SCHUBERT POLYNOMIALS AND SYMMETRIC FUNCTIONS NOTES FOR THE LISBON COMBINATORICS SUMMER SCHOOL 2012

ALLEN KNUTSON

1. REDUCED WORDS AND SCHUBERT POLYNOMIALS EXERCISES

Exercise 1.1. Show the following conditions on a permutation π are equivalent:

- (1) $\pi(i) = i$ for $i \leq m$.
- (2) Some reduced word for π does not use the letters $1, \ldots, m-1$.
- (3) No reduced word for π uses the letters $1, \ldots, m-1$.

Exercise 1.2. Let $\pi \circ \rho = \sigma$ be a product of two permutations. Show that $\ell(\pi) + \ell(\rho) \ge \ell(\sigma)$, and

$$\partial_{\pi}\partial_{\rho} = \begin{cases} \partial_{\sigma} & \text{if } \ell(\pi) + \ell(\rho) = \ell(\sigma) \\ 0 & \text{if } \ell(\pi) + \ell(\rho) > \ell(\sigma). \end{cases}$$

Exercise 1.3. Show that any two words (not necessarily reduced) for π can be related by the commuting move, the braid move, and insertion/deletion of pairs i i.

Exercise 1.4. If $\pi \in S_n$, show $\ell(\pi^{-1}w_0^n) = \binom{n}{2} - \ell(\pi)$.

Exercise 1.5. Compute all the Schubert polynomials for S_4 , starting with S_{4321} and going down using divided difference operators.

Exercise 1.6. Compute all the Schubert polynomials for S_4 , starting with $S_{Id} = 1$ and going up using the transition formula.

Exercise 1.7. Check the pipe dream formula for each $\pi \in S_3$.