SCHUBERT POLYNOMIALS AND SYMMETRIC FUNCTIONS NOTES FOR THE LISBON COMBINATORICS SUMMER SCHOOL 2012

ALLEN KNUTSON

1. Reduced words and Schubert polynomials exercises

Exercise 1.1. Show the following conditions on a permutation π are equivalent:
(1) $\pi(\mathfrak{i})=\mathfrak{i}$ for $i \leq m$.
(2) Some reduced word for π does not use the letters $1, \ldots, m-1$.
(3) No reduced word for π uses the letters $1, \ldots, m-1$.

Exercise 1.2. Let $\pi \circ \rho=\sigma$ be a product of two permutations. Show that $\ell(\pi)+\ell(\rho) \geq \ell(\sigma)$, and

$$
\partial_{\pi} \partial_{\rho}= \begin{cases}\partial_{\sigma} & \text { if } \ell(\pi)+\ell(\rho)=\ell(\sigma) \\ 0 & \text { if } \ell(\pi)+\ell(\rho)>\ell(\sigma) .\end{cases}
$$

Exercise 1.3. Show that any two words (not necessarily reduced) for π can be related by the commuting move, the braid move, and insertion/deletion of pairs $i i$.
Exercise 1.4. If $\pi \in S_{n}$, show $\ell\left(\pi^{-1} w_{0}^{n}\right)=\binom{n}{2}-\ell(\pi)$.
Exercise 1.5. Compute all the Schubert polynomials for S_{4}, starting with \mathcal{S}_{4321} and going down using divided difference operators.
Exercise 1.6. Compute all the Schubert polynomials for S_{4}, starting with $\mathcal{S}_{\mathrm{Id}}=1$ and going up using the transition formula.
Exercise 1.7. Check the pipe dream formula for each $\pi \in S_{3}$.

