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Numerical determination of the resonance frequencies in
a bounded domain using the MFS

Carlos J. S. Alves(1) andPedro Antunes(2)

Abstract: In this work we present a numerical algorithm for the determination of the
eigenvalues and eigenfunctions associated to the Dirichlet problem for the Laplacian, in
a bounded domain. The determination of higher eigenfrequencies is a well known numer-
ical problem that has been addressed with other numerical methods. Here we propose to
use the method of fundamental solutions. Since the MFS produces highly ill conditioned
matrices, a particular technique was derived to overcome the difficulty of determining
accurately those eigenfrequencies. Extensive numerical simulations will be presented.

Keywords: eigenfrequencies, resonance, acoustic waves, method of fundamental solu-
tions.

1 Introduction

The determination of the resonance frequencies associated to the Laplace operator is an
old mathematical problem with applications in several scientific areas (eg. [6, 7]). Several
classical numerical methods for PDE’s have been used to determine both the eigenvalues
and the eigenfunctions for arbitrary domains. More recently, meshfree methods using
radial basis functions (eg. [5]) have been considered. Here we propose to consider an
algorithm for the determination of eigenvalues and eigenfrequencies based on the method
of fundamental solutions (MFS). In particular, we present several numerical experiments
that show some interesting nodal domains (eg. [1]) for high Dirichlet eigenvalues associ-
ated to non trivial 2D domains. The application of this type of algorithm might be made
for other boundary conditions and also for the exterior problem, but for simplicity we will
consider here only the 2D Dirichlet problem for bounded domains.
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2 The Method of Fundamental Solutions

Let Ω ⊂ R2 be a bounded connected domain with regular boundary∂Ω. Consider the
Dirichlet problem for the Helmholtz equation,

{
∆u+κ2u = 0 in Ω

u = g on∂Ω (1)

A fundamental solutionΦκ of the Helmholtz equation verifies(∆+κ2)Φ =−δ, whereδ
is Dirac delta distribution. In the 2D case, we take

Φκ(x) =
i
4

H(1)
0 (κ |x|)

whereH(1)
0 is the first Ḧankel function. A density result (cf. [2]) shows that

L2(∂Ω) = span
{

Φκ(x−y)|x∈∂Ω : y∈ Γ̂
}
,

whereΓ̂ is an admissible source set, for instance, the boundary of an open set inR2\Ω̄.
In particular we will consider̂Γ surrounding∂Ω. This allows to justify the approximation
of aL2 function, with complex values, defined on∂Ω, using a sequence of functions

un(x) =
n

∑
j=1

αn, jΦκ(x−yn, j) (2)

that converges tou|Γ = g in L2(∂Ω). This is a partial justification to the convergence
of the Method of Fundamental Solution (MFS) based on density results. It is similar to
Bogomolny’s approach (in [4]), but it avoids the use of boundary layer potentials (e.g.
[3, 8]). As pointed out in [2] (or in [4]), the convergence of the MFS, in a general case, is
not completely related to the discretization of a single layer potential, although there is a
straightforward relation. A single layer potential defined onΓ̂ implies that the restriction
to ∂Ω is an analytic function, and therefore such an approach would only be appropriate
for functionsg that are analytic functions on∂Ω.

We will be interested in the problem of finding the eigenfrequencies and eigenfunc-
tions for the Dirichlet problem associated to the Laplace operator, ie. we will be inter-
ested in finding the values−κ2 for which there exists a non null functionu verifying the
problem (1) withg≡ 0. As an application, this corresponds to recovering the resonance
frequenciesκ > 0 associated to a particular shape of a drumΩ.

Sinceg≡ 0 is an analytic function, it makes sense to consider the approach of the
MSF as being related to the discretization of the single layer potential. Thus, we consider
the operator

Hκ : H−1/2(Γ̂) → C∞(∂Ω)

ϕ →
Z

Γ̂
Φκ(x−y)ϕ(y)dsy.

(3)

Suppose that for a givenκ there exists aϕ 6= 0 such thatHκϕ = 0, ie. dim(Ker(Hκ)) > 0.
Then the natural analytic extension ofHκϕ to Ω, given by the single layer potential, that
we will call H̃κϕ, would be an eigenfunction associated to the eigenvalue−κ2.
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Theorem. If dim(Ker(Hκ)) > 0 then−κ2 is an eigenfrequency associated to the Dirichlet
problem for the Laplace operator, and any non nullϕ ∈ Ker(Hκ) is an associated eigen-
function.
Proof. The hypothesis imply there existsϕ 6≡ 0 : Hκϕ = 0. It suffices to show now that
H̃κϕ 6≡ 0 in Ω. Suppose that̃Hκϕ≡ 0, then by analytic extension the internal trace ofH̃κϕ
on Γ̂ would be null. Since the exterior trace of the single layer is equal to the interior, we
would haveH̃κϕ to be a solution of the exterior problem with null exterior trace. Then,
the well posedness of the exterior problem with Sommerfeld radiation condition (which
is verified by the single layer potential) impliesϕ≡ 0, contradicting the hypothesis. ¤

We skip here the part of showing that an eigenfunction may be represented by a single
layer potential in somêΓ. For a regular domain (verifying the cone condition) we may
consider any neighborhood of∂Ω, denoted byΓε ⊂Ω and the approximation ofu|Γε can
be made using̃Hκϕ|Γε .

