On Knot Colorings: The Turk's Head Knot

João Matias
Instituto Superior Técnico
LMAC, 2° ano

September 12, 2009

(1) Introduction

(1) Introduction

- Reidemeister Moves
(1) Introduction
- Reidemeister Moves
- Colorings
(1) Introduction
- Reidemeister Moves
- Colorings
(2) The Turk's Head Knot
(1) Introduction
- Reidemeister Moves
- Colorings
(2) The Turk's Head Knot
- Standard Diagram of the $\operatorname{THK}(m, 3)$
(1) Introduction
- Reidemeister Moves
- Colorings
(2) The Turk's Head Knot
- Standard Diagram of the $\operatorname{THK}(m, 3)$
- Colorings of the $\operatorname{THK}(m, 3)$

Knots...

Definition (Knot)

A knot is a closed curve in \mathbb{R}^{3} which does not intersect itself.

- Two knots are equivalent if they can be obtained one of each other through a continuous deformation, during which self-intersection does not occur.

Figure: Figure-Eight-Knot

Knot Diagrams

Figure: Figure-Eight-Knot

Knot Diagrams

Figure: Trivial Knot and Trefoil

Figure: Figure-Eight-Knot

Reidemeister Moves

Local transformations in the diagram of a knot, turning it in a diagram of an equivalent knot. There are three types:

Reidemeister Moves

Local transformations in the diagram of a knot, turning it in a diagram of an equivalent knot. There are three types:

- Type I

Reidemeister Moves

Local transformations in the diagram of a knot, turning it in a diagram of an equivalent knot. There are three types:

- Type I

- Type II

Reidemeister Moves

Local transformations in the diagram of a knot, turning it in a diagram of an equivalent knot. There are three types:

- Type I

- Type II

- Type III

Reidemeister Moves

Theorem (Reidemeister)

Two knots are equivalent if and only if it exists a finite sequence of Reidemeister moves that turns the diagram of one into the diagram of the other.

Reidemeister Moves

> Theorem (Reidemeister)
> Two knots are equivalent if and only if it exists a finite sequence of Reidemeister moves that turns the diagram of one into the diagram of the other.

How can we see if two knots are equivalent?

Reidemeister Moves

Theorem (Reidemeister)

Two knots are equivalent if and only if it exists a finite sequence of Reidemeister moves that turns the diagram of one into the diagram of the other.

How can we see if two knots are equivalent?
We use invariants!

Colorings

Definition (Coloring)

Given a positive integer r, and a knot diagram D, a r-coloring of D is an assignement of integers in \mathbb{Z}_{r}, called colors, to the arcs of D, such that, in each crossing the double of the color of the upper arc equals (mod r) the sum of the colors of the other two arcs.

Colorings

Definition (Coloring)

Given a positive integer r, and a knot diagram D, a r-coloring of D is an assignement of integers in \mathbb{Z}_{r}, called colors, to the arcs of D, such that, in each crossing the double of the color of the upper arc equals (mod r) the sum of the colors of the other two arcs.

- $2 a \equiv_{r} b+c \Leftrightarrow 2 a-b \equiv_{r} c$

Colorings

Definition (Coloring)

Given a positive integer r, and a knot diagram D, a r-coloring of D is an assignement of integers in \mathbb{Z}_{r}, called colors, to the arcs of D, such that, in each crossing the double of the color of the upper arc equals (modr) the sum of the colors of the other two arcs.

- $2 a \equiv_{r} b+c \Leftrightarrow 2 a-b \equiv_{r} c$

- Colorings are solutions of a linear homogeneous system, which consists of all crossings equation.

Colorings

Definition (Coloring)

Given a positive integer r, and a knot diagram D, a r-coloring of D is an assignement of integers in \mathbb{Z}_{r}, called colors, to the arcs of D, such that, in each crossing the double of the color of the upper arc equals (mod r) the sum of the colors of the other two arcs.

- $2 a \equiv_{r} b+c \Leftrightarrow 2 a-b \equiv_{r} c$

- Colorings are solutions of a linear homogeneous system, which consists of all crossings equation.
- Assigning the same color to every arc always sets a coloring. These are called trivial colorings.

