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N
The ARNN model

Development of Physical Super-Turing Analog Hardware

A. Steven Younger', Emmett Redd', Hava Siegelmann?

! Missouri State University, Springfield, MO, USA
{steveyounger, emmettredd}@missouristate.edu
2 University of Massachusetts-Amherst, Amherst, MA, USA hava@cs.umass.edu

Abstract. In the 1930s, mathematician Alan Turing proposed a mathematical
model of computation now called a Turing Machine to describe how people fol-
low repetitive procedures given to them in order to come up with final calcula-
tion result. This extraordinary computational model has been the foundation of
all modern digital computers since the World War II. Turing also speculated
that this model had some limits and that more powerful computing machines
should exist. In 1993, Siegelmann and colleagues introduced a Super-Turing
Computational Model that may be an answer to Turing’s call. Super-Turing
computation models have no inherent problem to be realizable physically and
biologically. This is unlike the general class of hyper-computer as introduced in
1999 to include the Super-Turing model and some others. This report is on re-
search to design, develop and physically realize two prototypes of analog recur-
rent neural networks that are capable of solving problems in the Super-Turing
complexity hierarchy, similar to the class BPP/log*. We present plans to test
and characterize these prototypes on problems that demonstrate anticipated Su-
per-Turing capabilities in modeling Chaotic Systems.
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N "< cynamic system
Analogue Recurrent Neural Net [SS94, S595, Sie99]

System equation

x(t+1) = o(Ax(t)+ Bu(t)+c) .
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Common sigmoids

Sigmoids [MP43], [SS94, SS95] and [Hay94]
(a) The McCulloch-Pitts sigmoid,

(x) = 1 ifx>0
GII=Y 0 ifx<0

(b) The saturated sigmoid,

1 ifx>1
o(x)=4¢ x f0<x<1
0 ifx<0O

(c) The analytic sigmoid of parameter k,

1

ok(x) = Trek
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Computing successor in unary

Example (Successor in unary)

i = o(a)
Ya = U(a + yl)
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Computing successor in unary

Example (Successor in unary)

Example (Successor in unary)

=

A WN RO~
cCooOorRrER,ROWD
corroOS
O, KL, KHOO
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N i .
Computing addition in binary

Example (Adition in binary)

n o= olatb+viy-2)

2 = o(atb+viy—3)

y5 = o(a—2b+v—2y—1)

yi = o(—2a+b+v—2y—1)

v = o(—2a—-2b+v+y —1)

Yo = o(-a—b—v+y)

i = o(a+b+v—3n)

v = o(a=3b+v+y)

vo = o(=3a+b+v+y)

o = o(-a—b+v+y)

Yorb = o(ya+ys+ys+ys+ye)

v, = o(ya+ys+ys+ys+ys+yr+ys+ Yo+ yio) )
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N i .
Computing addition in binary

Example (Addition in binary)

t a b v oy oy ys Ya ¥s Yo Yr Y8 Yo Yo Yarb Yo

SO0~ WN RO
[cNeoNoNel S -
[eNeNoNol SleNe)
OO0 OO HO
OO o+~ OOoOOo
O O OO OoOOoOo
O o ook oo
OO O OO OoOOo
OO OO OoOOoOo
OO+ OOOoOOo
oo or~rKHFE OO
OO+ O OO
OO+ OOOoOOo
O OO OO OoOo
oOrr O+ OOoOOo
oOrRrHHEFOOO
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N B oo
Decidability

System equation

x(t+1) = o(Ax(t)+ Bu(t)+c) .
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N B oo
Decidability

System equation

x(t+1) = o(Ax(t)+ Bu(t)+c) .

Definition

A word w € {0,1}7 is said to be classified in time 7 by a system N if the
input streams are (uy, up), with u; = 0w0¥ and u; = 01%lo«, and the
output streams are (vq, va) with vp(t) = (t = 7). If vi(7) = 1, then the
word is said to be accepted, otherwise (if vi(7) = 0) rejected.
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N  The computational power
Query tape

Definition

Let B be a class of sets and F a class of total functions of signature N — ¥*. The non-uniform
class B/F is the class of sets A for which some B € B and some f € F are such that, for every
w, w € A if and only if (w,f(|w|)) € B. If we take B as P and F as poly, then we get class
P/poly.
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N  The computational power
Query tape

Definition

Let B be a class of sets and F a class of total functions of signature N — ¥*. The non-uniform
class B/F is the class of sets A for which some B € B and some f € F are such that, for every
w, w € A if and only if (w,f(|w|)) € B. If we take B as P and F as poly, then we get class

P/poly.
v

Vs. query tape

Finite Control ———————————— query tape
LTI ~H]
1 working tape
DEnunnnnn of
L input tape
q,qha|t ’1‘0‘1‘1‘0‘\4 u‘u u‘uu

n=|x|
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Lower and upper bounds in polynomial time

Proposition

The output of an ARNN after t steps is affected only by the first O(t)
digits in the expansion of the weights.
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Lower and upper bounds in polynomial time

Proposition
The output of an ARNN after t steps is affected only by the first O(t)
digits in the expansion of the weights.

