SCHUBERT POLYNOMIALS AND SYMMETRIC FUNCTIONS NOTES FOR THE LISBON COMBINATORICS SUMMER SCHOOL 2012

ALLEN KNUTSON

1. SYMMETRIC POLYNOMIALS EXERCISES

Polynomial rings such as R have a useful property: every polynomial p can be uniquely written as a sum $\sum_{\mathbb{N}} p_{d}$ of homogeneous polynomials p_{d}, in which every monomial in p_{d} has the same degree d. More generally, define a graded ring Q as one that contains a list $\left(Q_{d}\right)_{d \in \mathbb{N}}$ of subspaces, such that $Q_{d} Q_{e} \leq Q_{d+e}$ and every $q \in Q$ is uniquely the sum $q=\sum_{\mathbb{N}} q_{d}, q_{d} \in Q_{d}$.
Exercise 1.1. R_{k} has a \mathbb{Z}-basis of size $\binom{n+k-1}{n}$. (Hint: correspond a monomial like $x_{1}^{5} x_{2}^{3} x_{4}^{2} x_{5}^{2}$, for $\mathrm{n}=6$, to a word like $* * * * *|* * *||* *| * *|\mid$.)

Exercise 1.2. For each polynomial in $\left(\mathrm{R}^{\mathrm{S}_{2}}\right)_{2}$, show that it can be written uniquely as a polynomial in $x_{1}+x_{2}$ and $x_{1}^{2}+x_{2}^{2} u$ sing rational coefficients. Find one that despite having integer coefficients itself, cannot be written as $\mathfrak{p}\left(x_{1}+x_{2}, x_{1}^{2}+x_{2}^{2}\right)$ where $p(a, b) \in \mathbb{Z}[a, b]$ has integer coefficients.

We define the lexicographically first monomial m in a nonzero polynomial p, and denote it init p. It is the m with the highest power of x_{1} available, then among ties it has the highest power of x_{2} available, and so on. (Writing monomials $x_{1}^{2} x_{2} x_{3}^{3}$ like $x_{1} x_{1} x_{2} x_{3} x_{3} x_{3}$, this is almost dictionary order, except that in dictionaries $x_{1} x_{1}$ comes after x_{1}. It is indeed dictionary order when restricted to monomials of a fixed degree.)

Exercise 1.3. (1) init $e_{k}=\prod_{i=1}^{k} x_{i}$.
(2) $\operatorname{init}(p q)=\operatorname{init} p \cdot$ init q.
(3) If p is symmetric, and init $p=c \prod_{i} x_{i}^{m_{i}}(c \in \mathbb{Z})$, then $m_{1} \geq m_{2} \geq \ldots \geq m_{n}$.

Exercise 1.4. Write $\sum_{i} x_{i}^{n}$ as a polynomial in the elementary symmetric polynomials, for $n \leq 4$.
Exercise 1.5. Let $n=2$, and $Z_{2}=\{1, \tau\}$ act on R by $\tau \cdot x=-x, \tau \cdot y=-y$. Show that the τ-invariant subring $R^{Z_{2}}$ is generated by $x^{2}, x y, y^{2}$, and is isomorphic to $\mathbb{Z}[a, b, c] /\left\langle b^{2}-a c\right\rangle$. Show that this graded ring is not graded-isomorphic to a polynomial ring.

In fact there is a complete classification, due to C. Chevalley, of which finite groups G acting on R and preserving degree have R^{G} isomorphic to a polynomial ring.

