE system

" 1! ! (A’ B!
(A _ap aa o (ALB
A AB rA

A" B
A" A'B' 2B’ AN’ AN? 24!

A B B*-1 2B’ B2-1

‘A B (B T

The last equation can be immediately solved to yield

1
2 )
B:(l__m) ,
T

where m € R is an integration constant. The first equation implies that
A = Z for some constant o > 0. By rescaling the time coordinate ¢ we
can assume that o = 1. Finally, it is easily checked that the second ODE
is identically satisfied. Therefore there exists a one-parameter family of
solutions of the vacuum Einstein field equation of the form we seeked, given
by

0

2 2m\ 7!
g—— (1 = —m> dt®dt+ (1 = Tm> dr®dr+r2d0®do+r? sin’ 0dp @ dep.
T

To interpret this family of solutions, we compute the proper acceleration
(cf. Exercise 2.2.12) of the stationary observers, whose motions are the
integral curves of %. If {Ey, Ey, Eg, E,} is the orthonormal frame obtained

by normalizing {%, %, %, %} (hence dual to {w?,w",w?, w?}), we have
3 _1
A m 2m’\ 2
Vi Bo = 3ol (B0) B = ol (o) B = e (Bl B = 1 (1-2) '
M:

Therefore, each stationary observer is accelerating with a proper acceleration

_1
2 (1 — 27m) 2 away from the origin, to prevent falling towards it. In other

1
words, they are experiencing a gravitational field of intensity 73 (1 — QTm) 2,
directed towards the origin. Since for large values of r this approaches the

familiar acceleration 75 of the Newtonian gravitational field generated by
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a point particle of mass m, we interpret the Schwarzschild solution as the
general relativistic field of a point particle of mass m. Accordingly, we will
assume that m > 0 (notice that m = 0 corresponds to Minkowski spacetime).

When obtaining the Schwarzschild solution we assumed A(r) > 0, and
hence r > 2m. However, it is easy to check that it is also a solution of Ein-
stein’s vacuum field equation for » < 2m. Notice that the coordinate system
(t,r,0, ) is singular at 7 = 2m, and hence covers only the two disconnected
open sets {r > 2m} and {r < 2m}. Both these sets are geodesically incom-
plete, as for instance radial timelike or null geodesics cannot be continued
past r = 0 or » = 2m. While this is to be expected for r = 0, as the curva-
ture blows up along geodesics approaching this limit, this is not the case for
r = 2m. It turns out that it is possible to fit these two open sets together
to obtain a solution of Einstein’s vacuum field equation regular at r = 2m.
To do so, we introduce the so-called Painlevé time coordinate

-1
t’:t+/\/2—m<1—2—m) dr.
T T

In the coordinate system (t',7,6, ), the Schwarzschild metric is written

2 2
g = —dt'@dt'+ (dr 4/ dt’) ® (dr +) dt') +r2d0Rd0-+r? sin? Odp@dp.
T T

This expression is nonsingular at » = 2m, and is a solution of Einstein’s
vacuum field equation for {r > 2m} and {r < 2m}. By continuity, it must
be a solution also at r = 2m.

The submanifold 7 = 2m is called the event horizon, and is ruled by
null geodesics. This is easily seen from the fact that % = % becomes null
at 7 = 2m, and hence its integral curves are (reparametrizations of) null
geodesics.

The causal properties of the Schwarzschild spacetime are best under-
stood by studying the light cones, i.e. the set of tangent null vectors at

each point. For instance, radial null vectors v = vo% + UTB% satisfy

2
2 2
—(’UO)2+<UT+HTm’UO> :O<:>vrz<i1— Tm>v0.

For r > 2m we obtain approximately the usual light cones of Minkowski
spacetime. as r approaches 2m, however, the light cones “tip over” towards
the origin, becoming tangent to the event horizon at r = 2m (cf. Figure 3).
Since the tangent vector to a timelike curve must be inside the light cone,
we see that no particle which crosses the event horizon can ever leave the
region r = 2m (which for this reason is called a black hole). Once inside
the black hole, the light cones tip over even more, forcing the particle into
the singularity r = 0.

Notice that the Schwarzschild solution in Painlevé coordinates is still not
geodesically complete at the event horizon, as outgoing radial timelike and
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X

t! r=2m

X

FiGUrE 3. Light cones in Painlevé coordinates.

null geodesics cannot be continued to the past through r = 2m. Physically,
this is not important: black holes are thought to form through the collapse
of (approximately) spherical stars, whose surface follows a radial timelike
curve in the spacetime diagram of Figure 3. Since only outside the star
is there vacuum, the Schwarzschild solution in expected to hold only above
this curve, thereby removing the region of r = 2m leading to incompleteness.
Nevertheless, it is possible to glue two copies of the Schwarzschild spacetime
in Painlevé coordinates to obtain a solution of the vacuum Einstein field
equation which is geodesically incomplete only at the two copies of r = 0.
This solution, known as the Kruskal extension, contains a black hole and
its time-reversed version, known as a white hole.

For some time it was thought that the curvature singularity at » = 0
was an artifact of the high symmetry of Schwarzschild spacetime, and that
more realistic models of collapsing stars would be singularity-free. Penrose
and Hawking (see [Pen65], [HP70]) proved that this was is the case: once
the collapse has begun, no matter how asymmetric, nothing can prevent a
singularity from forming (cf. Section 8).

EXERCISES 5.1.

(1) Show that Cartan’s structure equations still hold for pseudo-Rie-
mannian manifolds
(2) Let (M,g) be a 2-dimensional Lorentzian manifold.
(a) Consider an orthonormal frame {Ey, F1} on an open set U C
M, with associated coframe {w® w'}. Show that Cartan’s
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structure equations are
wi = wp;
dw® = wh A WY
dwt = W AW,
QY = du.

Let {Fy, F1} be another orthonormal frame such that Fy €
C(Ey), with associated coframe {@’,w'} and connection form
@?. Show that o = @) —w! is given locally by ¢ = du, where u
is the hyperbolic angle between Fy and Ey (cf. Exercise 2.2.7).
Consider a triangle A C U whose sides are timelike geodesics,
and let «, 8 and 7y be the hyperbolic angles between them (cf.

Figure 4). Show that

'y:a—i-ﬂ—i-/Q(l),
A

where, following the usual convention for spacetime diagrams,
we orient U so that {Ep, F1} is negative.

Provide a physical interpretation for the formula above in the
case in which (M, g) is a totally geodesic submanifold of the
Schwarzschild spacetime obtained by fixing (0, ¢) (cf. Exer-
cise 5.7.3 in Chapter 4).

B

FiGURE 4. Timelike geodesic triangle.
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(3) Consider the Schwarzschild spacetime with local coordinates (¢,7, 6, ¢).
An equatorial circular curve is a curve given in these coordi-
nates by (t(1),r(7),0(7), (7)) with #(7) =0 and 0(7) = 7.

(a) Show that the conditions for such a curve to be a timelike
geodesic parametrized by its proper time are

-,
¢:
rg? = M2
(1= )2 =1

Conclude that massive particles can orbit the central mass in
circular orbits for all r > 3m.

(b) Show that there exists an equatorial circular null geodesic for
r = 3m. What does a stationary observer placed at r = 3m,
6 = T see as he looks along the direction of this lightlike
geodesic?

(c) The angular momentum vector of a free-falling spinning par-
ticle is parallel-transported along its motion, and orthogonal
to it (cf. Exercise 4.3.4). Consider a spinning particle on a
circular orbit around a pointlike mass m. Show that the axis
precesses by an angle

(e (2)),

after one revolution, if initially aligned with the radial direc-
tion. (Remark: The above precession, which has been observed for spinning
quartz spheres in orbit around the Earth during the Gravity Probe B experiment,
is called the geodesic precession).
(4) We consider again the Schwarzschild spacetime with local coordi-
nates (t,7,0, ).
(a) Show that the proper time interval AT measured by a station-
ary observer between two events on his history is

1
AT:(1—2—m>2At,
T

where At is the difference between the time coordinates of the
two events (loosely speaking, clocks closer to the central mass
run slower).

(b) Show that if (¢(7),r(7),0(7), (7)) is a geodesic then so is
(t(1) + At,r(7),0(7), (7)) for any At € R. Conclude that
the time coordinate ¢ can be thought of as the time between
events at a fixed location as seen by stationary observers at
infinity.
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TI

To 1
FIGURE 5. Gravitational redshift.

(Gravitational redshift) Use the spacetime diagram in Figure 5
to show that if a stationary observer at r = ry measures a
light signal to have period T, a stationary observer at r = rq
measures a period

for the same signal.