Proposition
ARNN[R]P = P/poly.
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Structural complexity

Halting set
The sparse halting set is

HALT = {0" : n codes for a TM that halts on input 0}
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Structural complexity

Halting set
The sparse halting set is

HALT = {0" : n codes for a TM that halts on input 0}

Halting set

The sparse halting set is in P/poly.
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Computational power of ARNN under various restrictions

Weights Time restriction

Computational power

B EON

José Félix Costa (DMIST & CFCUL Depart

none
none

polynomial

none

Beamer

Regular sets
Recursively enumerable sets

P /poly
All sets
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The BAM
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The computational power

The standard sigmoid
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Measurement theory

Measurement theory
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N  The computational power
Bachelard, Eddington

Gaston Bachelard

Let us briefly note that the behaviour of the precision balance, though it is faithful to the mass,
is not always clear: many students are surprised and disturbed by the slowness of the

measurement process. We can not say that, for everyone, there is a precise idea of measurement
of mass.?

?Gaston Bachelard, The Philosophy of No: A Philosophy of the New Scientific Mind,
Viking Press, 1968 (1940).
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N  The computational power
Bachelard, Eddington

Gaston Bachelard

Let us briefly note that the behaviour of the precision balance, though it is faithful to the mass,
is not always clear: many students are surprised and disturbed by the slowness of the
measurement process. We can not say that, for everyone, there is a precise idea of measurement
of mass.?

?Gaston Bachelard, The Philosophy of No: A Philosophy of the New Scientific Mind,
Viking Press, 1968 (1940).

Arthur Eddington

Yet space is a prominent feature of the physical world; and measurement of space — lengths,
distances, volumes — is part of the normal occupation of a physicist. Indeed it is rare to find
any quantitative physical observation which does not ultimately reduce to measuring distances.?

?Arthur Eddington, The Expanding Universe, Cambridge University Press, First
published in 1933.
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Measurement according to Hempel [Hem52, KSLT09]

Definition

Given two binary relations £ and L in O, L is E-irrefexive if, for all objects
aand bin aset O, if a€b is the case, then aLb does not hold.
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Ny T computational povie
Measurement according to Hempel [Hem52, KSLT09]

Definition
Given two binary relations £ and L in O, L is E-irrefexive if, for all objects
aand bin aset O, if a€b is the case, then aLb does not hold.

v

Definition
Given two binary relations £ and L in a set O, L is E-connected if, for all
objects a and b in O, if ab is not the case, then either aLb or bLa holds.
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Ny T computational povie
Measurement according to Hempel [Hem52, KSLT09]

Definition
Given two binary relations £ and L in O, L is E-irrefexive if, for all objects
aand bin aset O, if a€b is the case, then aLb does not hold.

v

Definition
Given two binary relations £ and L in a set O, L is E-connected if, for all
objects a and b in O, if ab is not the case, then either aLb or bLa holds.

Definition

Two binary relations £ and £ determine a comparative concept, or a
quasi-series, for the elements of O, if £ is an equivalence relation and L is
transitive, E-irreflexive, and £-connected.
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Ny T computational povie
Hempel: Measurement map [Hem52, KSLT09]

Definition
The map M : O — R is said to be a measurement map if
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Ny T computational povie
Hempel: Measurement map [Hem52, KSLT09]

Definition
The map M : O — R is said to be a measurement map if
Axiom 1 If a€b, then M(a) = M(b).
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Ny T computational povie
Hempel: Measurement map [Hem52, KSLT09]

Definition

The map M : O — R is said to be a measurement map if
Axiom 1 If a€b, then M(a) = M(b).
Axiom 2 If alb, then M(a) < M(b).
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Hempel: Propositional

Proposition

For all a, b in O, one, and only one, of the following statements holds:
(a) aEb, (b) aLb, or (c) bLa.
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Hempel: Propositional

Proposition

For all a, b in O, one, and only one, of the following statements holds:
(a) aEb, (b) aLb, or (c) bLa.

Proposition
For all a, b in O:

If M(a) = M(b), then aEb
If M(a) < M(b), then alb
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Hempel: First order logic

Proposition
Vx Vy (xX€y < Yu ((xLu < yLu) A (ulx < uLly)))
Vx Yy Vz (xEy NyLz) = xLz)
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Timed measurement systems

Timed measurement systems
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Collider experiment

1

1ms—
pt T pt
| TEST MASS UNKNOWN MASS
o
before the collision
2m
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Collider experiment

1

1ms—
pt @ Pt
| TEST MASS UNKNOWN MASS
o
before the collision
2m
p— Vm v,
TEST MASS UNKNOWN MASS
| -
o
after the collision
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Collider experiment

Implementing a comparative concept

© Test particle m is detected backward, in time t: mLu;
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Collider experiment

Implementing a comparative concept
© Test particle m is detected backward, in time t: mLu;

@ Test particle m is detected forward, in time t: pLym;
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Collider experiment

Implementing a comparative concept
© Test particle m is detected backward, in time t: mLu;
@ Test particle m is detected forward, in time t: uLym;

© Test particle m not seen within time t: m&;u.

