SCHUBERT POLYNOMIALS AND SYMMETRIC FUNCTIONS NOTES FOR THE LISBON COMBINATORICS SUMMER SCHOOL 2012

ALLEN KNUTSON

1. Schubert polynomials exercises

Exercise 1.1. (1) ∂_i satisfies the "twisted Leibniz rule":

 $\partial_i(pq) = (\partial_i p)q + (r_i p)(\partial_i q).$

In these ways, ∂_i behaves somewhat like a derivative.

- (2) Let p be a polynomial such that $\partial_i p = 0$ for all $i \neq n$. Show that p is a symmetric polynomial in x_1, \ldots, x_n .
- **Exercise 1.2.** (1) Show $\ell(\pi \circ (i \leftrightarrow i + 1)) = \ell(\pi) \pm 1$, with the sign depending on whether i *is an ascent or descent of* π .
 - (2) Show $\ell(\pi) = \ell(\pi^{-1})$.
 - (3) What is the maximum value of $\ell(\pi)$, $\pi \in S_n$?

Exercise 1.3. (1) Determine $S_{(i \leftrightarrow i+1)}$.

(2) Determine S_{π} for $\pi \in S_3$, thought of as the evident subgroup of the group of finite permutations of \mathbb{N} .

Exercise 1.4. Show that 12321, 13231, and 31231 are reduced words for the same permutation in S_4 , and find all the other reduced words for that permutation.