Colorings (Examples)

Figure: 3-Coloring

Figure: 5-Coloring

Colorings (Examples)

$$
\begin{aligned}
& 2 \times 0-1-2 \equiv_{3} 0 \\
& 2 \times 1-0-2 \equiv{ }_{3} 0 \\
& 2 \times 2-0-1 \equiv{ }_{3} 0
\end{aligned}
$$

Figure: 3-Coloring

Figure: 5-Coloring

Colorings (Examples)

$$
\begin{aligned}
& 2 \times 0-1-2 \equiv_{3} 0 \\
& 2 \times 1-0-2 \equiv{ }_{3} 0 \\
& 2 \times 2-0-1 \equiv{ }_{3} 0
\end{aligned}
$$

Figure: 3-Coloring

$$
\begin{aligned}
& 2 \times 0-1-4 \equiv_{5} 0 \\
& 2 \times 1-0-2 \equiv_{5} 0 \\
& 2 \times 2-0-4 \equiv_{5} 0 \\
& 2 \times 4-1-2 \equiv_{5} 0
\end{aligned}
$$

Figure: 5-Coloring

Reidemeister Moves and Colorings

When doing a Reidemeister move in a knot diagram, we obtain a bijection between the colorings of the first diagram and the new one.

Reidemeister Moves and Colorings

When doing a Reidemeister move in a knot diagram, we obtain a bijection between the colorings of the first diagram and the new one.

- Type I:

Reidemeister Moves and Colorings

When doing a Reidemeister move in a knot diagram, we obtain a bijection between the colorings of the first diagram and the new one.

- Type I:

- Type II:

Reidemeister Moves and Colorings

- Type III

Reidemeister Moves and Colorings

- Type III

By Reidemeister's Theorem it exists a bijection between the colorings of two equivalent diagrams. Therefore, the number of colorings of a diagram is a knot invariant.

Minimum Number of Colors of the $\operatorname{THK}(m, 3)$

Let K be a non-trivially r-colorable knot, and consider:

Minimum Number of Colors of the $\operatorname{THK}(m, 3)$

Let K be a non-trivially r-colorable knot, and consider:
(i) D_{K} diagram of K;

Minimum Number of Colors of the $\operatorname{THK}(m, 3)$

Let K be a non-trivially r-colorable knot, and consider:
(i) D_{K} diagram of K;
(ii) $n\left(D_{K}\right)$ the minimum number of colors we use in a non-trivial r-coloring of D_{K}.

Minimum Number of Colors of the THK $(m, 3)$

Let K be a non-trivially r-colorable knot, and consider:
(i) D_{K} diagram of K;
(ii) $n\left(D_{K}\right)$ the minimum number of colors we use in a non-trivial r-coloring of D_{K}.

Definition (Minimum Number of Colors)

Given a knot K, its minimum number of colors, mincol ${ }_{r} K$, is given by:

$$
\min \left\{n\left(D_{K}\right) \mid D_{K} \text { is diagram of } K\right\}
$$

Turk's Head Knot

- As we have seen before, the number of r-colorings is a knot invariant.
- The minimum number of colors is another one.

Turk's Head Knot

- Next, we will work with these invariants for the Turk's Head Knot with 3 strands.
- We wil start by seeing how is the standard diagram of the THK ($m, 3$).

The Turk's Head Knot

> 1 Consider a basic piece with which is constructed a braid.

The Turk's Head Knot

1 Consider a basic piece with which is constructed a braid.

2 Juxtaposition m copies of the basic piece.

Turk's Head Knot

3 Close the braid connecting the correspondent ends of the strands.

Colorings of the THK $(m, 3)$

The colors assigned at the top of a basic piece induce colors at its bottom, as presented bellow.

Colorings of the THK $(m, 3)$

The colors assigned at the top of a basic piece induce colors at its bottom, as presented bellow.

Also, the colors assigned at the top of a braid (like in step 2, previous slide) induce colors for the rest of its arcs. Furthermore, these colors form a coloring of the $\operatorname{THK}(m, 3)$, if the colors induced at the bottom equal the colors at the top of the braid.

