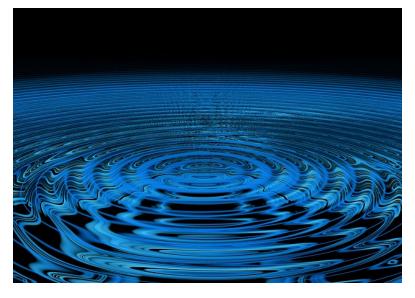
Ondas e Dispersão

Escola de Inverno de Matemática 2015

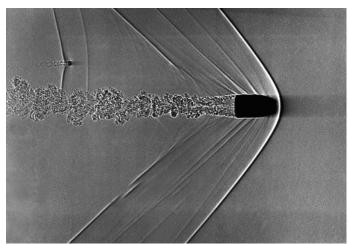
Jorge Drumond Silva

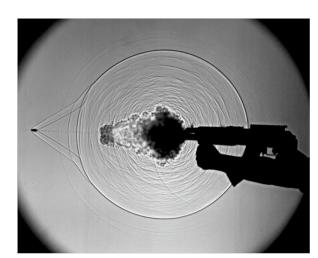
Departamento de Matemática Instituto Superior Técnico jsilva@math.ist.utl.pt

Ondas

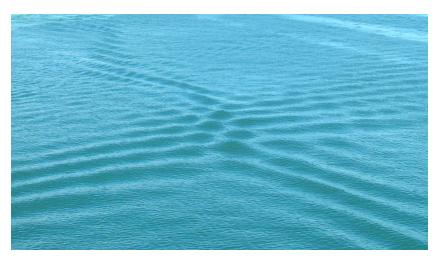


Ondas de Choque





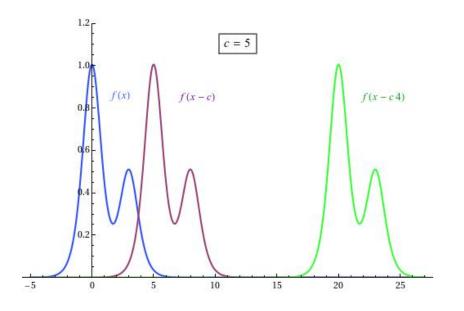
Interacção e Interferência

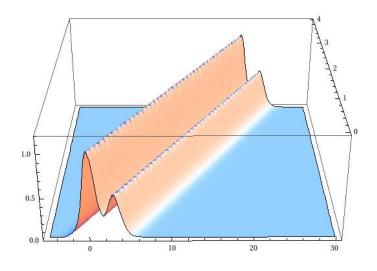


Definição matemática duma onda

O paradigma: a onda viajante (traveling wave).

$$u(x,t) = f(x-ct), \qquad c \in \mathbb{R}$$





A equação de onda a uma dimensão

D'Alembert (1747) deduziu a equação de onda unidimensional para descrever a vibração duma corda.

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}, \qquad \left(c^2 = \frac{T}{\mu}\right)$$

Fazendo a mudança de variáveis $\xi=x-ct,\,\eta=x+ct$ a equação de onda escreve-se,

$$\frac{\partial^2 u}{\partial \xi \partial \eta} = 0,$$

cuja solução geral se obtém primitivando simplesmente nas duas variáveis

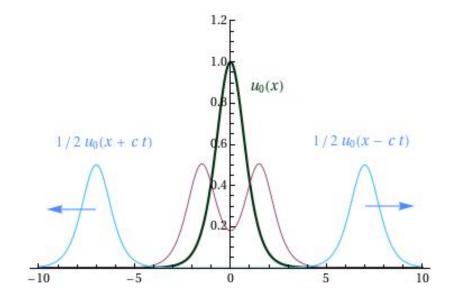
$$u = f(\xi) + g(\eta) = f(x - ct) + g(x + ct)$$

Em particular, se se considera o problema de valor inicial para a equação da onda, com condições iniciais em t=0

$$u(x,0) = u_0(x)$$
 $\frac{\partial u}{\partial t}(x,0) = 0,$

então a solução é

$$u(x,t) = \frac{1}{2} (u_0(x - ct) + u_0(x + ct))$$



Ondas Unidimensionais

- Onda Transversal
- Onda Longitudinal
- Slinky

Recordando Séries de Fourier ...