José Félix Costa (DMIST & CFCUL Depart Beamer October 12, 2017

25 / 78



Ny Corplety of 2 measurement
Timed relation [BCT10a]

Definition
A relation & in O x O, for the time bound t > 0, is said to be a timed
equivalence relation if there is a k > 1 so that

José Félix Costa (DMIST & CFCUL Depart Beamer October 12, 2017 26 / 78



Ny Corplety of 2 measurement
Timed relation [BCT10a]

Definition
A relation & in O x O, for the time bound t > 0, is said to be a timed
equivalence relation if there is a k > 1 so that

Q & is reflexive;
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Ny Corplety of 2 measurement
Timed relation [BCT10a]

Definition
A relation & in O x O, for the time bound t > 0, is said to be a timed
equivalence relation if there is a k > 1 so that

Q & is reflexive;

Q & is timed symmetric: for every a, b in O, if at:b, then b, ), a;
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Ny Corplety of 2 measurement
Timed relation [BCT10a]

Definition
A relation & in O x O, for the time bound t > 0, is said to be a timed
equivalence relation if there is a k > 1 so that

Q &; is reflexive;

Q & is timed symmetric: for every a, b in O, if at:b, then b, ), a;

Q ¢&; is timed transitive: for every a, b, and c in O, if a;b and b&;c,
then a&;/.c;
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Ny Corplety of 2 measurement
Timed relation [BCT10a]

Definition
A relation & in O x O, for the time bound t > 0, is said to be a timed
equivalence relation if there is a k > 1 so that
Q &; is reflexive;
Q & is timed symmetric: for every a, b in O, if at:b, then b, ), a;
Q ¢&; is timed transitive: for every a, b, and c in O, if a;b and b&;c,
then a&;/.c;
Q if t <t and a€yb, then a&;b.
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Ny Corplety of 2 measurement
Timed relation [BCT10a]

Definition

Two binary relations & and L. (t > 0) determine a timed comparative concept for the
elements of O, if
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Ny Corplety of 2 measurement
Timed relation [BCT10a]

Definition

Two binary relations & and L. (t > 0) determine a timed comparative concept for the
elements of O, if

@ &: is a timed equivalence relation;
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Ny Corplety of 2 measurement
Timed relation [BCT10a]

Definition

Two binary relations & and L. (t > 0) determine a timed comparative concept for the
elements of O, if

@ &: is a timed equivalence relation;

@ Thereis a K > 1 so that for every a, b, c in O, if aL:b and bL:c, then ali/nc;
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Ny Corplety of 2 measurement
Timed relation [BCT10a]

Definition

Two binary relations & and L. (t > 0) determine a timed comparative concept for the
elements of O, if

@ &: is a timed equivalence relation;
@ Thereis a K > 1 so that for every a, b, c in O, if aL:b and bL:c, then ali/nc;
© Forallt >0and a, b e O, exactly one of a&:b, aL:b, bL:a holds;
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Ny Corplety of 2 measurement
Timed relation [BCT10a]

Definition

Two binary relations & and L. (t > 0) determine a timed comparative concept for the
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@ Thereis a K > 1 so that for every a, b, c in O, if aL:b and bL:c, then ali/nc;
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Ny Corplety of 2 measurement
Timed relation [BCT10a]

Definition

Two binary relations & and L. (t > 0) determine a timed comparative concept for the
elements of O, if

@ &: is a timed equivalence relation;

@ Thereis a K > 1 so that for every a, b, c in O, if aL:b and bL:c, then ali/wc;
© Forallt >0and a, b e O, exactly one of a&:b, aL:b, bL:a holds;

Q Ift <t and al:b, then aLy b.

Definition

Let & and L: be timed comparative relations on the set O of objects. Suppose there
exists an experimental apparatus to witness these relations. Then the map M : O — R
is said to be a measurement map if

3f>0 aﬁfb = M(a) < M(b)
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Separation axiom

Axiom

The apparatus satisfies the separation property for the measurement map

M : O — R if, for every objects a and b in O, if M(a) < M(b), then there
exists a time bound t such that al;b.
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Limit timed relations

Definition

Given the timed comparative concept £ and L, for some time bound t,
we define the following relations &, and Ljim:
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Limit timed relations

Definition
Given the timed comparative concept £ and L, for some time bound t,
we define the following relations &, and Ljim:

@ for every a and b in O, a&ji,b if a&:b for every time bound t
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Limit timed relations

Definition
Given the timed comparative concept £ and L, for some time bound t,
we define the following relations &, and Ljim:

@ for every a and b in O, a&ji,b if a&:b for every time bound t

@ for every a and b in O, aL,b if there exists a time bound t such
that al:b
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Limit timed relations

Definition
Given the timed comparative concept £ and L, for some time bound t,
we define the following relations &, and Ljim:
@ for every a and b in O, a&ji,b if a&:b for every time bound t
@ for every a and b in O, aL,b if there exists a time bound t such
that al:b

Proposition

If the two relations £; and L; define a timed comparative concept and the
physical apparatus witnessing the relations satisfies the separation
property, then the two relations &j;,, and Lj;,, define a comparative
concept and M is a measurement map in the sense of Hempel.
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Collider experiment

Proposition

The collider experiment is a measurement procedure in the sense of
Hempel, once we move from concept (E:, L, M) to the concept
<g/im7 £Iim7 M) .
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Complexity of the measurement map

Definition
The complexity of a measurement map M : O — R, given the timed
comparative relations £ and L; on the set O of objects, is the map
T : N — N defined as follows:
T(n) = min{teN—-{0}:a,L:a
for some a, a, € O with M(a,) = M(a)|n}.