Show that the proper time interval AT measured by an ob-
server moving on a circular orbit between two events on his
history is

1
Ar = (1—3—’”)2&,
r
where At is the difference between the time coordinates of the
two events. (Remark: Notice that in particular the period of a circular orbit
as measured by a free-falling orbiting observer is smaller than the period of the
same orbit as measured by an accelerating stationary observer; thus a circular
orbit over a full period is a non-maximizing geodesic — cf. Exercise 8.12.9).
By setting ¢ = G = 1, one can measure both time intervals
and masses in meters. In these units, Earth’s mass is approx-
imately 0.0044 meters. Assume the atomic clock at a GPS
ground station in the equator (whose radius is approximately
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6,400 kilometers) and the atomic clock on a GPS satellite mov-

ing on a circular orbit at an altitude of 20,200 kilometers are

initially synchronized. By how much will the two clocks be

offset after one day? (Remark: This has important consequences for the

GPS navigational system, which uses very accurate time measurements to com-

pute the receiver’s coordinates: if it were not taken into account, the error in the

calculated position would be of the order of the time offset you just computed).

(5) Let (M, g) be the region r > 2m of the Schwarzschild solution with

the Schwarzschild metric. The set of all stationary observers in

M is a 3-dimensional smooth manifold ¥ with local coordinates

(r,0,¢), and there exists a natural projection 7 : M — X. We

introduce a Riemannian metric & on ¥ as follows: if v € T %
then

h(v,v) =g (’UT,’UT) )
where v! € T, M satisfies

0
t = = =
(dm)pv'=v and ¢ (’U ) <3t>p) 0

(cf. Exercise 4.3.6).
(a) Show that h is well defined and

om\ ~1
h= (1 — Tm> dr ® dr + 2df ® df + r2 sin? 0dp @ dep.

(b) Show that h is not flat, but has zero scalar curvature.

¢) Show that the equatorial plane 8 = Z is isometric to the rev-
q P 2

olution surface generated by the curve z(r) = /8m(r — 2m)
when rotated around the z-axis (cf. Figure 6).
(Remark: This is the metric resulting from local distance measurements between the

stationary observers; loosely speaking, gravity deforms space).

FIGURE 6. Surface of revolution isometric to the equatorial plane.
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(6) In this exercise we study in detail the timelike and null geodesics of
the Schwarzschild spacetime. We start by observing that the sub-
manifold § = 7 is totally geodesic (cf. Exercise 5.7.3 in Chapter 4).
By adequately choosing the angular coordinates (6, ¢), one can al-
ways assume that the initial condition of the geodesic is tangent to
this submanifold; hence it suffices to study the timelike and null
geodesics of the 3-dimensional Lorentzian manifold (M, g), where

2m 2m
(1_T)dt®dt+ (1_Tm> dr®dr+r2d<p®d<p.

(a) Show that § and £ are Killing fields (cf. 4.3.8 in Chapter 3).
(b) Conclude that the equations for a curve ¢ : R — M to be a

future-directed geodesic (parametrized by proper time if time-
like) can be written as

9(é, C)=—0 2= B~ (o+ L) (1-22)
(a) (1-2m)i=F
g 8<pac) =L r?¢ =L

where E > 0 and L are integration constants, ¢ = 1 for time-
like geodesics and o = 0 for null geodesics.
Show that if L # 0 then u = % satisfies

d?u _ mo

o - tu= Iz + 3mu’.
For situations where relativistic corrections are small one has
mu < 1, and hence the approximate equation

d*u _m
a2 T I
holds for timelike geodesics. Show that the solution to this

equation is the equation for a conic section in polar coordi-
nates,

U= L2(1 + ecos(p — ¢p)),

where the integration constants € > 0 and ¢y are the eccen-
tricity and the argument of the pericenter.
Show that for € < 1 this approximate solution satisfies

9 2m m?

W= T I
Argue that timelike geodesics close to circular orbits where
relativistic corrections are small yield approximate solutions
of the equation

d?u 1 6m? _m( 3m?
T ) T )
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and hence the pericenter advances by approximately

6mm

r

radians per revolution. (Remark: The first success of General Relativity
was due to this effect, which explained the anomalous precession of Mercury’s
perihelion — 43 arcseconds per century.).
Show that if one neglects relativistic corrections then null
geodesics satisfy

d’u

—— +u=0.

dyp
Show that the solution to this equation is the equation for a
straight line in polar coordinates,

1.
U= b sin(¢ — o)),

where the integration constants b > 0 and ¢ are the impact
parameter (distance of closest approach to the center) and
the angle between the line and the z-axis.

Assume that mu < 1. Let us include relativistic corrections
by looking for approximate solutions of the form

- o)
u= o (sing + v
(where we take ¢y = 0 for simplicity). Show that v is an

approximate solution of the equation

d2
d—(;; + v = 3sin? ¢,
and hence u is approximately given by
1/. m (3 1 .
u=y sm<p+3 §+§cos(2cp)+acos<p+ﬂsm<p ,

where « and (3 are integration constants.

Show that for the incoming part of the null geodesic (¢ ~ 0)
one has approximately

m
b
Similarly, show that for the outgoing part of the null geodesic
(¢ ~ 7) one has approximately

u=0p=——(2+0a).

u:0<:><p:7r—l—%(2—a).

Conclude that ¢ varies by approximately
4m

Ap =
<p7r+b
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radians along its path, and hence the null geodesic is deflected
towards the center by approximately

4m

b
radians. (Remark: The measurement of this deflection of light by the Sun

— 1.75 arcseconds — was the first experimental confirmation of General Relativity,
and made Einstein a world celebrity overnight).
(7) (Birkhoff Theorem) Prove that the only Ricci-flat Lorentzian metric
given in local coordinates (¢,7,0,¢) by

g = A%(t,r)dt ® dt + B2(t,r)dr ® dr + r*df ® df + r* sin® 0dyp ® dyp

is the Schwarzschild metric. Loosely speaking, spherically symmet-
ric mass configurations do not radiate.
(8) Show that observers satisfying

dr 2m
dt T
in Painlevé’s coordinates are free-falling, and that ' is their proper

time.
(9) What does a stationary observer at infinity see as a particle falls
into a black hole?
(10) Show that an observer who crosses the horizon will hit the singu-
larity in proper time at most wm.

6. Cosmology

The the purpose of cosmology is the study of the behavior of the Uni-
verse as a whole. Experimental observations (chiefly that of the cosmic
background radiation) suggest that space is isotropic at Earth’s location.
Assuming the Copernican Principle that Earth’s location in the Universe
is not in any way special, we take an isotropic (hence constant curvature)
3-dimensional Riemannian manifold (X, /) as our model of space. We can
always find local coordinates (7,6, ¢) on 3 such that

1
h:a2(1 k2dT®dr+T2d0®d9+r2sin29d<p®d(p>,
—kr

where a > 0 is the “radius” of space and k = —1,0,1 according to whether
the curvature is negative, zero or positive (cf. Exercise 6.1.1). Allowing for
the possibility that the “radius” of space may be varying in time, we take
our model of the Universe to be (M, g), where M =R x ¥ and

g = —dt @dt + a?(t) ( dr @ dr + ?df ® d + r? sin® 9d<p®d<p) .

1— kr?
These are the so-called Friedmann-Robertson-Walker models of cosmol-
ogy.
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One can easily compute the Ricci curvature for the metric g: we have
_ _,0 0 T r [ [ © %)
=W W +w Quw +tw Qw +w” Quw
with
w® = dt;
_1
w" =a(t) (1 - kr?) "2 dr;
w? = rdb;
w? = rsinfdp,

and hence {w°,w",w? w?} is an orthonormal coframe. The first structure
equations yield

wp = wh =a (1 —kr?) 2 dr;
wd = wh = ardo;
wg = wg = ar sin Ody;
wl = —wh = (1 — kr?)? db;
1
wf = —w, = (1 — kr?)” sin Ody;
wa‘p = —wg, = cos Odp.

The curvature forms can be computed from the second structure equa-
tions, and are found to be

P
Q0= = AT
a
a
ngﬁg—awo/\wa,
Qozﬂ‘p—éwo/\w‘p
[ 0 )
k a2
0 __ ro__ 0 T,
Q'I‘__Q_(Q_}—p)w /\(JJ,
k a’
%) _Or — @ r
QF = Q*"_<a2+ 2)w ANw';
k a?
v _ o _ ™ @ 0
Qg = Q‘p_<a2+a2)w ANw

The components of the curvature tensor on the orthonormal frame can
be read off from the curvature forms, and can in turn be used to compute
the components of the Ricci curvature tensor Ric on the same frame. The
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nonvanishing components of Ric on this frame turn out to be

Ry = ——;
a

a  2a* 2k
Ry =Rgpp=Rpp=—+—F5 +—.
T 60 P a a2 a2
At very large scales, galaxies and clusters of galaxies are expected to
behave as particles of a pressureless fluid, which we take to be our matter

model. Therefore the Einstein field equation is
Ric = 4mp(2dt @ dt + g),

and is equivalent to the ODE system

3a a’>  k
=g AR A
p P a+ % + % 0
&
a +_2a2_+ 2k _, 3a
— [ e vis [ —
a a2 a? p p 47ra

The first equation allows us to determine the function a(t), and the
second yields p (which in particular must be a function of the ¢ coordinate
only; this is to be taken to mean that the average density of matter at
cosmological scales is spatially constant). It is easy to check that the first
equation implies

. «

i=—
for some integration constant o (we take @ > 0 so that p > 0). Substituting
in the first equation we get the first order ODE

@’ «a _k

2 a 2
This is formally identical to the energy conservation equation for a particle
falling on a Keplerian potential V' (a) = —% with total energy —g. Thus we

see that a(t) will be bounded if and only if £ = 1. Notice that in all cases
a(t) explodes for some value of ¢, conventionally taken to be ¢ = 0 (Big
Bang). Again it was thought that this could be due to the high symme-
try of the Friedmann-Robertson-Walker models. Hawking and Penrose (see
[Haw67], [HP70]) showed that actually the big bang is a generic feature of
cosmological models (cf. Section 8).