Colorings of the THK $(m, 3)$

With some calculation, we get that the colors a, b, c assigned to the arcs at the top of the braid, belong to a r-coloring of the $\operatorname{THK}(m, 3)$ if we have:

Colorings of the THK $(m, 3)$

With some calculation, we get that the colors a, b, c assigned to the arcs at the top of the braid, belong to a r-coloring of the $\operatorname{THK}(m, 3)$ if we have:

- For m odd:

$$
u_{m-1}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & -1 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \equiv \equiv_{r}\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Colorings of the THK $(m, 3)$

With some calculation, we get that the colors a, b, c assigned to the arcs at the top of the braid, belong to a r-coloring of the $\operatorname{THK}(m, 3)$ if we have:

- For m odd:

$$
u_{m-1}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & -1 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \equiv \equiv_{r}\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- For m even

$$
u_{m-1}\left[\begin{array}{ccc}
1 & 2 & -3 \\
0 & -5 & 5 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \equiv \equiv_{r}\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Colorings of the THK $(m, 3)$

With some calculation, we get that the colors a, b, c assigned to the arcs at the top of the braid, belong to a r-coloring of the $\operatorname{THK}(m, 3)$ if we have:

- For m odd:

$$
u_{m-1}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & -1 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \equiv_{r}\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- For m even

$$
u_{m-1}\left[\begin{array}{ccc}
1 & 2 & -3 \\
0 & -5 & 5 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \equiv r\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

With,
$u_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n+2}-\left(\frac{-1+\sqrt{5}}{2}\right)^{n+2}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}+\left(\frac{-1-\sqrt{5}}{2}\right)^{n}\right)$.

Colorings of the THK $(m, 3)$

Theorem

The number of r-colorings of $\operatorname{THK}(m, 3)$ is given by:

$$
\begin{cases}\left(u_{m-1}, r\right)^{2} r & \text { if } m \text { is odd } \\ \left(5 u_{m-1}, r\right)\left(u_{n-1}, r\right) r & \text { if } m \text { is even }\end{cases}
$$

Colorings of the THK $(m, 3)$

Theorem

The number of r-colorings of $\operatorname{THK}(m, 3)$ is given by:

$$
\begin{cases}\left(u_{m-1}, r\right)^{2} r & \text { if } m \text { is odd } \\ \left(5 u_{m-1}, r\right)\left(u_{n-1}, r\right) r & \text { if } m \text { is even }\end{cases}
$$

Corollary

The $\operatorname{THK}(m, 3)$ has non-trivial r-colorings if and only if:

- $\left(u_{m-1}, r\right)>1$;
or
- m is even and $5 \mid r$.

Minimum Number of Colors of the $\operatorname{THK}(m, 3)$

Figure: 5-Coloring of the $\operatorname{THK}(2,3)$

Minimum Number of Colors of the $\operatorname{THK}(m, 3)$

Figure: 5-Coloring of the $\operatorname{THK}(2,3)$

Minimum Number of Colors of the $\operatorname{THK}(m, 3)$

Figure: 5-Coloring of the $\operatorname{THK}(2,3)$

Minimum Number of Colors of the $\operatorname{THK}(m, 3)$

- $\operatorname{THK}(2,3)$ is non-trivially 5 -colorable with 4 colors;

Figure: 5-Coloring of the $\operatorname{THK}(2,3)$

Minimum Number of Colors of the $\operatorname{THK}(m, 3)$

Figure: Stacking of the $\operatorname{THK}(2,3)$

Minimum Number of Colors of the $\operatorname{THK}(m, 3)$

- $\operatorname{THK}(2 m, 3)$ is non-trivially 5-colorable with 4 colors $\left(m \in \mathbb{Z}^{+}\right)$;

Figure: Stacking of the $\operatorname{THK}(2,3)$

Minimum Number of Colors of the $\operatorname{THK}(m, 3)$

Figure: 5 n -Coloring of the $\operatorname{THK}(2,3)$

Minimum Number of Colors of the $\operatorname{THK}(m, 3)$

- THK $(2 m, 3)$ is non-trivially $5 n$-colorable with 4 colors $\left(m, n \in \mathbb{Z}^{+}\right)$.

Figure: $5 n$-Coloring of the $\operatorname{THK}(2,3)$

Minimum Number of Colors of the THK $(m, 3)$

Figure: 2-Coloring of the $\operatorname{THK}(3,3)$

Minimum Number of Colors of the THK $(m, 3)$

Figure: 2-Coloring of the $\operatorname{THK}(3,3)$

Minimum Number of Colors of the THK $(m, 3)$

Figure: 2-Coloring of the $\operatorname{THK}(3,3)$

Minimum Number of Colors of the THK $(m, 3)$

Figure: 2-Coloring of the $\operatorname{THK}(3,3)$

Minimum Number of Colors of the THK ($m, 3$)

- $\operatorname{THK}(3,3)$ is non-trivially 2-colorable with 2 colors;