Se $f: \mathbb{R} \to \mathbb{R}$ é uma função suficientemente regular, periódica, de período 1, então ela pode ser representada pela sua série de Fourier

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(2\pi nx) + b_n \sin(2\pi nx)$$

de onde as duas componentes das ondas unidimensionais podem ser escritas

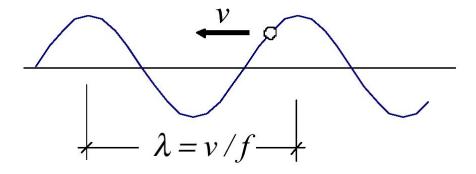
$$f(x \pm ct) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(2\pi n(x \pm ct)) + b_n \sin(2\pi n(x \pm ct)).$$

Ondas viajantes *periódicas* unidimensionais podem assim ser consideradas como sobreposição de ondas sinusoidais de diferentes frequências e amplitudes

$$A_n \cos \left(2\pi nx \pm 2\pi nct + \phi_n\right)$$

Ondas Sinusoidais

$$u(x,t) = A\cos(kx + \omega t + \phi)$$



- Número de onda (frequência espacial) $k=2\pi n$
- Comprimento de onda (período espacial) $\lambda = \frac{1}{n} = \frac{2\pi}{k}$
- Frequência (temporal) $f = \frac{\omega}{2\pi} = nc$
- Velocidade $v=c=f\lambda=\frac{f}{n}=\frac{\omega}{k}$

É conveniente reescrever a série de Fourier com exponenciais complexas usando a fórmula de Euler

$$e^{2\pi inx} = \cos(2\pi nx) + i\sin(2\pi nx)$$

e correspondentemente

$$\cos(2\pi nx) = \frac{e^{2\pi i nx} + e^{-2\pi i nx}}{2} \qquad \sin(2\pi nx) = \frac{e^{2\pi i nx} - e^{-2\pi i nx}}{2i},$$

tal que

$$f(x) = \sum_{n = -\infty}^{+\infty} c_n e^{2\pi i n x}, \qquad c_n = \frac{a_n}{2} \pm \frac{b_n}{2i}$$

e as ondas viajantes

$$f(x \pm ct) = \sum_{n = -\infty}^{+\infty} c_n e^{2\pi i n(x \pm ct)}.$$

A Transformada de Fourier

Generalizando a ideia da série de Fourier, uma função arbitrária $f: \mathbb{R} \mapsto \mathbb{R}$ pode ser representada por um integral

$$f(x) = \int_{\mathbb{R}} a(\xi)e^{2\pi i\xi x}d\xi$$

tal que

$$f(x \pm ct) = \int_{\mathbb{R}} a(\xi)e^{2\pi i(\xi x \pm \xi ct)}d\xi.$$

Uma onda viajante genérica, não necessariamente periódica, pode assim ser considerada como uma

"sobreposição contínua" de ondas sinusoidais de frequências e amplitudes

$$a(\xi) e^{2\pi i(\xi x + \tau t)}, \quad \text{em que} \quad \tau = \pm \xi c$$

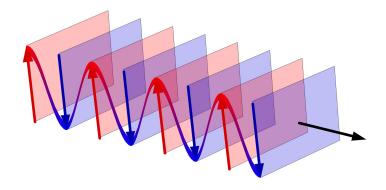
Ondas planas

A generalização mais simples da onda viajante para dimensões superiores a um.

Se $\vec{\mathbf{e}} \in \mathbb{R}^n, \|\vec{\mathbf{e}}\| = 1$ é um vector unitário que define uma direcção espacial e $f: \mathbb{R} \to \mathbb{R}, \mathbb{C}$ uma função de apenas uma variável, então

$$u(\vec{x},t) = f(\vec{\mathbf{e}} \cdot \vec{x} \pm ct) \qquad (\vec{x},t) \in \mathbb{R}^n \times \mathbb{R}$$

 \acute{e} uma onda plana com velocidade c ao longo da direcção definida por \vec{e} .