The function

is (somewhat confusingly) called Hubble’s constant. It is easy to see from
the above equations that

k 8
H?>+ — = —
+a2 3P
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Therefore, in these models one has kK = —1, k = 0 or kK = 1 according to
whether the average density p of the Universe is smaller than, equal to or
bigger than the so-called critical density
_3H 2
Pe = 8
These models were the standard models for cosmology for a long time.
Currently, however, things are thought to be slightly more complicated (cf.
Exercise 6.1.7).

EXERCISES 6.1.
(1) Show that the Riemannian metric h given in local coordinates

(r,0,¢) by

h = a? (1 1kT2 dr @ dr + r2df ® d + r?sin? fdyp ® d(p)
has constant curvature K = (f—Z
(2) The motions of galaxies and groups of galaxies in the Friedmann-
Robertson-Walker models are the integral curves of %. Show that
these are timelike geodesics, and that the time coordinate ¢ is the
proper time of such observers.
(3) (a) Show that the differential equation for a(t) implies that this
function explodes in finite time (usually the singularity is taken
to be at t = 0).

(b) Show that if ¥ = —1 or k = 0 then the solution can be extended
to all values of £ > 0.

(c) Show that if £k = 1 then the solution cannot be extended past
some positive value t =T > 0 (Big Crunch).

(d) Show that if the spatial sections are 3-spheres (hence k = 1)
then the light which leaves some galaxy at the Big Bang travels
once around the 3-sphere and is just reaching it at the Big
Crunch. Conclude that no observer can circumnavigate the
Universe, no matter how fast he moves.

(4) Show that the solutions to the Einstein equation for the Friedmann-

Robertson-Walker models can be given parametrically by:

(a) k=1:
{a = a1 — cosu)
t = a(u — sinu)
(b) k=0
a = 2y?
2
{t: %u?’
(c) k=-1
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Show that the Friedmann-Robertson-Walker model with & = 1 is
isometric to the hypersurface with equation

2
Va2 +y2+22 +w? =20 — —
8a

in the 5-dimensional Minkowski spacetime (R®, g) with metric

g=—dtdt+drxrQ@dr+dy@dy + dz ® dz + dw ® dw.

(A model of collapse) Show that the radius of a free-falling spherical
shell r = 7y in a Friedmann-Robertson-Walker model changes with
proper time in exactly the same fashion as the radius of a free-falling
spherical shell in a Schwarzschild spacetime of mass parameter m
moving with energy parameter E (cf. Exercise 5.1.6), provided that

M:arg
E?—-1= —kr%

Therefore these two spacetimes ca be matched along the 3-dimensional

hypersurface determined by the spherical shell’s history to yield a
model of collapsing matter. Can you physically interpret the three
cases k=1, k=0and k = —17

Show that if we allow for a cosmological constant A € R, i.e. for
an Einstein equation of the form

Ric=4mp(2v @ v +g) + Ag

then the equations for the Friedmann-Robertson-Walker models
become

a2 a A, k
—_— — —q" = ——

2 a 6 2

4m 4

3=

Analyze the possible behaviors of the function a(t). (Remark: It is
currently thought that there exists indeed a positive cosmological constant, also known
as dark energy. The model favored by experimental observations seems to be k = 0,
A>0).

Consider the 5-dimensional Minkowski spacetime (R%, g) with met-
ric

g=—dtdt+drxrQ@dr+dy@dy + dz ® dz + dw ® dw.

Show that the induced metric on each of the following hypersurfaces
determines generalized Friedmann-Robertson-Walker models with
the indicated parameters:
(a) (Einstein universe) The “cylinder” of equation
1

Ka
satisfies k =1, A > 0 and p = ﬁ.

? +y? + 22 +w? =
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(b) (de Sitter universe) The “sphere” of equation

3
'ty 2wt =

satisfies k =1, A > 0 and p = 0.

7. Causality

In this section we will study the causal features of spacetimes. This is
a subject which has no parallel in Riemannian geometry, where the metric
is positive definite. Although we will focus on 4-dimensional Lorentzian
manifolds, the discussion can be easily generalized to any number n > 2 of
dimensions.

A spacetime (M, g) is said to be time-orientable if there exists a vector
field T € X(M) such that (T,T) < 0. In this case, we can define a time
orientation on each tangent space T, M (which is, of course, isometric to the
Minkowski spacetime) by choosing C(7T}) to be the future-pointing timelike
vectors.

Assume that (M, g) is time-oriented (i.e. time-orientable with a def-
inite choice of time orientation). A timelike curve ¢ : I C R — M is said
to be future-directed if ¢ is future-pointing. The chronological future
of p € M is the set I™(p) of all points to which p can be connected by a
future-directed timelike curve. A future-directed causal curve is a curve
¢: I C R — M such that ¢ is non-spacelike and future-pointing (if nonzero).
The causal future of p € M is the set J*(p) of all points to which p can
be connected by a future-directed causal curve. Notice that I*(p) is simply
the set of all events which are accessible to a particle with nonzero mass at
p, whereas J*(p) is the set of events which can be causally influenced by
p (as this causal influence cannot propagate faster than the speed of light).
Analogously, the chronological past of p € M is the set I~ (p) of all points
which can be connected to p by a future-directed timelike curve, and the
causal past of p € M is the set J~(p) of all points which can be connected
to p by a future-directed causal curve.

In general, the chronological and causal pasts and futures can be quite
complicated sets, because of global features of the spacetime. Locally, how-
ever, causal properties are similar to those of Minkowski spacetime. More
precisely, we have the following statement:

PROPOSITION 7.1. Let (M, g) be a time-oriented spacetime. Then each
point pg € M has an open neighborhood V. C M such that the spacetime
(V,g) obtained by restricting g to V satisfies:

(1) If p,q € V then there exists a unique geodesic (up to reparametriza-
tion) joining p to q (i.e. V is geodesically convex);

(2) q € T™(p) iff there exists a future-directed timelike geodesic con-
necting p to q;

(3) J*(p) = I*(p);
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(4) q € J*(p) iff there exists a future-directed timelike or null geodesic
connecting p to q.
PrOOF. Let U be a normal neighborhood of py and choose normal
coordinates (z°, 2!, 22, 2%) on U, given by the parametrization

(a0 2!, 22, 2%) = expy, (2% + zlvy + 220y + 23v3),

where {vg,v1,v2,v3} is a basis of T, (M) (cf. Exercise 5.8.2 in Chapter 3).
Let D : U — R be the differentiable function

a=0

and let us define for each € > 0 the set
B, ={peU]|D(p) <e},

which for sufficiently small ¢ is diffeomorphic to an open ball in T}, M.
Assume, for simplicity, that U is one such set.

Let us show that there exists £ > 0 such that if c: T C R — By is a
geodesic then all critical points of D(t) := D(c(t)) are strict local minima.
In fact, setting z#(t) := z*(c(t)), we have

3
D(t) =2 z*(t)3*(t);
D) =2 (&*(t))* +2)_ a™(t)i*(t)
a=0 a=0

3 3
=2y (%v - Tﬁu(C(t))iva(t)> ()" (1),
p,v=0 a=0
and for k sufficiently small the matrix

3

[0 o

O — E Lz
a=0

is positive definite on By.
Consider the map F : W C TM — M x M, defined on some open
neighborhood W of 0 € T),, M by

F(v) = (m(v), exp(v)).
As was established in the Riemannian case (cf. Chapter 3, Section 5), this
map is a local diffeomorphism at 0 € T,,M. Choosing § > 0 sufficiently
small and reducing W, we can assume that F' maps W diffeomorphically to
Bjs x By, and that exp(tv) € By for allt € [0,1] and v € W.