José Félix Costa (DMIST & CFCUL Depart Beamer October 12, 2017
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Complexity of the measurement map

Definition

The complexity of a measurement map M : O — R, given the timed
comparative relations £ and L; on the set O of objects, is the map
T : N — N defined as follows:

T(n) = min{teN—-{0}:a,L:a
for some a, a, € O with M(a,) = M(a)|n}.

Definition
We say that a measurement in physical theory 7 has complexity T if the
associated measurement map M has a computable complexity T.
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. Crbidrmieaar
BCT Conjecture

Conjecture
No reasonable physical measurement has an
associated measurement map with polynomial

time complexity.
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N Computable vs measurable
Geroch and Hartle [GH86]

Geroch and Hartle [GH86]

We propose, in parallel with the notion of a computable number in mathematics, that of a
measurable number in a physical theory. The question of whether there exists an algorithm for
implementing a theory may then be formulated more precisely as the question of whether the
measurable numbers of the theory are computable.?

“Robert Geroch and James B. Hartle, Computability and Physical Theories,
Foundations of Physics, 16(6), 1986.
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Y orpable v measurable
Geroch and Hartle [GH86]

Geroch and Hartle [GH86]

We propose, in parallel with the notion of a computable number in mathematics, that of a
measurable number in a physical theory. The question of whether there exists an algorithm for
implementing a theory may then be formulated more precisely as the question of whether the
measurable numbers of the theory are computable.?

“Robert Geroch and James B. Hartle, Computability and Physical Theories,
Foundations of Physics, 16(6), 1986.

.
Geroch and Hartle [GH86]
Regard number w as measurable if there exists a finite set of instructions for performing an
experiment such that a technician, given an abundance of unprepared raw materials and an
allowed error ¢, is able by following those instructions to perform the experiment, yielding
ultimately a rational number within £ of w. 2

“Robert Geroch and James B. Hartle, Computability and Physical Theories,

Foundations of Physics, 16(6), 1986.

v
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The three types of measurements

The three types of measurements J
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N Computable vs measurable
Three cases of measurability [BCT10c, BCT14]

The vertical axis measures the outcome of the experiment; we have to find the
first zero x by trial and error on the value a:
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Three cases of measurability [BCT10c, BCT14]

The vertical axis measures the outcome of the experiment; we have to find the
first zero x by trial and error on the value a:

Type |

<

Figure: Measure both a < x and x < a.
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N Computable vs measurable
Three cases of measurability [BCT10c, BCT14]

Type |
a O X
Figure: Balance.
Type Il
a Io) X
hl | Rigid block

Figure: Broken balance.
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N Computable vs measurable
Three cases of measurability [BCT10c, BCT14]

The vertical axis measures the outcome of the experiment; we have to find the
first zero x by trial and error on the value a:
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Three cases of measurability [BCT10c, BCT14]

The vertical axis measures the outcome of the experiment; we have to find the
first zero x by trial and error on the value a:

Type Il

X

Figure: Can only measure a < x.
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N Computable vs measurable
Three cases of measurability [BCT10c, BCT14]

Type |
a O X
Figure: Balance.
Type Il
a Io) X
hl | Rigid block

Figure: Broken balance.
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N Computable vs measurable
Three cases of measurability [BCT10c, BCT14]

The vertical axis measures the outcome of the experiment; we have to find the
first zero x by trial and error on the value a:
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Three cases of measurability [BCT10c, BCT14]

The vertical axis measures the outcome of the experiment; we have to find the
first zero x by trial and error on the value a:

Type Il

X

Figure: Can only measure (a < x or x < a).
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Brewster angle

(incident ray) (reflected ray)
medium (1) Ep | Erp
Ein Ern
% X
Erp
medium (2) Ern

(transmitted ray)
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The scatter machine model |

Shoot  Development  Post-processing  Outcome

o .—\—A—a
DIGITAL

The scatter machine model |
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N Computable vs measurable
The scatter machine [BTO07]

‘ 10 m/s
sample trajectory

1 cannon 1

o
3
X
o
N

limit of traverse limit of traverse of cannon
of point of wedge cannon aims at dyadic z € [0, 1]

5m
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Query tape [BCLTO08]

Query tape
Finite Control ————
query tape
e “““ i
1 working tape
A e o o]
L input tape
4, Jhalt ‘1‘0‘1‘1‘0‘u‘u‘u u‘u‘u‘
n=|x|
y
Beamer October 12, 2017 43 /78
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Analog-digital scatter machine: decidability

Error-free analog-digital scatter machine

Let A C X* be a set of words over . We say that an error-free analog-digital
scatter machine M decides A if, for every input w € ¥*, w is accepted if w € A
and rejected if w ¢ A. We say that M decides A in polynomial time, if M
decides A, and there is a polynomial p such that, for every input w € ¥*, the
number of steps of the computation of M on w is bounded by p(|w]).
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Y orpable v measurable
Analog-digital scatter machine: decidability

Error-free analog-digital scatter machine

Let A C X* be a set of words over . We say that an error-free analog-digital
scatter machine M decides A if, for every input w € ¥*, w is accepted if w € A
and rejected if w ¢ A. We say that M decides A in polynomial time, if M
decides A, and there is a polynomial p such that, for every input w € ¥*, the
number of steps of the computation of M on w is bounded by p(|w]).