Figure: 2-Coloring of the $\operatorname{THK}(3,3)$

Minimum Number of Colors of the THK $(m, 3)$

- $\operatorname{THK}(3,3)$ is non-trivially 2-colorable with 2 colors;
- THK $(3 m, 3)$ is non-trivially 2 -colorable with 2 colors $\left(m \in \mathbb{Z}^{+}\right)$;

Figure: 2-Coloring of the $\operatorname{THK}(3,3)$

Minimum Number of Colors of the THK $(m, 3)$

- $\operatorname{THK}(3,3)$ is non-trivially 2-colorable with 2 colors;
- THK $(3 m, 3)$ is non-trivially 2-colorable with 2 colors $\left(m \in \mathbb{Z}^{+}\right)$;
- THK $(3 m, 3)$ is non-trivially $2 n$-colorable with 2 colors $\left(m, n \in \mathbb{Z}^{+}\right)$.

Figure: 2-Coloring of the $\operatorname{THK}(3,3)$

Minimum Number of Colors of the THK $(m, 3)$

- $\operatorname{THK}(3,3)$ is non-trivially 2-colorable with 2 colors;
- THK $(3 m, 3)$ is non-trivially 2-colorable with 2 colors ($m \in \mathbb{Z}^{+}$);
- THK $(3 m, 3)$ is non-trivially $2 n$-colorable with 2 colors $\left(m, n \in \mathbb{Z}^{+}\right)$.
- $\left(u_{2}=4\right)$

Figure: 2-Coloring of the $\operatorname{THK}(3,3)$

Minimum Number of Colors of the $\operatorname{THK}(m, 3)$

Figure: 11-Coloring of the $\operatorname{THK}(5,3)$

Minimum Number of Colors of the $\operatorname{THK}(m, 3)$

Figure: 11-Coloring of the $\operatorname{THK}(5,3)$

Minimum Number of Colors of the $\operatorname{THK}(m, 3)$

Figure: 11-Coloring of the $\operatorname{THK}(5,3)$

Minimum Number of Colors of the $\operatorname{THK}(m, 3)$

Figure: 11-Coloring of the $\operatorname{THK}(5,3)$

Minimum Number of Colors of the THK $(m, 3)$

Figure: 11-Coloring of the $\operatorname{THK}(5,3)$

Minimum Number of Colors of the THK $(m, 3)$

Figure: 11-Coloring of the $\operatorname{THK}(5,3)$

Minimum Number of Colors of the $\operatorname{THK}(m, 3)$

- $\operatorname{THK}(5,3)$ is non-trivially 11-colorable with 5 colors;

Figure: 11-Coloring of the $\operatorname{THK}(5,3)$

Minimum Number of Colors of the $\operatorname{THK}(m, 3)$

- $\operatorname{THK}(5,3)$ is non-trivially 11-colorable with 5 colors;
- $\operatorname{THK}(5 m, 3)$ is non-trivially 11 -colorable 5 colors $\left(m \in \mathbb{Z}^{+}\right)$;

Figure: 11-Coloring of the $\operatorname{THK}(5,3)$

Minimum Number of Colors of the $\operatorname{THK}(m, 3)$

- $\operatorname{THK}(5,3)$ is non-trivially 11-colorable with 5 colors;
- $\operatorname{THK}(5 m, 3)$ is non-trivially 11 -colorable 5 colors $\left(m \in \mathbb{Z}^{+}\right)$;
- $\operatorname{THK}(5 m, 3)$ is non-trivially $11 n$-colorable with 5 colors $\left(m, n \in \mathbb{Z}^{+}\right)$.

Figure: 11-Coloring of the $\operatorname{THK}(5,3)$

Minimum Number of Colors of the $\operatorname{THK}(m, 3)$

- $\operatorname{THK}(5,3)$ is non-trivially 11-colorable with 5 colors;
- $\operatorname{THK}(5 m, 3)$ is non-trivially 11 -colorable 5 colors $\left(m \in \mathbb{Z}^{+}\right)$;
- $\operatorname{THK}(5 m, 3)$ is non-trivially $11 n$-colorable with 5 colors ($m, n \in \mathbb{Z}^{+}$).
- $\left(u_{4}=11\right)$

Figure: 11-Coloring of the $\operatorname{THK}(5,3)$

Minimum Number of Colors of the $\operatorname{THK}(m, 3)$

Theorem

Given $m, r \in \mathbb{Z}^{+}$, we have:

Minimum Number of Colors of the $\operatorname{THK}(m, 3)$

Theorem

Given $m, r \in \mathbb{Z}^{+}$, we have:

- If $3 \mid m$ and $2 \mid r$, then $\operatorname{mincol}_{r} \operatorname{THK}(m, 3)=2$

Minimum Number of Colors of the $\operatorname{THK}(m, 3)$

Theorem

Given $m, r \in \mathbb{Z}^{+}$, we have:

- If $3 \mid m$ and $2 \mid r$, then $\operatorname{mincol}_{r} \operatorname{THK}(m, 3)=2$
- If $4 \mid m$, and $3 \mid r\left({ }^{*}\right)$, then mincol ${ }_{r} \operatorname{THK}(m, 3)=3$
*neither of the previous cases stand

Minimum Number of Colors of the $\operatorname{THK}(m, 3)$

Theorem

Given $m, r \in \mathbb{Z}^{+}$, we have:

- If $3 \mid m$ and $2 \mid r$, then $\operatorname{mincol}_{r} \operatorname{THK}(m, 3)=2$
- If $4 \mid m$, and $3 \mid r\left(^{*}\right)$, then mincol ${ }_{r} \operatorname{THK}(m, 3)=3$
- If $2 \mid m$ and $5 \mid r$, or $8 \mid n$ and $7 \mid r\left(^{*}\right)$, then mincol $_{r} \operatorname{THK}(m, 3)=4$
*neither of the previous cases stand

Minimum Number of Colors of the $\operatorname{THK}(m, 3)$

Theorem

Given $m, r \in \mathbb{Z}^{+}$, we have:

- If $3 \mid m$ and $2 \mid r$, then mincol ${ }_{r} \operatorname{THK}(m, 3)=2$
- If $4 \mid m$, and $3 \mid r\left({ }^{*}\right)$, then mincol ${ }_{r} \operatorname{THK}(m, 3)=3$
- If $2 \mid m$ and $5 \mid r$, or $8 \mid n$ and $7 \mid r(*)$, then mincol $_{r} \operatorname{THK}(m, 3)=4$
- If $5 \mid m$, and $11 \mid r(*)$, then mincol $r \operatorname{THK}(m, 3)=5$
*neither of the previous cases stand

Minimum Number of Colors of the $\operatorname{THK}(m, 3)$

Definition $(\psi()$.

Let $\psi: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$be a function defined by:

$$
\psi(r):=\min \left\{q \in \mathbb{Z}^{+}|r| u_{q-1}\right\}, r \in \mathbb{Z}^{+}
$$

Minimum Number of Colors of the $\operatorname{THK}(m, 3)$

Definition $(\psi()$.

Let $\psi: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$be a function defined by:

$$
\psi(r):=\min \left\{q \in \mathbb{Z}^{+}|r| u_{q-1}\right\}, r \in \mathbb{Z}^{+}
$$

Observations:

Minimum Number of Colors of the $\operatorname{THK}(m, 3)$

Definition $(\psi()$.

Let $\psi: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$be a function defined by:

$$
\psi(r):=\min \left\{q \in \mathbb{Z}^{+}|r| u_{q-1}\right\}, r \in \mathbb{Z}^{+}
$$

Observations:

- $r \mid u_{\psi(r)-1}$;

Minimum Number of Colors of the $\operatorname{THK}(m, 3)$

Definition $(\psi()$.

Let $\psi: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$be a function defined by:

$$
\psi(r):=\min \left\{q \in \mathbb{Z}^{+}|r| u_{q-1}\right\}, r \in \mathbb{Z}^{+}
$$

Observations:

- $r \mid u_{\psi(r)-1}$;
- If $p \mid r$, then $\operatorname{THK}(\psi(p), 3)$ is r-colorable.

Minimum Number of Colors of the $\operatorname{THK}(m, 3)$

Definition $(\psi()$.

Let $\psi: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$be a function defined by:

$$
\psi(r):=\min \left\{q \in \mathbb{Z}^{+}|r| u_{q-1}\right\}, r \in \mathbb{Z}^{+}
$$

Observations:

- $r \mid u_{\psi(r)-1}$;
- If $p \mid r$, then $\operatorname{THK}(\psi(p), 3)$ is r-colorable.
- As $\left(u_{\psi(p)-1}, r\right) \geq p$.