Finally, set V = B;. If p,q € V and v = F~1(p, q), then c(t) = exp,,(tv)
is a geodesic connecting p to g whose image is contained in By. If it image
were not contained in V', there would necessarily be a point of local maxi-
mum of D(t), which cannot occur. Therefore, there exists a geodesic in V'



7. CAUSALITY 187

connecting p to ¢g. Since exp, is a diffeomorphism onto V', this geodesic is
unique (up to reparametrization). This proves (1).

To prove assertion (2), we start by noticing that if there exists a future-
directed timelike geodesic connecting p to ¢ then it is obvious that g € I (p).
Suppose now that ¢ € I (p); then there exists a future-directed timelike
curve ¢ : [0,1] — V such that ¢(0) = p and ¢(1) = ¢q. Choose normal

coordinates (z°,z!, 22, 23) given by the parametrization

SO("EOa .’L'l,.’EQ,.’E3) = epr(IOEO + $1E1 + -’EQEQ + $3E3)7

where {Fy, E1, Ey, F3} is an orthonormal basis of T, M (with Eq timelike and
future-pointing). These are global coordinates in V, since F: W — V x V
is a diffeomorphism. Defining

W) := — (2°(0))” + (¢ (0))° + («*(@)” + (+°(9))

3
= Y mwrt(g)2"(q),

H,v=0

we have to show that Wy,(q) < 0. Let Wy(t) := Wy(c(t)). Since z#(p) =0
(v =0,1,2,3), we have W,(0) = 0. Setting z#(t) = z#(c(t)), we have

2

3
Wp(t) =2 > nuat ()i (t);

=0

. 3 3

Wp(t) =2 Y nua()3(t) +2 Y nud(t)i"(¢),
pv=0 pyv=0

and consequently (recalling that (d expp)p =id)

Wp(o) =0;
W, (0) = 2(¢(0), ¢(0)) < 0.

Therefore there exists ¢ > 0 such that W,(¢) < 0 for ¢ € (0, ¢).

Using the same ideas as in the Riemannian case (cf. Chapter 3, Sec-
tion 5), it is easy to prove that the level surfaces of W), are orthogonal to
the geodesics through p. Therefore, if c,(t) = exp,(tv) is the geodesic with
initial condition v € T, M, we have

(grad Wy)c, (1) = a(v)éy(1),

where the gradient of a function is defined as in the Riemannian case (notice
however that in the Lorentzian case a smooth function f decreases along
the direction of grad f if grad f is timelike). Now

((Brad W)y, 0()) = S Wy (e (1) = W (10 1)
d

= = (EWple(1))) = 21Wp (e (1),
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and hence
((grad Wp)c, (1) &(1)) = 2Wp(cu(1))-
On the other hand,

((grad Wp)e, (1), ¢u(1)) = {a(v)éu(1), éo(1))
= a(v)(v,v) = a(v)Wp(cy(1)).
We conclude that a(v) = 2, and therefore

(grad WP)CU(I) = 2¢y (1)

Consequently grad W), is tangent to geodesics through p, being future-pointing
on future-directed geodesics.
Suppose that W,(t) < 0. Then

W (t) = ( (erad W) gy, (1) ) < 0

as both (grad W) o(t) and ¢(t) are timelike future-pointing (cf. Exercise 2.2.2).
We conclude that we must have W)y (t) < 0 for all ¢t € [0,1]. In particular,
Wy(g) = Wp(1) < 0, and hence there exists a future-directed timelike geo-
desic connecting p to q.

Assertion (3) can be proved by using the global normal coordinates
(0, z, 22, 23) of V to approximate causal curves by timelike curves. We
leave the details of this as an exercise. Once this is done, (4) is obvious from

the fact that exp, is a diffeomorphism onto V. O

The generalized twin paradox (cf. Exercise 2.2.8) also holds locally for
general spacetimes. More precisely, we have the following statement:

PROPOSITION 7.2. Let (M, g) be a time-oriented spacetime and pg € M.
Then there exists a geodesically convez open neighborhood V.C M of pg such
that the spacetime (V, g) obtained by restricting g to V' satisfies the following
property: if ¢ € I (p), c is the timelike geodesic connecting p to q and vy is
any timelike curve connecting p to q, then 7(y) < 7(c), with equality iff 7y is
a s a reparametrization of c.

PROOF. Choose V as in the proof of Proposition 7.1. Any timelike curve
v :[0,1] = V satisfying v(0) = p, 7(1) = g can be written as

Y(t) = expy(r(t)n(t)),
for ¢ € [0,1], where r(t) > 0 and (n(t),n(t)) = —1. We have
Y(t) = (expp)« (F()n(t) + r(t)n(t)) -

Since (n(t),n(t)) = —1, we have (n(t),n(t)) = 0, and consequently n(t) is
tangent to the level surfaces of the function v — (v,v). We conclude that

() = () Xy + Y (D),
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where X is the unit tangent vector field to timelike geodesics through p
and Y (t) = r(t)(exp,)«n(t) is tangent to the level surfaces of W) — hence
orthogonal to X, ;). Consequently,

(y) = /0 ()X + Y (8), #8) X0 + V(1)) de

- [ G -rop)

0

(where we’ve used the facts that 7#(¢) > 0 for all ¢ € [0,1], as ¢ is future-
pointing, and 7(c) = r(1), as ¢ = exp,(r(1)n(1)). It should be clear that
7(y) = 7(c) if and only if [Y(¢)] = 0 & Y (¢) = 0 (Y (¢) is spacelike) for
all t € [0,1], implying that n is constant. In this case, y(t) = exp,(r(t)n)
is, up to reparametrization, the geodesic through p with initial condition
ne€T,M. ]

There is also a local property characterizing null geodesics:

PROPOSITION 7.3. Let (M, g) be a time-oriented spacetime and pg € M.
Then there exists a geodesically convex open neighborhood V.C M of py such
that the spacetime (V,g) obtained by restricting g to V satisfies the following
property: if there exists a future-directed null geodesic ¢ connecting p to g
and 7y is a causal curve connecting p to q then vy is a reparametrization of c.

PROOF. Again choose V as in the proof of Proposition 7.1. Since p and
g are connected by a null geodesic, we conclude from Proposition 7.1 that
g € Jt(p)\ I't(p). Let v:[0,1] = V be a causal curve connecting p to gq.
Then we must have y(t) € J*(p) \ It (p) for all ¢ € [0, 1], since y(ty) € I (p)
implies y(t) € I (p) for all t > ¢y (again by Proposition 7.1). Consequently,
we have

<(grad W)co ,y(t)> —0.

The formula (grad Wy),, (1) = 2¢,(1), which was proved for timelike geodesics
¢, with initial condition v € T, M, must also hold for null geodesics (by
continuity). Hence grad W), is tangent to the null geodesics ruling J7*(p) \
I™(p) and future-pointing. Since §(¢) is also future-pointing, we conclude
that 4 is proportional to grad W), (cf. Exercise 2.2.8), and therefore y must
be a reparametrization of a null geodesic (which must be c). O

It is not difficult to show that if r € I (p) and ¢ € J(r) (or r € J*(p)
and ¢ € I (r)) then ¢ € I (p) (cf. Exercise 7.8.3). Therefore, we see that if
p and ¢ are connected by a future-directed causal curve which is not a null
geodesic then g € I'*(p) (cf. Exercise 7.8.4).

For physical applications, it is important to require that the spacetime
satisfies reasonable causality conditions. The simplest of these conditions
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excludes time travel, i.e. the possibility of a particle returning to an event
in its past history.

DEFINITION 7.4. A spacetime (M, g) is said to satisfy the chronology
condition if it does not contain closed timelike curves.

This condition is violated by compact spacetimes:

PROPOSITION 7.5. Any compact spacetime (M, g) contains closed time-
like curves.

PROOF. Taking if necessary the time-orientable double cover (cf. Exer-
cise 7.8.1), we can assume that (M,g) is time-oriented. Since I*(p) is an
open set for any p € M (cf. Exercise 7.8.3), it is clear that {I*(p)}yem
is an open cover of M. If M is compact, we can obtain a finite subcover
{I't(p1),..., I"(pn)}. Now if py € I (p;) for i # 1 then I (p1) C I (py),
and we can exclude I7(p;) from the subcover. Therefore, we can assume
without loss of generality that p; € I (p1), and hence there exists a closed
timelike curve starting and ending at p;. O

A stronger restriction on the causal behavior of the spacetime is the
following;:

DEFINITION 7.6. A spacetime (M, g) is said to be stably causal if there
erists a global time function, i.e. a smooth functiont: M — R such that
grad(t) is timelike.

In particular, a stably causal spacetime is time-orientable. We choose
the time orientation defined by — grad(¢), so that ¢ increases along future-
directed timelike curves. Notice that this implies that no closed timelike
curves can exist, i.e. any stably causal spacetime satisfies the chronology
condition. In fact, any small perturbation of a causally stable spacetime still
satisfies the chronology condition (cf. Exercise 7.8.5).