Error-prone analog-digital scatter machine

Let A C X* be a set of words over . We say that an error-prone analog-digital
scatter machine M decides A if there is a number v < % such that the error
probability of M for any input w is smaller than . We say that M decides A in
polynomial time, if M decides A, and there is a polynomial p such that, for every
input w € X*, the number of steps in every computation of M on w is bounded

by p(|wl).
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N Computable vs measurable
BPP// logx

Definition

BPP// logx is the class of sets A C X* for which a probabilistic Turing
machine M, clocked in polynomial time, a prefix function f € log, and a
constant y < % exist such that, for every length n and input w with

|w| < n, M rejects (w, f(n)) with probability at most v if w € A and
accepts (w, f(n)) with probability at most v if w ¢ A.
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ARNN case and the sharp scatter machine

cannon computational class

z infinite precision — P / pOIy
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ARNN case and the sharp scatter machine

cannon computational class
7 infinite) precision I / poly
syo—ld-1 —
z unbounded precision — P / pOIy
s_o—lzl-1 L
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ARNN case and the sharp scatter machine

cannon

infinite precision

unbounded precision

z
z427lE7l ———

z
P P N -
z+e e m—

z
z—¢ —_—

José Félix Costa (DMIST & CFCUL Depart

fixed precision

Beamer

computational class

P /poly

P /poly

—— BPP// logx

October 12, 2017
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We describe two more scenarios, for the vertex position:

@ The wedge can be placed at the real x — infinite precision.
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We describe two more scenarios, for the vertex position:

@ The wedge can be placed at the real x — infinite precision.

@ The wedge can be placed at the real x, but only with unbounded but
finite precision.

José Félix Costa (DMIST & CFCUL Depart Beamer October 12, 2017 47 / 78



We describe two more scenarios, for the vertex position:

@ The wedge can be placed at the real x — infinite precision.

@ The wedge can be placed at the real x, but only with unbounded but
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We describe two more scenarios, for the vertex position:

@ The wedge can be placed at the real x — infinite precision.

@ The wedge can be placed at the real x, but only with unbounded but
finite precision.

WEDGE OF SCATTER MACHINE
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We describe two more scenarios, for the vertex position:

@ The wedge can be placed at the real x — infinite precision.

@ The wedge can be placed at the real x, but only with unbounded but
finite precision.

WEDGE OF SCATTER MACHINE

> X
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The scatter machine model Il

Shoot  Development  Post-processing  Outcome

o .—\—A—a
DIGITAL

The scatter machine model |l
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N Computable vs measurable
Generalised scatter machine [BCT12b]

X1 QS cannon 1
10 m/s
5m 4 sample trajectory z
y
0 0
limit of traverse limit of traverse of cannon
of point of wedge cannon aims at dyadic z € [0, 1]
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N Computable vs measurable
Complexity of the vertex position [BCT12b, BCT12a]

Proposition
Any particle hitting horizontally, sufficiently closer to the vertex V', will
bounce back covering an horizontal distance before detection that goes to

infinity as O(Fl)/')
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N Computable vs measurable
Complexity of the vertex position [BCT12b, BCT12a]

Proposition
Any particle hitting horizontally, sufficiently closer to the vertex V', will
bounce back covering an horizontal distance before detection that goes to

infinity as O(Flﬂ)

Proposition

The protocol that processes queries between a Turing machine and the
generalised scatter machine takes a time that is at least exponential in the
size of the dyadic rational specified by the query during the binary search
procedure.
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N Computable vs measurable
Complexity of the vertex position [BCT12b, BCT12a]

Proposition

Consider that g(x) is the function describing the shape of the wedge of a
SmSE. Suppose that g(x) is n times continuously differentiable near

x =0, all its derivatives up to (n — 1)-th vanish at x = 0, and the n-th
derivative is nonzero. Then, when the SmSE, with vertex position y, fires
the cannon at position z, the time needed to detect the particle in one of
the boxes is t(z), where:

B

— <t < — 1
y a1 =S e .

for some A, B > 0 and for |y — z| sufficiently small.
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Protocol [BCLT08, BCLT09]

The cannon can be placed at the dyadic rational z — infinite precision

Algorithm 1: Measurement algorithm for infinite precision.