Minimum Number of Colors of the $\operatorname{THK}(m, 3)$

Proposition

Let $p \neq 5$ be an odd prime, then we have:

$$
\begin{cases}p \mid u_{p} & \text { if and only if } 5^{\frac{p-1}{2}} \equiv_{p}-1 \\ p \mid u_{p-2} & \text { if and only if } 5^{\frac{p-1}{2}} \equiv_{p} 1\end{cases}
$$

Minimum Number of Colors of the $\operatorname{THK}(m, 3)$

Proposition

Let $p \neq 5$ be an odd prime, then we have:

$$
\begin{cases}p \mid u_{p} & \text { if and only if } 5^{\frac{p-1}{2}} \equiv_{p}-1 \\ p \mid u_{p-2} & \text { if and only if } 5^{\frac{p-1}{2}} \equiv_{p} 1\end{cases}
$$

Corollary

Let $p \neq 5$ be an odd prime, then:

$$
\psi(p) \leq p+1
$$

Theorem

Given $p \neq 5$ with $\psi(p)$ odd, we have: $\operatorname{mincol}_{p} \operatorname{THK}(\psi(p), 3) \leq \psi(p)$

Theorem

Given $p \neq 5$ with $\psi(p)$ odd, we have: $\operatorname{mincol}_{p} \operatorname{THK}(\psi(p), 3) \leq \psi(p)$

And for the $\psi(p)$ even case:

Theorem

Given $p \neq 5$ with $\psi(p)$ odd, we have: $\left.\operatorname{mincol}_{p} \operatorname{THK}_{(\psi)}(p), 3\right) \leq \psi(p)$

And for the $\psi(p)$ even case:

Theorem

Given $p \neq 5$ with $\psi(p)$ even, we have:

$$
\operatorname{mincol}_{p} \operatorname{THK}^{2}(\psi(p), 3) \leq \psi(p)-1
$$

Definition $\left(\langle,, .\rangle_{\psi}\right)$

Given positive integers a, b, we define $\langle a, b\rangle_{\psi}$ as the least common prime factor that minimizes ψ.

Definition $\left(\langle,, .\rangle_{\psi}\right)$

Given positive integers a, b, we define $\langle a, b\rangle_{\psi}$ as the least common prime factor that minimizes ψ.

Theorem

For n odd and $r \in \mathbb{Z}^{+}$, such that, $\left(u_{n-1}, r\right)>1$, we have:

$$
\operatorname{mincol}_{r} \operatorname{THK}(n, 3) \leq \psi\left(\left\langle u_{n-1}, r\right\rangle_{\psi}\right)
$$

Definition $\left(\langle., .\rangle_{\psi}\right)$

Given positive integers a, b, we define $\langle a, b\rangle_{\psi}$ as the least common prime factor that minimizes ψ.

Theorem

For n odd and $r \in \mathbb{Z}^{+}$, such that, $\left(u_{n-1}, r\right)>1$, we have:

$$
\operatorname{mincol}_{r} \operatorname{THK}(n, 3) \leq \psi\left(\left\langle u_{n-1}, r\right\rangle_{\psi}\right)
$$

Theorem

For n even and $r \in \mathbb{Z}^{+}$, such that, $\left(u_{n-1}, r\right)>1$, we have:

$$
\operatorname{mincol}_{r} \operatorname{THK}^{2}(n, 3) \leq \psi\left(\left\langle u_{n-1}, r\right\rangle_{\psi}\right)-1
$$

Bibliography

國 M．Asaeda，J．Przytycki，A．Sikora，Kauffman－Harary conjecture holds for Montesinos knots，J．Knot Theory Ramifications 13 （2004），no．4，467－477
䍰 N．E．Dowdall，T．W．Mattman，K．Meek and P．R．Solis，On the Harary－Kauffman Conjecture and Turk＇s Head Knots， Kobe J．Math．，to appear．arxiv：08110044
围 F．Harary and L．Kauffman Knots and graphs．I．Arc graphs and colorings，Adv．in Appl．Math． 22 （1999），no．3，312－337
國 P．Henrici，Elements of numerical analysis，John Wiley \＆Sons， Inc．，New York－London－Sydney， 1964
图 L．Kauffman and P．Lopes，On the minimum number of colors for knots，Adv．in Appl．Math． 40 （2008），no．1，36－53

Bibliography

E. Oesper, p-Colorings of Weaving Knots, available at www.math.jmu.edu./~taal/OJUPKT/layla_thesis.pdf
R K. Oshiro, Any 7-colorable knot can be colored by 4 colors, preprint

R M. Saito, Minimal Numbers of Fox Colors and Quandle Cocycle Invariants of Knots, J. Knot Theory Ramifications, to appear