Let (M,g) be a time-oriented spacetime. A smooth future-directed
causal curve ¢ : (a,b) — M (with possibly a = —o0 or b = +00) is said
to be future-inextendible if lim;_,; c¢(¢) does not exist. The definition of
a past-inextendible causal curve is analogous. The future domain of
dependence of S C M is the set DT (S) of all events p € M such that
any past-inextendible causal curve starting at p intersects S. Therefore any
causal influence on an event p € D*(S) had to register somewhere in S,
and one can expect that what happens at p can be predicted from data on
S. Similarly, the past domain of dependence of S is the set D~ (S) of
all events p € M such that any future-inextendible causal curve starting at
p intersects S. Therefore any causal influence of an event p € D (S) will
register somewhere in S, and one can expect that what happened at p can
be retrodicted from data on S. The domain of dependence of S is simply
the set D(S) = D(S)UD (9).

Let (M,g) be a stably causal spacetime with time function ¢ : M —
R. The level sets S, = t~!(a) are said to be Cauchy hypersurfaces if
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D(S,) = M. Spacetimes for which this happens have particularly good
causal properties.

DEFINITION 7.7. A stably causal spacetime possessing a time function

whose level sets are Cauchy hypersurfaces is said to be globally hyper-
bolic.

Notice that the future and past domains of dependence of the Cauchy

surfaces S, are D¥(S,) = t~([a, +oc)) and D~(S,) = t~1((—o0, a]).

EXERCISES 7.8.

(1) (Time-orientable double cover) Using ideas similar to those of Exer-
cise 8.6.9 in Chapter 1, show that if (M, g) is a non-time-orientable
Lorentzian manifold then there exists a time-orientable double
cover, i.e. a time-orientable Lorentzian manifold (M, g) and a local
isometry 7 : M — M such that every point in M has two preimages
by w. Use this to conclude that the only compact surfaces which
admit a Lorentzian metric are the torus 72 and the Klein bottle
K2

(2) Complete the proof of Proposition 7.1.

(3) Let (M g) be a time oriented spacetime and p € M. Show that:

(a) I*(p) is open;

(b) J*(p) is not necessarily closed;

(c) J*(p) C I*(p);

(d) if r € I'*(p) and g € J*(r) then ¢q € IT(p);

(e) if r € J*(p) and g € I (r) then q € I (p);

(f) it may happen that It (p) = M;
(g) if U is an open set such that H = It (p)NU is a hypersurface,
then the normal vector to H is null;
(h) H is ruled by null geodesics.
(4) Consider the 3-dimensional Minkowski spacetime (R?, g), where

g=—dtdt+dzrQdx+ dy Q@ dy.

Let ¢ : R — R3 be the curve c(t) = (¢,cost,sint). Show that
although ¢(¢) is null for all £ € R we have c(t) € I7(c(0)) for all
t > 0. What kind of motion does this curve represent?

(5) Let (M, g) be a causally stable spacetime and h an arbitrary (2, 0)-
tensor field with compact support. Show that for sufficiently small
€ > 0 the tensor field g. = g+ ¢h is still a Lorentzian metric on M,
and (M, g.) satisfies the chronology condition.

(6) Let (M,g) be the quotient of Minkowski 2-dimensional spacetime
by the discrete group of isometries generated by the map f(t,z) =
(t+1,2+1)). Show that (M, g) satisfies the chronology condition,
but there exist arbitrarily small perturbations of (M,g) (in the
sense of Exercise 7.8.5) which do not.

(7) Let (M, g) be a time oriented spacetime and S C M. Show that:
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(a) S C D¥(S);

(b) D*(S) is not necessarily open;

(c) D*(S) is not necessarily closed;

(d) if U is an open set such that H = 8D (S)NU is a hypersurface,

then the normal vector to H is null;
(e) H is ruled by null geodesics.
(8) Show that the following spacetimes are globally hyperbolic:
(a) Minkowski spacetime;
(b) Friedmann-Robertson-Walker spacetimes;
(c) The region {r > 2m} of Schwarzschild spacetime;
(d) The region {r < 2m} of Schwarzschild spacetime.

(9) Let (M,g) be the 2-dimensional spacetime obtained by removing
the positive z-semi-axis of Minkowski 2-dimensional spacetime (cf.
Figure 7). Show that:

(a) (M,g) is stably causal but not globally hyperbolic.

(b) There exist points p,q € M such that J*(p) N J~(q) is not
compact.

(c) There exist points p,q € M with ¢ € I™(p) such that the
supremum of the lengths of timelike curves connecting p to ¢
is not attained by any timelike curve.

D(S) J*(p)

//—\\,/ P

FIGURE 7. Stably causal but not globally hyperbolic spacetime.

(10) Let (X, h) be a 3-dimensional Riemannian manifold. Show that the
spacetime (M, g) = (R x &, —dt ® dt + h) is globally hyperbolic iff
(3, h) is complete.

(11) Let (M,g) be a global hyperbolic spacetime with Cauchy surface
S. Show that M is diffeomorphic to R x S.
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8. Singularity Theorem

As we have seen in Sections 5 and 6, both the Schwarzschild solution and
the Friedmann-Robertson-Walker cosmological models display singularities,
beyond which timelike geodesics cannot be continued.

DEFINITION 8.1. A spacetime (M, g) is singular if it is not geodesically
complete.

It was once thought that the examples above were singular due to their
high degree of symmetry, and that more realistic spacetimes would be non-
singular. Following Hawking and Penrose (cf. [Pen65], [Haw67], [HP70]),
we will show that this is not the case: any sufficiently small perturbation of
these solutions will still be singular.

The question of whether a given Riemannian manifold is geodesically
complete is settled by the Hopf-Rinow Theorem. Unfortunately, this theo-
rem does not hold on Lorentzian geometry (essentially because one cannot
use the metric to define a distance function). For instance, compact man-
ifolds are not necessarily geodesically complete (cf. Exercise 8.12.1), and
the exponential map is not necessarily surjective in geodesically complete
manifolds (cf. Exercise 8.12.2).

Let (M,g) be a globally hyperbolic spacetime and S a Cauchy hyper-
surface with future-pointing normal vector field n. Let ¢, be the timelike
geodesic with initial condition n, for each point p € S. We define a smooth
map exp : U — M on an open set U C R x S containing {0} x S as

exp(t, p) = ¢p(t).
DEFINITION 8.2. The critical values of exp are said to be conjugate
points to S.

Loosely speaking, conjugate points are points where geodesics starting
orthogonally at nearby points of S intersect.

Let g = exp(tp,p) be a point not conjugate to S, and let (z!,z2 z?) be
local coordinates on S around p . Then (¢,z', 2%, 23) are local coordinates

on some open set V' 3 ¢. Since % is the unit tangent field to the geodesics

orthogonal to S, we have gog = <%, %> = —1. On the other hand,

dgu 0 /D DN [0 D
ot ot \ot’ ori/  \ot ' 5oz

0 0 1 0 o 0
—<a’va@m>—§w<aﬁ>—°’

and since go; = 0 on S we have go; = 0 on V. Therefore the surfaces of
constant ¢ are orthogonal to the geodesics tangent to %; for this reason,
(t,z', 22, 2%) is said to be a synchronized coordinate system. On this
coordinate system we have

3
g=—dt@dt+ Y v;(t)ds’ ®da?,
2,j=1
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where the functions 7;; define a positive definite matrix. This matrix is
well defined along c,, even at points where the synchronized coordinate
system breaks down. These are the points along ¢, which are conjugate to
S, and are also those where (t) = det (7;;(t)) vanishes, since only then will
{%, %, %, %} fail to be linearly independent.

It is easy to see that
. . 3 .
T =Th =0 and TH; = +*B
k=1

where (7)) = (;;)~" and Bi; = %%i. Consequently,

3 ' 3 3F60 BFZO 3 o 3 o
Roo =3 R =30 (250 T S g S,
i=1 i=1 j=1 j=1
PR 3 o
__EZW’”%— > *97 B B
ij=1 iikl=1

(cf. Chapter 4, Section 1). The quantity

3
0= 778y
ij=1
appearing in this expression is called the expansion of the synchronized
observers, and has an important geometric meaning;:

1 4,0 10 0 1
0=t ((%]) a(’)’m)) =55 1087 = 5, log7?

where we have used the formula
(logdet A)' = tr (A™'A")

for any smooth matrix function A : R — GL(n) (cf. Exercise 8.8 in Chap-
ter 1). Therefore the expansion measures the variation of the spatial volume
spanned by neighboring synchronized observers. More importantly for our
purposes, we see that a singularity of the expansion indicates a zero of ~,
i.e. a conjugate point to S.

DEFINITION 8.3. A spacetime (M, g) is said to satisfy the strong en-
ergy condition if Ric(V,V) > 0 for any timelike vector field V € X(M).