Data: Positive integer £ representing the desired precision

0 =0;

1=1;

Z=0;

while x; — xp > 2% do

z=(x +x1)/2;

s = Prot_IP(z|p) ;

if s == “q,” then

X1 =2;

if s == “q," then
‘ X0 =2;

else

return Dyadic rational denoted by xg
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Protocol [BCLT08, BCLT09]

The cannon can be placed at the dyadic rational z, but only with unbounded but finite precision, say 27

can be set at position z & 2~ |2/ ~1

‘Z"l, i.e., the cannon

Algorithm 5: Measurement algorithm for unbounded precision.

Data: Positive integer £ representing the precision

0 =0;

1=1;

Z=0;

while x; — xg > 2=¢ do
z=(x+x)/2;
s = Prot_UP(z|y) ;
if s == “q,” then

x1=1z;

if s == "q," then
| =z
else

X0
X1

return Dyadic rational denoted by xg

z;
z;
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N Computable vs measurable
Protocol [BCLT08, BCLT09]

The cannon can be placed at the dyadic rational z, but only with fixed a priori precision & (dyadic rational), i.e., the cannon can
be set at position z + €

Algorithm 9: Measurement algorithm for fixed precision.

Data: Integer ¢ representing the precision
c=0;
i~ 0.
le = 02e+h
while i < £ do
s = Prot_FP(1]y) ;
if s == "q," then
L c=c+2;

if s == "q;" then
L c=c+1;

i+
return c/(2€)

Lo NOUAW N

T
S =)
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The Power of Analogue-Digital Machines

The Power of Analogue-Digital Machines
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The digital-analog device as a biased coin

Proposition

Given an error-prone smooth scatter machine, vertex position at y,
experimental time t, and time schedule T, there is a dyadic rational z and
a real number § €]0, 1] such that the outcome of Prot_UP on z is a
random variable that produces left with probability §.
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The digital-analog device as a biased coin

Proposition

Given an error-prone smooth scatter machine, vertex position at y,
experimental time t, and time schedule T, there is a dyadic rational z and
a real number § €]0, 1] such that the outcome of Prot_UP on z is a
random variable that produces left with probability §.

Proposition

Given a biased coin with probability of heads q €]d,1 — §], for some
0 <9 <1/2, and v €]0, 1], we can simulate, up to probability > ~, a
sequence of independent fair coin tosses of length n by doing a linear
number of biased coin tosses.

José Félix Costa (DMIST & CFCUL Depart Beamer October 12, 2017 54 / 78



Hybrid computers

The digital-analog device as a biased coin

RIGHT COLLECTING BOX

LEFT COLLECTING BOX

Figure: The SmSE with unbounded
precision as a coin.

José Félix Costa (DMIST & CFCUL Depart

RIGHT COLLECTING BOX

y 7777777777}
T T T T T T T T e
The schedule limit T(¢€)

LEFT COLLECTING BOX

Figure: The SmSE with fixed precision
as a coin.
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Lower bounds

/\
N\
s

|2 —|—2—|

José Félix Costa (DMIST & CFCUL Depart

computef (|w|)

generate coin tosses

simulate M

Beamer

\
p3(|wl)
|

\
p2(lwl)

p(lwl)
|
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- |Upabuy
Upper bounds

1CP
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I o
Upper bounds

1CP

Proposition

For any m € N, s € [0,1], and any number out € N of children in the tree,
Aout(mys) < (OUt — 1)ms

v
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Ny T computational povie
Computational power ([BCPT13, ABC"16])

Infinite Unbounded Fixed
Lower Bound P/ log* BPP// logx BPP// logx
Upper Bound P/ log* BPP//log?* BPP//log?*
Exponential schedule
Upper Bound — BPP// logx BPP//logx

Explicit Time

Exponential schedule

Exponential schedule

José Félix Costa (DMIST & CFCUL Depart
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Ny T computational povie
Computational power ([BCPT13, ABC"16])

Proposition

If B is decidable by a smooth scatter machine with infinite precision and
exponential protocol, clocked in polynomial time, then B € P/ log?*.
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Ny T computational povie
Computational power ([BCPT13, ABC"16])

Boundary numbers

T

18

16
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N "< computational povier
Computational power ([BCPT13, ABC*16])

Proof
@ M only queries the oracle with words of size less or equal to
¢ = allog(n)]| + b;
@ f(n) encodes the concatenation of boundary numbers needed to
answer to all the queries of size ¢:

hli#trnli#t b ot raloff - - - #lol it rel o

@ [f(n)] € O(log?(n));

© B is decided in polynomial time with prefix advice f € log?; M is
simulated on the input word but now the Turing machine compares
the query z with the boundary numbers /| and r.
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Ny T computational povie
Computational power ([BCPT13, ABC"16])

Proposition

Given the boundary numbers for a smooth scatter machine with time
schedule T (k) € Q(2K) it is possible to define a prefix advice function f
such that f(n) encodes all the boundary numbers with size up to n and

|f(n)| € O(n).
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Ny T computational povie
Computational power ([BCPT13, ABC"16])

Proposition

If B is decidable by a smooth scatter machine with infinite precision and
exponential protocol T (k) € Q(2X), clocked in polynomial time, then
B € P/ log.
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Vanishing experiments

Vanishing experiments
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Brewster angle

