
Title

Probability and Hydrodynamics
Gulbenkian, 7/9/2019

Ana Bela Cruzeiro
.

Dep. Mathematics IST and
Grupo de Física-Matemática

Univ. Lisboa

1 / 22



Title

I. The Brownian motion

Observed by Robert Brown:

an extremely irregular, apparently endless motion of particles suspended in a
fluid;

“ A Brief Account of Microscopical Observations Made in the Months of
June, July and August, 1827, on the Particles Contained in the Pollen
of Plants; and on the General Existence of Active Molecules in Organic
and Inorganic Bodies" , Edinb. J. of Sc. (1828)

and many others before him (the merit of Brown: showed that the motion was
independent of the fluid and not of organic origin); many polemics around the
origin of the motion, but Brown had “given the subject" to physicists.
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Louis Bachelier (1900) mathematical model for the fluctuations in the
stock market

Albert Einstein (1905) (independent work):

Gives a description of the motion of a particle subject to the forces
coming from the molecules of the fluid. Starting from x0, the probability
that the (projection of the) position is in I at time t > 0 is given by∫

I
p(x0, t , x)dx

where
∂

∂t
p = D

∂2

∂x2 p

p(t , x0, x) = 1
2
√
πDt

e−
−|x−x0|

2

4Dt , where D is a constant written, in
particular, in terms of Avogrado’s number;
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−→ Jean Perrin (Nobel prize, 1926) determines this number/ confirms
the atomic nature of matter

“C’est un cas où il est vraiment naturel de penser à ces fonctions
continues sans dérivées que les mathématiciens ont imaginées, et que
l’on regardait à tort comme de simples curiosités mathématiques,
puisque l’expérience peut les suggérer."

Jean Perrin
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Definition A Brownian motion (or Wiener process) starting at x0 at time 0 is
a stochastic process (t , ω)→ Bt (ω), t ≥ 0, such that

1. a.s. B0 = x0

2. Increments Bt+s − Bt , s ≥ 0 are, for every t , independent of Bu,u < t
3. Bt+s − Bt is normally distributed with mean 0 and variance s
4. With probability one t → Bt is continuous.

In particular, P(Bt (ω) ∈ A) =
∫

A pt (x0, y)dy with ∂
∂t p = 1

2∆p (heat
equation)
In semigroup terminology,
Tt f (x0) = e

t
2 ∆f (x0) = EP f (Bt (ω)) =

∫
f (y)pt (x0, y)dy .

Mathematical construction:

• Norbert Wiener (1923)

• Andrei Kolmogorov (1930’s)
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Brownian motion as limit of symmetric random walk (1d):

Consider the random variables

Xk =
√
δ with probability

1
2
, Xk = −

√
δ with probability

1
2

in the time intervals ](k − 1)δ, kδ].

At time t = nδ define W (t) =
∑n

k=1 Xk , with W (0) = 0

Make δ go to zero (...).

By the central limit theorem W (t) ' N (0, t). Since the coin tosses are
independent, W (t) has independent increments.
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Examples of other relations with (linear) partial differential equations:

∂tv = 1
2∆v + V , v(0) = f : v can be represented by Feynman-Kac’s

formula

v(t , x) = Ex

(
f (Bt ) exp (

∫ t

0
V (Bs)ds)

)
Another example: the (stationary) Dirichlet problem 1

2∆v + Vv = 0 in a
domain D with boundary value v = g is written as

v(x) = Ex

(
g(Bτ ) exp (

∫ τ

0
V (Bs)ds)

)
,

τ = inf {t : Bt /∈ D}, a random time, B0 = x .
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Kiyosi Itô (end 40’s, 50’s): birth of Stochastic Analysis

Consider the (elliptic) second-order linear operator

Lf (x) =
1
2

n∑
i,j=1

(σσT )i,j(x)∂2
i,j f + b.∇f

One can associate a stochastic differential equation

dXt = σ(Xt ).dBt + b(Xt )dt

dBt : Itô stochastic differentiation

(remember: t → Bt non differentiable !) → Itô calculus
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In particular similar formulae as above relate pde’s and stochastic
processes, when replacing ∆ by

∑n
i,j=1(σσT )i,j(x)∂2

i,j .

Remark: relation with (Riemannian) geometry

In Itô calculus, if dXt = dBt + b(Xt )dt and f (t , x) is a smooth function,

df (t ,Xt ) = ∇f (t ,Xt ).dBt + (∂t f + b.∇f )(t ,Xt )dt +
1
2

∆f (t ,Xt )dt

(Itô’s formula)
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II. The Euler equation

One of the first pde to be written:
Leonhard Euler, “Principes généraux du mouvement des fluides,"
Mémoires de l’Académie des Sciences de Berlin (1757)

In Eulerian coordinates,

∂u
∂t

+ u.∇u = −∇p, u(t0) = u0, (div u = 0)

Lagrangian coordinates: correspond to the velocity of a flow g(t , x)

∂g
∂t

= u(t ,g(t , x)), g(0, x) = x

d2g
d2t

= (
∂u
∂t

+ u.∇u)(t ,g) = −∇p(t ,g) (Newton’s law)
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Variational approach: the flow minimizes the action functional

S[g] =
1
2

∫ T

0

∫
|ġ(t , x)|2dx dt

where g are (volume preserving) diffeomorphisms on the underlying manifold
(form a group).

Remember: geodesics are curves that minimise the lenght.

Euler-Lagrange equations give d
dt [ġ] = 0 i.e., precisely,

∂2g
∂2t

= (
∂u
∂t

+ u.∇u)(t ,g) = 0

(g(t) is a geodesic then the vector field u(t) = ġ(t) o g−1(t) solves Euler
eq.)

