SCHUBERT POLYNOMIALS AND SYMMETRIC FUNCTIONS NOTES FOR THE LISBON COMBINATORICS SUMMER SCHOOL 2012

ALLEN KNUTSON

1. Symmetric polynomials exercises

Polynomial rings such as R have a useful property: every polynomial p can be uniquely written as a sum $\sum_{\mathbb{N}} p_d$ of **homogeneous** polynomials p_d , in which every monomial in p_d has the same degree d. More generally, define a **graded** ring Q as one that contains a list $(Q_d)_{d\in\mathbb{N}}$ of subspaces, such that $Q_dQ_e \leq Q_{d+e}$ and every $q \in Q$ is uniquely the sum $q = \sum_{\mathbb{N}} q_d$, $q_d \in Q_d$.

Exercise 1.1. R_k has a \mathbb{Z} -basis of size $\binom{n+k-1}{n}$. (Hint: correspond a monomial like $x_1^5 x_2^3 x_4^2 x_5^2$, for n = 6, to a word like * * * * * | * * | * * | * * | * * | !.)

Exercise 1.2. For each polynomial in $(\mathbb{R}^{S_2})_2$, show that it can be written uniquely as a polynomial in $x_1 + x_2$ and $x_1^2 + x_2^2$ using rational coefficients. Find one that despite having integer coefficients itself, cannot be written as $p(x_1 + x_2, x_1^2 + x_2^2)$ where $p(a, b) \in \mathbb{Z}[a, b]$ has integer coefficients.

We define the *lexicographically first* monomial m in a nonzero polynomial p, and denote it init p. It is the m with the highest power of x_1 available, then among ties it has the highest power of x_2 available, and so on. (Writing monomials $x_1^2x_2x_3^3$ like $x_1x_1x_2x_3x_3x_3$, this is almost dictionary order, except that in dictionaries x_1x_1 comes after x_1 . It is indeed dictionary order when restricted to monomials of a fixed degree.)

Exercise 1.3. (1) init $e_k = \prod_{i=1}^k x_i$. (2) init $(pq) = \text{init } p \cdot \text{init } q$. (3) If p is symmetric, and init $p = c \prod_i x_i^{\mathfrak{m}_i}$ $(c \in \mathbb{Z})$, then $\mathfrak{m}_1 \ge \mathfrak{m}_2 \ge \ldots \ge \mathfrak{m}_n$.

Exercise 1.4. Write $\sum_{i} x_{i}^{n}$ as a polynomial in the elementary symmetric polynomials, for $n \leq 4$.

Exercise 1.5. Let n = 2, and $Z_2 = \{1, \tau\}$ act on R by $\tau \cdot x = -x$, $\tau \cdot y = -y$. Show that the τ -invariant subring R^{Z_2} is generated by x^2 , xy, y^2 , and is isomorphic to $\mathbb{Z}[a, b, c]/\langle b^2 - ac \rangle$. Show that this graded ring is not graded-isomorphic to a polynomial ring.

In fact there is a complete classification, due to C. Chevalley, of which finite groups G acting on R and preserving degree have R^G isomorphic to a polynomial ring.