We also note that by increasing the number of points on a piecewise analytic boundary
the approximation made by collocation is appropriate, since it will lead in the limit to the
only possible analytic solution,g≡ 0.

3 Numerical Algorithm

From the previous considerations we may sketch a procedure for finding the eigenvalues
of the Laplace operator by checking theκ for which dim(Ker(Hκ)) > 0, which corre-
sponds in the MFS to find theκ for which

∞

∑
j=1

α jΦκ(x−y j) = 0, (x∈ ∂Ω).

The simplest way to get those values is to find the valuesκ for which them×m matrix

A(κ) =
[
Φκ(xi−y j)

]
m×m (4)

has a null determinant. We will choose the pointsx1, ....,xm∈ ∂Ω andy1, ....,ym∈ Γ̂ in a
particular way.

Given thempointsxi on ∂Ω, we take

yi = xi + ñ

whereñ is an approximation of a vector which is normal to the boundary∂Ω on xi . To
obtain the vector̃n we just considerv− = xi−xi−1, v+ = xi−xi+1 (index addition modulus
m) and calculaten−, n+ which are normal tov− andv+ (respectively) pointing outwards
Ω. Then we takẽn = n++n−

2 . By some experimental criteria, we will use|n−| = |n+| =
β≈ 1/3.

The components of the matrixA(κ) are complex numbers, so the determinant is a
complex number too. We consider the functiong(κ) = |Det[A(κ)]| and we will make use
of the rough approximationg′(w) ≈ g(w+ε)−g(w)

ε for small ε > 0. This will allow us to
get the points where there is a clear change of sign of the derivative. It is clear that the
function g will be very small in any case, since the MFS is highly ill conditioned, and
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the determinant is quite small. To avoid machine precision problems the code was built
in Mathematica.While approximating an eigenfrequency, the value ofg will be much
smaller, producing a clear change on the sign of the derivative. The search of those points
is made using the simple bissection method, which revealed to be quite accurate for the
search of high eigenfrequencies near to each other.

Once we have an eigenfrequency determined, we may get the eigenfunctions just by con-
sidering extra collocation points inside the domain. Depending on the multiplicity of the
eigenvalue, we add one or more collocation points to make the linear system well deter-
mined.

4 Numerical Simulations

Since the values of the eigenfrequencies for the unit disc are well known, given by a
Bessel function, we will first test the results of this method for the three first resonance
frequencies consideringβ = 0.3

m abs. error m abs. error m abs. error
30 0.0000263383 30 0.0000291533 30 0.0000145574
40 1.49154×10−6 40 1.54666×10−6 40 8.1613×10−7

50 8.21724×10−8 50 7.57298×10−8 50 3.31955×10−8

60 4.98448×10−9 60 4.68111×10−9 60 2.08940×10−9

To obtain an eigenfunction associated to the resonance frequenciesκ1, κ2,. . . we use
a collocation method onm+1 points, withx1, · · · ,xm on∂Ω and a pointxm+1 ∈Ω. Then,
the approximation of the eigenfunction is given by

ũ(x) =
m+1

∑
j=1

α jΦκ(x−y j) (5)

and, to exclude the solutioñu(x)≡ 0, the coefficientsαk are determined solving the sys-
tem {

ũ(xi) = 0 i = 1, . . . ,m,
ũ(xm+1) = 1

(6)

In Fig. 1 we show the plots of eigenfunctions associated to the 21th, ... , 24th eigen-
values for the domainΩ1 with boundary given by the parametrization

t 7→
(

cos(t)− cos(t)sin(2t)
2

,sin(t)+
cos(4t)

6

)

In Fig. 2 we present the respective nodal domains (ie. the domains where the real
eigenfunction keeps the same sign)

In Fig. 3 and Fig. 4 we present the same plots (associated the 21th, ... , 24th eigenval-
ues) now considering a domainΩ2 with boundary given by

t 7→
(

cos(t),sin(t)+
sin(2t)

3

)
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Figure 1:3D plots of the 21th, ... , 24th eigenfunctions associated toΩ1
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Figure 2:Plots of the 21th, ... , 24th nodal domains associated toΩ1
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Figure 3:3D plots of the 21th, ... , 24th eigenfunctions associated toΩ2
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Figure 4:Plots of the 21th, ... , 24th nodal domains associated toΩ1
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