Euler equation⇔ geodesic equation for the L2 metric
(Vladimir Arnold 1966)
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• From this description Arnold (and co-authors) derive the instability of
the Lagrangian motion from strict geometric arguments, namely the fact that
the curvature of the underlying spaces is negative.

•Motion is chaotic even though the dynamics is deterministic (as in Lorenz
simplified model for atmospheric convection with a small number of degrees
of freedom).

• Unpredictability of the weather ("butterfly effect").
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III. The Navier-Stokes equation

It models the motion of a (incompressible) viscous fluid. It was established
one century after Euler equation.

∂tu + u.∇u = ν∆u −∇p, u(t0) = u0, (div u = 0)

( ν > 0 = viscosity )

The situation concerning variational principles is not clear in Physics
literature.

We consider stochastic Lagrangian flows and replace ∂
∂t by a mean derivative

Dt .
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Stochastic Lagrangian flows:

dg(t , x) =
√

2νdBt + Yt (x)dt

g(0, x) = x

Define
Dtg(t) = Yt

or

Dtg(t , x) = lim
ε→0

1
ε

Et

(
g(t + ε, x)− g(t , x)

)
where Et denotes conditional expectation given the past of t .
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Stochastic action functional

S[g] =
1
2

E [

∫ T

0

∫
|Dtg(t)(x)|2 dx dt ]

Variations:
for v smooth, with div v = 0, v(0) = v(T ) = 0,

et (εv) = id + ε

∫ t

0
v̇(s,es(εv)ds ' id + εv(t , .)

gε(t , x) = et (εv)(g(t , x))

Derivatives:

(DL)S[g] =
d
dε

∣∣∣∣
ε=0

S[e·(εv) ◦ g(·)]
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Consider a solution of a stochastic differential equation of the form

dgu(t , x) =
√

2νdBt + u(t ,g(t , x))dt , g(0, x) = x

By Itô calculus

dgε(t) =
√

2ν∇et (εv)(g(t))dBt + [∂t + (u.∇) + ν∆](et (εv))dt

so
d
dε

∣∣∣∣
ε=0

Dgε(t) = [∂tv + (u.∇)v + ν∆v ](g(t)
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d
dε

∣∣∣∣
ε=0

S[gε] = E
∫ T

0

∫
(Dg(t)(x).[∂tv + (u.∇)v + ν∆v ])(g(t , x))dxdt

=

∫ T

0

∫
(u.[∂tv + (u.∇)v + ν∆v ])(t , x)dxdt

since Dg(t)(x) = u(t ,g(t , x)). Therefore, using integration by parts,

d
dε

∣∣∣∣
ε=0

S[gε] = 0

iff

∂tu + (u.∇)u − ν∆u = −∇p
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Theorem. Let (t , x) 7→ u(t , x) be a smooth time-dependent divergence-free
vector field on R3, defined on [0,T ]×R3. Let gu(t) be a stochastic Brownian
flow with diffusion constant ν > 0 and drift u. The stochastic process gu(t) is
critical for the energy functional S if and only if the vector field u(t) verifies
the Navier-Stokes equation

∂u
∂t

+∇uu = ν∆u −∇p

First version for the torus: with F. Cipriano; on a Riemannian manifold: with
M. Arnaudon; generalisations to Lie groups: with M. Arnaudon, X. Chen, T.
Ratiu.
Other variational principles: T. Funaki, D. Gomes.
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IV. Relations with entropy

For Euler equation, Arnold’s geodesic approach does not always provide
solutions. In 1989 Yann Brenier relaxed the problem, considering the
so-called generalised solutions.

One minimises a kinetic energy averaged by probability measures Q on the
path space Ω = C([0,1]; M)

min EQ

∫ 1

0
|Ẋt |2dt , Q01 = π,

Q01 := (X0,X1)∗Q.

Here dQt = dx ∀t (Qt = (Xt )∗Q) and π is a probability measure on
M ×M s.t. its marginals satisfy dπ0 = dπ1 = dx .
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The solutions P only charge absolutely continuous paths, since the
kinetic energy is understood to be∞ otherwise.

Then
{

dPt = dx ∀t and P01 = π

Ẍt +∇p(t ,Xt ) = 0, ∀t , P − a.e.
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We consider Brownian-type paths (not abs. continuous). For Q the
corresponding law on the path space, kinetic energy is replaced by
the“mean" velocity:

vQ
t := lim

ε→0

1
ε

EQ(Xt+ε − Xt | X[0,t])

Consider the reference measure R

R =

∫
Rxdx ,

Rx the law of the Brownian motion starting from x with diffusion
constant ν > 0.
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On the other hand recall the notion of relative entropy of a measure Q
with respect to a measure R

This is the Kullback-Leibler (1951) notion in Information Theory

H(Q|R) :=

∫
log(

dQ
dR

) dQ ∈ (−∞,∞]
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By Girsanov theorem, to any measure Q on Ω with a finite relative
entropy w.r.t. R corresponds a (time dependent) vector field v s.t. Q is
the law of the process dXt =

√
2νdBt + v(t ,Xt )dt

H(Q|R) = H(Q0|R0) +
1

2ν
EQ

∫ 1

0
|v(t ,Xt )|2 dt

(in our case dR0 = dx).
So we naturally consider the problem

min
1

2ν
EQ

∫ 1

0
|v(t ,Xt )|2 dt

with Q01 = π and Qt = µt prescribed measures on M (Lebesgue
measure for incompressibility constraint), which is an entropy
minimisation problem, relaxing our Lagrangian approach and
extending to the viscous case Brenier’s generalised solutions.

(recent ongoing work)
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