By the Einstein equation, this is equivalent to requiring that the reduced
energy-momentum tensor 7" satisfies T'(V, V') > 0 for any timelike vector field
V € X(M). In the case of a pressureless fluid with rest density function
p € C®°(M) and unit velocity vector field U € X(M), this requirement
becomes

p (<U, VY, V>) >0,
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or, since the term in brackets is always positive (cf. Exercise 8.12.3), simply
p > 0. For more complicated matter models, the strong energy condition
produces equally reasonable restrictions.

PROPOSITION 8.4. Let (M, g) be a globally hyperbolic spacetime satisfy-
ing the strong energy condition, S C M a Cauchy hypersurface and p € S
be a point where 0 = 6y < 0. Then the geodesic c, contains at least a point
conjugate to S, at a distance of at most —% to the future of S.

PROOF. Since (M, g) satisfies the strong energy condition, we have Ryy =
Ric ( 5 3t) > 0 on any synchronized frame. Consequently,

60
Z Yy Bii B < 0

2,5,k,l=1

on such a frame. Using the identity
(tr A)? < ntr(A'A),

which holds for square n xn matrices (as a simple consequence of the Cauchy-
Schwarz inequality), it is easy to show that

Z 71k7jl,82jﬁkl> 92

iyjkyl=1

Consequently 6 must satisfy

(90 19

8t 9 <0.
Integrating this inequality yields

11

0 — 6 3’
and hence 6 must blow up at a value of ¢ no greater than —%. O

PROPOSITION 8.5. Let (M,g) be a globally hyperbolic spacetime, S a
Cauchy hypersurface, p € M and c a timelike geodesic through p orthogonal
to S. If there exists a conjugate point between S and p then c does not
mazimize length (among the timelike curves connecting S to p).

PrOOF. We will offer only a sketch of the proof. Let ¢ be the first
conjugate point along ¢ between S and p. Then we can use a synchronized
coordinate system around the portion of ¢ between S and ¢g. Since ¢ is
conjugate to S, there exists another geodesic ¢, orthogonal to S, with the
same (approximate) length ¢(g), which (approximately) intersects c at g.
Let V be a geodesically convex neighborhood of ¢, r € V a point along ¢
between S and ¢, and s € V' a point along ¢ between ¢ and p (cf. Figure 8).
Then the piecewise smooth timelike curve obtained by following ¢ between
S and r, the unique geodesic in V between r and s, and ¢ between s and
p connects S to p and has strictly bigger length than ¢ (by the generalized
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twin paradox). This curve can be easily smoothed while retaining bigger
length than c. U

FI1GURE 8. Proof of Proposition 8.5.

PROPOSITION 8.6. Let (M,g) be a globally hyperbolic spacetime, S a
Cauchy hypersurface and p € DT (S). Then DT(S)NJ (p) is compact.

PROOF. Let us define a simple neighborhood U C M to be a geodesi-
cally convex open set diffeomorphic to an open ball whose boundary is a
compact submanifold of a geodesically convex open set (therefore oU is dif-
feomorphic to S and U is compact). It is clear that simple neighborhoods
form a basis for the topology of M. Also, it is easy to show that any open
cover {V, }aca has a countable, locally finite refinement {U, },cn by simple
neighborhoods (cf. Exercise 8.12.5).

If A= D*(S)NJ~(p) were not compact, there would exist a countable,
locally finite open cover {Up, },en of A by simple neighborhoods not admit-
ting any finite subcover. Take ¢, € A N U, such that g, # g, for m # n.
The sequence {¢, }nen cannot have accumulation points, for any point in M
has a neighborhood intersecting only finite simple neighborhoods U,,. Con-
sequently, each simple neighborhood U,, contains only finite points in the
sequence (as U, is compact).

Set p; = p. Since p; € A, we have p; € U,, for some n; € N. Let
qn & Up,. Since g, € J (p1), there exists a future-directed causal curve
¢p, connecting g, to pi;. This curve will necessarily intersect OU,,. Let
T1,» be an intersection point. Since U, contains only finite points in the
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sequence {gn }nen, there will exist infinite intersection points 71 ,. As Uy,
is compact, these will accumulate to some point py € 0Uy,.

Because U, is contained in a geodesically convex open set, po € J (p1):
if 71, is the unique causal geodesic connecting p; to r1,, parametrized
by the global time function ¢ : M — R, then the subsequence of {vi,}
corresponding to a convergent subsequence of {r ,,} will converge to a causal
geodesic 1 connecting p; to pa. Since t(r1,) > 0, we have t(p2) > 0, and
therefore po € A. Since py € U,,, there must exist no € N such that
p2 € Up,-

Since Uy, contains only finite points in the sequence {g,}nen, infinite
curves ¢, must intersect 0U,, to the past of ri,. Let ry;, be the inter-
section points. As 0U,, is compact, {ro,} must accumulate to some point
p3 € O0U,,. Because U,, is contained in a geodesically convex open set,
p3 € J7(p2): if 72, is the unique causal geodesic connecting 71, to 724,
parametrized by the global time function, then the subsequence of {~;,}
corresponding to convergent subsequences of both {r;,} and {ry,} will
converge to a causal geodesic connecting ps to p3. Since J ™ (p2) C J~ (p1)
and t(ry) > 0 = t(p3) > 0, we have p3 € A.

Iterating the procedure above, we can construct a sequence {p;};cn of
points in A satisfying p; € U,, with n; # n; if © # j, such that p; is
connected p;;+1 by a causal geodesic ;. It is clear that ; cannot intersect
S, for t(pi+1) > t(pir2) > 0. On the other hand, the piecewise smooth
causal curve obtained by joining the curves <; can easily be smoothed into a
past-directed causal curve starting at p; which does not intersect S. Finally,
such curve is inextendible: it cannot converge to any point, as {p; };en cannot
accumulate. But since p; € DT(S), this curve would have to intersect S.
Therefore A must be compact. O

COROLLARY 8.7. Let (M, g) be a globally hyperbolic spacetime and p,q €
M. Then:
(i) J*(p) is closed;
(i) J*(p) NJ~(q) is compact.

We leave the proof of this corollary as an easy exercise. Proposition 8.6
is a key ingredient in establishing the following fundamental result:

THEOREM 8.8. Let (M, g) be a globally hyperbolic spacetime with Cauchy
hypersurface S, and p € DY (S). Then among all timelike curves connecting
p to M there exists a timelike curve with mazimal length. This curve is a
timelike geodesic, orthogonal to S.

PROOF. Consider the set T'(.S, p) of all timelike curves connecting S to p.
Since we can always use the global time function ¢ : M — R as a parameter,
these curves are determined by their images, which are compact subsets of
the compact set A = DT(S) N J~(p). As is well known (cf. [Mun00)),
the set C(A) of all compact subsets of A is a compact metric space for the
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FIGURE 9. Proof of Proposition 8.6.

Hausdorff metric dy, defined as follows: if d : M x M — R is a metric
yielding the topology of M,

dy(K,L) =inf{e > 0| K C U.(L) and L C U.(K)},

where U, (K) is a e-neighborhood of K for the metric d. Therefore, the
closure C(S,p) = T(S,p) is a compact subset of C'(A). It is not difficult
to show that C(S,p) can be identified with the set of continuous causal
curves connecting S to p (a continuous curve c : [0,#(p)] = M is said to be
causal if c(ty) € JT(c(t1)) whenever to > t1).

The length function 7 : T'(S,p) — R is defined by

t(p)
() = / &) dt.
0
This function is upper semicontinuous, i.e. continuous for the topology
O ={(-,a) | —0 <a<+x}

in R. Indeed, let ¢ € T'(S,p) be parametrized by its arclength 7. For suffi-
ciently small ¢ > 0, the function 7 can be extended to the e-neighborhood
U:(c) in such a way that its level hypersurfaces are spacelike and orthogonal
to ¢ (i.e. —gradT is timelike and coincides with ¢ on ¢), and S N U(c) is
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one of these surfaces. If v € T'(S,p) is in the open ball B.(c) C C(A) then
we can use 7 as a parameter, thus obtaining

T =15 (¥,gradT) = 1.
Therefore 4 can be decomposed as
. 1
7= (grad T, grad T)
where X is spacelike and orthogonal to grad 7. Consequently,
1

7(c) 7(c)
(7) :/0 4T :/0 (grad T, grad T)

Given ¢ > 0, we can choose ¢ > 0 sufficiently small so that

grad T + X

2

aT.

+ (X, X)

1 2
_ 14+
(grad T, grad T) < ( + T(C))
on the e-neighborhood U, (c) (as (grad 7, grad 7) = —1 on ¢). Consequently,
- - <X7 X)

7(c)
() = /0 (grad T, grad T)

/T(c)( ) 4T =+
< 1+ — =71(c) + 6,
0 7(c)
proving upper semicontinuity. As a consequence, the length function and
can be extended to C(S,p) through

7(c) = limsup{r(7) | v € B:(¢c) N T(S, p)}

1
1 3
dT

(as for € > 0 sufficiently small the supremum will be finite). Also, it is clear
that if ¢ € T(S,p) then the upper semicontinuity of the length forces the
two definitions of 7(c) to coincide. The extension of the length function to
C(S,p) is trivially upper semicontinuous: given ¢ € C(S,p) and § > 0, let
e > 0 be such that 7(y) < 7(c) + § for any v € Bs.(c) N T(S,p). Then it is
clear that 7(c’) < 7(c) + 0 for any ¢’ € B.(c).