(incident ray)

(reflected ray)

medium (1) Ep | Erp
Ein Ern
% X
Erp
medium (2) Ern
(transmitted ray)
z
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N  The computational power
Vanishing experiments, [BCT14, BCT10c, BCPT17]

Parallel strategy

To perform two experiments simultaneously, that is, to use two copies of the balance with the
same unknown mass y in the right pan. We can place masses z; and z at the left pans of the
balances and start both experiments at the same time. If Tcxp(zl,y) < Tcxp(zz,y), then the
experiment with test mass z; sends a first signal and if Texp(z1,y) > Texp(22,y), then the
experiment with test mass z calls back first.
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N | e computationl power
Vanishing experiments, [BCT14, BCT10c, BCPT17]

Parallel strategy

To perform two experiments simultaneously, that is, to use two copies of the balance with the
same unknown mass y in the right pan. We can place masses z; and z at the left pans of the
balances and start both experiments at the same time. If Tcxp(zl,y) < Tcxp(zz,y), then the
experiment with test mass z; sends a first signal and if Texp(z1,y) > Texp(22,y), then the
experiment with test mass z calls back first.

Clock strategy

Suppose we only have one balance, but now we can count the machine steps during an
experiment until the end. In this way we can begin by performing an instance of the experiment
for test mass zj, and counting the number T; of machine transitions that the experiment takes.
Then repeat the experiment for test mass z, obtaining a number T, of machine transitions.
Finally, compare T1 and Ts. If T; < T», then we conclude that Texp(z1) < Texp(22); if

T1 > T, then Texp(zl) > Texp(zz).
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N  The computational power
Time precision, [BCT14, BCPT17]

Types of precision
Infinite precision: ...;
Unbounded precision: ...;

Fixed precision: ...;

©00O0

Time precision g, given a map g : N — N: when an experiment
settled for the query word z takes an amount of time t, the number
of machine transitions counted is T7, where T3 is a natural number
uniformly sampled in [[t] — g(|z]), [t] + &(|z])].
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N  The computational power
Vanishing experiments, [BCT14, BCPT17]

Type of Oracle Infinite | Unbounded Finite
lower bound P/logx | BPP//logx | BPP//logx
Two-sided upper bound P /poly P /poly P /poly
upper bound (w/ exponential T) P/ log* BPP// logx BPP// logx
lower bound P/logx | BPP//logx | BPP//logx
Threshold upper bound —— —— ——
upper bound (w/ exponential T) P/ |Og* BPP// |Og* BPP// |0g*
lower bound P/poly P/poly BPP//log*
Vanishing Type 1 | upper bound P /poly P /poly BPP//log*
(Parallel) upper bound (w/ exponential T) —— —— ——
lower bound P/logx | BPP//logx | BPP//logx
Vanishing Type 2 | upper bound P/poly P/poly BPP//log*
(Clock) upper bound (w/ exponential T) - BPP// log* -
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Space bounded AD machines

Space bounded AD machines J
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Ny T computational povie
Space bounded AD machines, [AC18]

Infinite Arbitrary Fixed
Lower Bound PSPACE / poly BPPSPACE / / poly BPPSPACE / / poly
Upper Bound PSPACE / poly BPPSPACE / / poly BPPSPACE / / poly
Infinite Arbitrary Fixed
Lower Bound PSPACE / poly BPPSPACE / / poly BPPSPACE / / poly
Upper Bound PSPACE / poly BPPSPACE / / poly BPPSPACE / / poly

Table: Standard communication protocol for the sharp (above) and smooth

(below) scatter machines.
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Space bounded AD machines,

[AC18]

Infinite Arbitrary Fixed
Lower Bound P 2T+ BPPSPACE / / poly
Upper Bound 2%* 2%* BPPSPACE / / poly
Infinite Arbitrary Fixed
Lower Bound PSPACE / poly BPPSPACE / / poly BPPSPACE / / poly
with time schedule
Lower Bound 2% * 2% * —
without time schedule
Upper Bound 2%* 2 BPPSPACE / / poly

Table: Generalized communication protocol for the sharp (above) and smooth

(below) scatter machines.
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Concept of a measurable quantity

Concept of a measurable quantity
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Ny T computational povie
Geroch and Hartle [GH86]

Geroch and Hartle [GH86]

Every computable number is measurable. This is easy to see: Let the instructions direct that the
raw materials be assembled into a computer, and that a certain [...] program — one specified in
the instructions — be run on that computer. That is, every digital computer is at heart an

analog computer. ?

“Robert Geroch and James B. Hartle, Computability and Physical Theories,
Foundations of Physics, 16(6), 1986.
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Geroch and Hartle [GH86]

Geroch and Hartle [GH86]

Every computable number is measurable. This is easy to see: Let the instructions direct that the
raw materials be assembled into a computer, and that a certain [...] program — one specified in
the instructions — be run on that computer. That is, every digital computer is at heart an

analog computer. ?

“Robert Geroch and James B. Hartle, Computability and Physical Theories,
Foundations of Physics, 16(6), 1986.