Por exemplo, no caso duma função sinusoidal $f(x) = \cos(2\pi \xi x)$

$$u(\vec{x}, t) = \cos(2\pi\xi(\vec{\mathbf{e}} \cdot \vec{x} \pm ct)) = \cos(2\pi(\vec{\xi} \cdot \vec{x} \pm \tau t)),$$

com frequência espacial vectorial $\vec{\xi} = \xi \vec{e}$ e frequência temporal $\tau = \xi c$.

Genericamente, como atrás, uma função do espaço-tempo pode ser considerada uma sobreposição (contínua) destas ondas planas sinusoidais com diferentes frequências espaciais e temporais

$$u(\vec{x},t) = \int a(\vec{\xi},\tau)e^{2\pi i(\vec{\xi}\cdot\vec{x}+\tau t)}d\vec{\xi}d\tau$$

Os elementos constituintes básicos de ondas genéricas multidimensionais são assim ondas planas oscilatórias

$$e^{2\pi i(\vec{\xi}\cdot\vec{x}+\tau t)} = e^{2\pi i|\vec{\xi}|(\vec{\mathbf{e}}_{\vec{\xi}}\cdot\vec{x}+\frac{\tau}{|\vec{\xi}|}t)}$$

onde $\vec{\xi}=|\vec{\xi}|\vec{e}_{\vec{\xi}}$ frequência espacial e $\tau\in\mathbb{R}$ frequência temporal. A propagação da onda plana ao longo da

direcção definida por $\vec{\xi}$ é dada por

$$\vec{v} = -\frac{\tau}{|\vec{\xi}|} \vec{\mathbf{e}}_{\vec{\xi}}$$

e é chamada de velocidade de fase. *

Relação de Dispersão

Nos modelos matemáticos da física descritos por equações diferenciais parciais as frequências espacial e temporal de ondas planas básicas não são livres: a própria equação impõe uma relação entre elas.

Equação de onda $(\vec{x} \in \mathbb{R}^n)$:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \Delta_x u \quad \Rightarrow \quad \tau = \pm c \, |\vec{\xi}|, \quad \vec{v} = \pm c \, \vec{\mathbf{e}}_{\vec{\xi}}$$

Equação de Schrödinger livre $(\vec{x} \in \mathbb{R}^n)$:

$$i\frac{\partial u}{\partial t} = -\Delta_x u \quad \Rightarrow \quad \boxed{\tau = -2\pi |\vec{\xi}|^2, \quad \vec{v} = 2\pi |\vec{\xi}|\vec{e}_{\vec{\xi}}}$$

Equação de Airy $(x \in \mathbb{R})$:

$$\frac{\partial u}{\partial t} + \frac{\partial^3 u}{\partial x^3} = 0 \quad \Rightarrow \quad \tau = 4\pi^2 \xi^3, \quad v = -4\pi^2 \xi^3 / |\xi|$$

Equações Dispersivas

Uma equação diferencial parcial linear diz-se dispersiva se a velocidade de fase das ondas planas é real e varia com a frequência.

*

Equação do calor $(\vec{x} \in \mathbb{R}^n)$:

$$\frac{\partial u}{\partial t} = \Delta_x u \quad \Rightarrow \quad \tau = 2\pi i |\vec{\xi}|^2, \quad \vec{v} = -2\pi i |\vec{\xi}| \vec{\mathbf{e}}_{\vec{\xi}}$$

A equação do calor NÃO É dispersiva.

Equações Dispersivas Não Linares e Ondas Solitárias

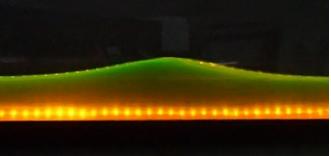
Equação de Schrödinger Não Linear (NLS):

$$i\frac{\partial u}{\partial t} = -\Delta_x u + |u|^p u$$

Korteweg-DeVries (KdV):

$$\frac{\partial u}{\partial t} + \frac{\partial^3 u}{\partial x^3} = u \frac{\partial u}{\partial x}$$

Solitões



Equações de Einstein

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + g_{\mu\nu}\Lambda = \frac{8\pi G}{c^4}T_{\mu\nu}$$

No vácuo e com constante cosmológica $\Lambda=0$,