Finally, we notice that the compact sets of R for the topology O are sets
with maximum. Therefore, the length function attains a maximum at some
point ¢ € C(S,p). All that remains to be seen is that the maximum is also
attained at a smooth timelike curve . To do so, cover ¢ with finitely many
geodesically convex neighborhoods and choose points pi,...,pg in ¢ such
that p; € S, pr = p and the portion of ¢ between p; 1 and p; is contained
in a geodesically convex neighborhood for all ¢ = 2,... k. It is clear that
there exists a sequence ¢, € T(S,p) such that ¢, — ¢ and 7(c,) — 7(c).
Let t; = t(p;) and p;, be the intersection of ¢, with t=1(¢;). Replace c,
by the sectionally geodesic curve <, obtained by joining p;_1, to p;, in
the corresponding geodesically convex neighborhood. Then 7(v,) > 7(cy),
and therefore 7(v,) — 7(c). Since each sequence p;, converges to p;, Vn
converges to the sectionally geodesic curve -y obtained by joining p;_1 to p;
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(it =2,...,k), and it is clear that 7(y,) — 7(y) = 7(c). Therefore v is a
point of maximum for the length. Finally, we notice that v must be smooth
at the points p;, for otherwise we could increase its length by using the
generalized twin paradox. Therefore v must be a timelike geodesic. Using
a synchronized coordinate system around +y(0), it is clear that v must be
orthogonal to S, for otherwise it would be possible to increase its length. [

We have now all the necessary ingredients to prove the singularity the-
orem:

THEOREM 8.9. Let (M,g) be a globally hyperbolic spacetime satisfying
the strong energy condition, and suppose that the expansion satisfies 0 <
0o < 0 on a Cauchy hypersurface S. Then (M,g) is singular.

ProoF. We will show that no future-directed timelike geodesic orthog-
onal to S can be extended to proper time greater than 7y = —% to the
future of S. Suppose that this was not so. Then there would exist a future-
directed timelike geodesic ¢ orthogonal to S defined in an interval [0, 7 + 2¢)
for some ¢ > 0. Let p = ¢(79 + €). According to Theorem 8.8, there would
exist a timelike geodesic v with maximal length connecting S to p, orthog-
onal to S. Because 7(c) = 19 + €, we would necessarily have 7(y) > 79 + €.
Proposition 8.4 guarantees that v would develop a conjugate point at a dis-
tance of at most 7y to the future of S, and Proposition 8.5 states that ~y
would cease to be maximizing beyond this point. Therefore we arrive at a
contradiction. O

REMARK 8.10. It should be clear that (M, g) is singular if the condition
8 < 6y < 0 on a Cauchy hypersurface S is replaced by the condition 6 >
0y > 0 on S. In this case, no past-directed timelike geodesic orthogonal
to S can be extended to proper time greater than 79 = % to the past of S.

EXAMPLE 8.11.

(1) The Friedmann-Robertson-Walker models are globally hyperbolic
(cf. Exercise 7.8.8), and satisfy the strong energy condition (as
p > 0). Furthermore,

a 3a
Bij = —vij > 0= —.
a a

Assume that the model is expanding at time ty. Then 6 = 6y =
% > 0 on the Cauchy hypersurface S = {t = ty}, and hence
Theorem 8.9 guarantees that this model is singular to the past of
S (i-e. there exists a Big Bang). Furthermore, Theorem 8.9 implies
that this singularity is generic: any sufficiently small perturbation
of an expanding Friedmann-Robertson-Walker model satisfying the
strong energy condition will also be singular. Loosely speaking, any
expanding universe must have begun at a Big Bang.
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(2) The region {r < 2m} of the Schwarzschild solution is globally hy-
perbolic (cf. Exercise 7.8.8), and satisfies the strong energy condi-
tion (as Ric = 0). The metric can be written is this region as

2
g=—dr@dr+ (Tm—1> dt ® dt + r2df ® df + r2sin? 0dyp @ dp,

2m 2 -
T:/ (_m_l) du.
r U

Therefore the inside of the black hole can be pictured as a cylinder
R x 52 whose shape is evolving in time. As r — 0, the S? contracts
to a singularity, with the ¢-direction expanding. Since

3
3 Bijda’ ® da’ = dr (—%dt @ dt +rdf @ df + rsin® 0dyp d(p) ,

dr
(- 2 5).
T r o

Therefore § = 6 < 0 on any Cauchy hypersurface S = {r =
ro} with 7o < 3Tm, and hence Theorem 8.9 guarantees that the
Schwarzschild solution is singular to the future of S. Further-
more, Theorem 8.9 implies that this singularity is generic: any
sufficiently small perturbation of the Schwarzschild solution satis-
fying the strong energy condition will also be singular. Loosely
speaking, once the collapse has advanced long enough, nothing can
prevent the formation of a singularity.

where

D=

ij=1

we have

[V

EXERCISES 8.12.
(1) (Clifton-Pohl torus) Consider the Lorentzian metric

(du ® dv + dv ® du)

Q|

R
on M = R?\ {0}. The Lie group Z acts freely and properly on M
by isometries through

n - (u,v) = (2"u,2"v),

and this determines a Lorentzian metric g on M = M/7Z = T?.
Show that (M, g) is not geodesically complete (although M is com-
pact). (Hint: Look for null geodesics with v = 0).

(2) (2-dimensional Anti-de Sitter spacetime) Consider R? with the pseudo-

Riemannian metric
—du ® du — dv ® dv + dw ® dw,
and let (M, g) be the universal cover of the submanifold

{(u,v,w) € R | u? +0* —w?=1)}
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with the induced metric. Show that:
(a) A model for (M,g) is M =R x (—%5,%) and
1
g= (—dt @ dt + dz @ dx)

cos?

(hence (M, g) is not globally hyperbolic).
(b) (M, g) is geodesically complete, but exp,, is not surjective for
any p € M. (Hint: Notice each isometry of R® with the given pseudo-

Riemannian metric determines an isometry of (M, g)) .
(c) There exist points p,q € M connected by arbitrarily long time-
like curves (cf. Exercise 9).

|
N
mat
8

FiGureE 10. The exponential map is not surjective in 2-
dimensional Anti-de Sitter space.

(3) Show that if U is a unit timelike vector field and V' is any timelike
vector field then (U, V)* + 1 (V, V) is a positive function.

(4) Show that a spacetime (M, g) whose matter content is a pressureless
fluid with rest density function p € C*(M) and a cosmological
constant A € R (cf. Exercise 6.1.7) satisfies the strong energy
condition iff p > %.

(5) Let (M, g) be a spacetime. Show that any open cover {V,}4ca has
a countable, locally finite refinement {Uy, }nen by simple neighbor-
hoods (i.e., UpenUy = UgeaVa, for each n € N there exists a € A
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such that U, C V,, and each point p € M has a neighborhood
which intersects only finite simple neighborhoods Uy,).
(6) Prove Corollary 8.7.
(7) Let (M, g) be a globally hyperbolic spacetime, ¢ : M — R a global
time function, § = ¢~1(0) a Cauchy hypersurface, p € D*(S) and
A = D*(S)NnJ (p). Show that the closure C(S,p) = T(S,p) in
the space C(A) of all compact subsets of A with the Hausdorff
metric can be identified with the set of continuous causal curves
connecting S to p (parametrized by ).
(8) Show that if (M, g) is a globally hyperbolic spacetime and S is a
Cauchy surface then exp : U C R x § — M is surjective.
(9) Let (M,g) be a globally hyperbolic spacetime and p,q € M with
g € I (p). Show that among all timelike curves connecting p to
q there exists a timelike curve with maximal length, which is a
timelike geodesic.
(10) Use ideas similar to those leading to the proof of Theorem 8.9 to
prove the following theorem of Riemannian geometry: if (M,g) is
a complete Riemannian manifold whose Ricci curvature satisfies
Ric(X,X) > e(X,X) for some ¢ > 0 then M is compact. Is it
possible to prove a singularity theorem in Riemannian geometry?
(11) Explain why each of the following spacetimes does not have to be
singular.
(a) Minkowski spacetime.
(b) Einstein universe (cf. Exercise 6.1.8).
(c) de Sitter universe (cf. Exercise 6.1.8).
(d) 2-dimensional Anti-de Sitter spacetime (cf. Exercise 2).
(12) Prove that any sufficiently small perturbation of the model of col-
lapse in Exercise 6.1.6 is also singular.