Geroch and Hartle [GH86]

We now ask whether, conversely, every measurable number is computable — or, in more detail,
whether current physical theories are such that their measurable numbers are computable. This
question must asked with care. ?

?Robert Geroch and James B. Hartle, Computability and Physical Theories,
Foundations of Physics, 16(6), 1986.
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N "< computational povier
Concept of measurable [BCT10b]

Definition

A distance y is said to be measurable if there exists a Turing machine,
equipped with a computable schedule T, such that it prints the first n bits
of y on the output tape in less than T(n) time steps without timing out in

any query.
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N "< computational povier
Concept of measurable [BCT10b]

Definition

A distance y is said to be measurable if there exists a Turing machine,
equipped with a computable schedule T, such that it prints the first n bits
of y on the output tape in less than T(n) time steps without timing out in

any query.

v

Proposition

There are programs Ny (with integer k > 1), with specified waiting times

(say Tx), so that the following is true: For any non-dyadic value y € (0,1)
and any n > 0, there is a k so that the program will find the first n binary
places of y.
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Ny T computational povie
Measuring distance [BCT10b]

Proposition

There are uncountable many y € [0,1] so that, for any program P with
specified waiting times, there is a n so that P can not determine the first n
binary places of y.

José Félix Costa (DMIST & CFCUL Depart Beamer October 12, 2017 70/ 78



Ny T computational povie
Measurable distances [BCT10b]

Proposition

For the SmSM with vertice at y (not a dyadic rational), written according to the
pattern:

y=01...10...01...10...01...10...0...
e e e N~

u u u3 ug us ue

where uy >0, u; > 1 (i > 2).
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Proposition

For the SmSM with vertice at y (not a dyadic rational), written according to the
pattern:

y=01...10...01...10...01...10...0...
e e e N~

u u u3 ug us ue

where uy >0, u; > 1 (i > 2).

@ /fy is measurable by any program, then the sequence uy is bounded by a
computable function.
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N "< computational povier
Measurable distances [BCT10b]

Proposition

For the SmSM with vertice at y (not a dyadic rational), written according to the
pattern:

y=01...10...01...10...01...10...0...
e e e N~

uy uz us Ug us ue

where uy >0, u; > 1 (i > 2).

@ /fy is measurable by any program, then the sequence uy is bounded by a
computable function.

@ If the sequence uy is bounded by a computable function, then y is
measurable by the linear search method.
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Open problems

NP

Open problems
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N B oo
Open problems

Examples of open problems
@ Infinite precision: do the lower and the upper bound coincide without
assumptions on the time schedule?
© Error-prone: do the lower and the upper bounds coincide without
using the explicit time technique? Namely, it is not known if there
exists a set not belonging BPP// logx decidable by a two-sided
machine in polynomial time.
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Class of advice functions

Definition (Ordinal iterate of the logarithm)

For each ordinal a, we define inductively the class log(®):
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Class of advice functions

Definition (Ordinal iterate of the logarithm)

For each ordinal a, we define inductively the class log(®): (a) if a is 0,
then log(©(t) = ¢,
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Class of advice functions

Definition (Ordinal iterate of the logarithm)

For each ordinal a, we define inductively the class log(®): (a) if a is 0,
then log(®(t) = ¢, (b) if a is a successor ordinal, then

log®F1)(t) = {log o : 9 € log*)}, and
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Class of advice functions

Definition (Ordinal iterate of the logarithm)

For each ordinal a, we define inductively the class log(®): (a) if a is 0,
then log(®(t) = ¢, (b) if a is a successor ordinal, then

log(®* (1) = {log o1 : ¢ € log(™}, and (c) if v is a limit ordinal, then
log{®)(t) = N,eqlog™.
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A first hierarchy of scales

Proposition (A first hierarchy of scales)

log®) < -+ < log® < logt® < log®) < poly.
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A first hierarchy of scales

Proposition (A first hierarchy of scales)

log®) < -+ < log® < 1og® < log® < poly. J
Proposition (Non-triviality of log(“’))

log®) £ 0. J
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A first hierarchy of scales

Proposition (A first hierarchy of scales)

log®) < -+ < log® < 1og® < log® < poly. J
Proposition (Non-triviality of log(“’))

log®) £ 0. J

Consider log *, defined by (a) logx(t) =0, for t =0, and
(b) log +(t) = min{k : logtK)(t) < 1}, for t > 0.
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A second hierarchy of scales

Proposition (A second hierarchy of scales)

log(®) < ... < logl*) < log) < ... < 1og® < 1log) < poly.
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Proposition (A second hierarchy of scales)

log®) < -+ < log@tD < log) <. <10g® < log® < poly. J
Proposition (Non-triviality of log(z“’))

log®¥) £ 0. J

Consider log xx = logx o log *.
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A second hierarchy of scales

Proposition (A second hierarchy of scales)

log®) < -+ < log@tD < log) <. <10g® < log® < poly. J
Proposition (Non-triviality of log(z“’))

log®¥) £ 0. J

Consider log xx = logx o log *.

Example (Non-emptyness of limit classes)

We can continue descending by setting log(2w+k) to be the class generated
by Iog(k) olog x*...
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