9. Notes on Chapter 5

9.1. Bibliographical notes. There are many excellent texts on Gen-
eral Relativity, usually containing also the relevant differential and Lorentzian
geometry. These range from introductory ([Sch02]) to more advanced
([Wal84]) to encyclopedic ((MTWT73]). A more mathematically oriented
treatment can be found in [BEE96],/O’N83] ([GHLO04] also contains a
brief glance at pseudo-Riemannian geometry). For more information on
Special Relativity and the Lorentz group see [Nab92], [Oli02]. Causal-
ity and the singularity theorems are treated in greater detail in [Pen87],
[HE95], [Nab88]|.
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1-parameter group of diffeomorphisms,
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map, 13
K?, Klein bottle, 5, 7
S, circle, 4
S2, 131
5?2, 2-sphere, 5
S3 132
T2, torus, 5
RP?, real projective plane, 5, 7
X(M), 26
f*.X, 29

action

free, 38

proper, 38

smooth, 38
affine parameter, 100
associated basis of T, M, 18
atlas, 10

equivalent, 10

maximal, 10

basis
orthonormal, 161
Bianchi identity, 118
big bang, 184
black hole, 174
boundary, 7, 47
point, 7
point, 47
Brower fixed point theorem, 81
bump functions, 84

canonical immersion, 22

Cartan connection, 165

Cartan Formula, 73

Cartan’s structure equations, 128
Cauchy sequence, 115

causal
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future, 187

past, 187
chart, 9
Christoffel symbols, 96
chronological

future, 187

past, 187
circle, 4
compact exhaustion, 85
compactly supported

form, 73
complete

geodesically, 112

metric space, 115
connection

forms, 125

affine, 96

compatible with a Riemannian

metric, 99

Levi-Civita, 99

symmetric, 98
constant curvature, 139

manifold of, 122
continuous map, 50
contraction, 65
contraction of a tensor, 122
contravariant tensors, 60
coordinate neighborhood, 9
coordinate system, 9
Copernican Principle, 182
cotangent bundle, 66
cotangent space, 66
covariant

acceleration, 131

derivative, 96, 97
covariant tensors, 60
covering, 39

manifold, 39

map, 39
covering transformation, 40
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critical point, 25 equivalence class, 50
nondegenerate, 138 equivalence relation, 38
critical value, 25 open, 51
curl, 105 equivalent
curvature, 117 basis, 43
of a curve, 150 Euler characteristic, 8, 136
sectional, 120 event horizon, 174
tensor, 119 events, 153
cylinder, 6 simultaneous, 153
exponential map
Darboux Theorem, 72 on a Lie group, 37
deck transformation, 40 on a Riemannian manifold, 105
deflection of light, 182 exterior derivative, 68, 70
degree
of a map, 95 fiber bundle, 52
density field of dual co-frames, 124
rest, 168 field of frames, 124
DeRham cohomology, 71 fixed point, 38
derivative, 52 form
of differentiable maps, 18 cl.osed, 7.1
covariant, 96, 97 differential, 68
diffeomorphism, 13 exact, 71
local, 14 harmonic, 94
differentiable representation, 67
map, 13 volume, 79
differentiable function Foulcaut pendulum, 102
continuously, 51 frame
infinitely, 13, 52 inertial, 153
differentiable manifold, 9 fundamental group, 40, 56

differentiable map, 52 future-directed curve, 187
)

differentiable structure, 10 Galileo
differential, 66

of a map between manifolds, 19
differential form, 66

group, 154

transformation, 155
Gauss curvature, 121
directional derivative, 27, 31 of an isometric embedding, 147
Dirichlet condition, 95 Gauss-Bonnet

distance, 112 Theorem, 135

Divergence general linear group, 33

Theorem, 93 geodesic, 97
divergence flow, 109

of a vector field, 81, 93, 104 geodesic curvature, 130
dual gradient, 92

basis, 81 Grassmannian, 42

space, 81 gravitational
dual space, 59 potential, 165

. . Green’s formula, 94
Einstein group action, 38

field equation, 167
embedding, 23 half space, 5, 46
equation harmonic

Einstein field equation, 167 form, 94
Equivalence Hausdorff axiom, 3

Principle, 165, 167 Hessian, 138
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x-operator, 93
decomposition, 94
homeomorphism, 50

homogeneity of geodesics, 105

homotopic maps, 56
homotopy, 56

invariance, 78

smooth, 72, 78
Hopf-Rinow Theorem, 112
hyperbolic 3-space, 132
hyperbolic plane, 103, 131
hypersurface, 147

immersion, 22

at a point, 22
index, 133
induced orientation, 48, 75
inertia, 154
inertial frame, 153
initial point, 56
integral

of a function, 80
integral curve, 29
interior point, 7
isometric immersion, 146
isotropic manifold, 121
isotropy subgroup, 38

Jacobi
equation, 111
field, 111
Jacobi identity, 119
Jacobian matrix, 52

Killing vector field, 104
Klein bottle, 5, 7
Koszul formula, 100
Kronecker symbol, 36
Kruskal extension, 175

Laplace

equation, 165
Laplacian, 94
left multiplication, 35
length

of a piecewise differentiable curve,

108
Levi-Civita
connection, 99
Lie algebra, 28
of a Lie group, 35
Lie bracket, 28
Lie derivative

of a differential form, 72
of a function, 32
of a tensor field, 88
of a vector field, 32
Lie group, 32
homomorphism, 37
light cone, 158, 174
lightlike
vector, 158
local 1-parameter group of
diffeomorphisms, 30
local diffeomorphism, 22
Local Immersion, 22
Theorem, 22
local representation, 13
loop, 56
constant, 56
Lorentz
group, 158
transformation, 159

Moébius band, 6, 7, 45
manifold
diffeomorphic, 14
contractible, 72
orientable, 44
oriented, 45
simply connected, 56
with boundary, 47
mean curvature, 147
metric topology, 115
Morse function, 138
Morse Theorem, 138

Neumann condition, 95
non degenerate
form, 72
normal
ball, 107
coordinates, 110
neighborhood, 105
sphere, 107
normal coordinates, 188
normal curvature, 150
null
geodesic, 167
vector, 158

observers
stationary, 173
open ball, 115
open set, 49
orbit, 38
orientable
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manifold, 44
orientation, 43

preserving, 44

for a manifold, 44

for vector spaces, 43

number, 44

preserving, 46

reversing, 44, 46
orthogonal group, 33
orthonormal

basis, 161

Paradox

Car and Garage, 162

Twin, 161
parallel postulate, 102
parallel transport, 97
parametrization, 9
particle

free, 154
partition of unity, 74, 83
path, 56

composition, 56
piecewise differentiable curve, 108
Poincaré Lemma, 72
Poisson

equation, 165
potential

gravitational, 165
precession

of Mercury’s perihelion, 181
principal curvatures, 147, 150
principal directions, 147
Principle

Copernican, 182

Equivalence, 165, 167

Relativity, 155
product

orientation, 46
product manifold, 12
proper

time, 158, 167
pseudo-Riemannian

manifold, 166

metric, 166
pseudosphere, 143
pullback, 67
push-forward, 20

of a vector field, 29

quaternions, 43
quotient space, 51
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quotient topology, 51

Rank Theorem, 24
real projective plane, 5, 7
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regular value, 25
Relativity

Principle, 155
Ricci curvature, 122
Riemannian

manifold, 89

metric, 88, 89
Riemannian manifold

homogeneous, 115
right multiplication, 35
rotation group, 34

Sard’s Theorem, 95
scalar curvature, 123
second countability axiom, 4
second fundamental form, 146
along a normal vector, 146
signature, 161
simply connected, 40
simultaneity
hypersurface, 153
singular point, 133
singularity
isolated, 133
smooth
map, 13
smooth map, 52
spacelike
geodesic, 167
vector, 158
spacetime, 153
special linear group, 33
special orthogonal group, 34
special unitary group, 34
sphere, 26
stabilizer, 38
standard symplectic form, 72
stationary
observers, 173
Stokes theorem, 75
submanifold, 23
submersion, 23
support
of a form, 73
symmetric
connection, 98
symplectic manifold, 72

tangent bundle, 18, 21
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tensor field, 87

differentiable, 87
tensors
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terminal point, 56
Theorem

Gauss-Bonnet, 135
theorem
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time
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time function, 153
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timelike
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topological manifold, 3

with boundary, 7
topological space, 49
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basis, 49
torsion, 98
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submanifold, 151

totally normal neighborhood, 109

tractrix, 145
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transitive action, 38
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universal covering, 40

vector field, 26
f-related, 31
differentiable, 26
flow of, 30

INDEX

211

defined along a differentiable curve,
97
Killing, 104
left invariant, 35
parallel along a differentiable curve,
97
velocity
vector field, 168
volume
element, 79
form, 79

white hole, 175
Whitney’s Theorem, 25



