Probabilistic method

Instructor: Benny Sudakov

Assignment 2

Warm up problem: Suppose $n \ge 2$ and let H is an *n*-uniform hypergraph with 4^{n-1} edges. Show that there is a coloring of H by four colors so that no edge is monochromatic.

Problem 1: Prove that there is a positive constant c so that every set A of n nonzero reals contains a subset $B \subset A$ of size $|B| \ge cn$ so that there are no $b_1, b_2, b_3, b_4 \in B$ satisfying $b_1 + 2b_2 = 2b_3 + 2b_4$.

Problem 2: (a) Prove by induction that every tournament T on n vertices contains a Hamiltonian path (i.e., directed path that goes through every vertex once).

(b) Prove that there exists a tournament T on n vertices which contains at least $n!2^{-(n-1)}$ distinct Hamiltonian paths.

Problem 3: Let v_1, v_2, \ldots, v_n be *n* vectors in \mathbb{R}^n , each of Euclidean norm at most 1, and let $u = \sum_{i=1}^n p_i v_i$, where $0 \le p_i \le 1$ for all *i*.

(i) Prove that there are $\epsilon_i \in \{0, 1\}$ such that

$$\left|\left|\sum_{i=1}^{n} \epsilon_{i} v_{i} - u\right|\right| \le \sqrt{n}/2.$$

(ii) Prove that the above estimate is tight for all n.

(iii) (hard, bonus) Prove that even for m > n and for $v_1, \ldots, v_m \in \mathbb{R}^n$, each of norm at most 1, and for $u = \sum_{i=1}^m p_i v_i$ with $0 \le p_i \le 1$, there are $\epsilon_i \in \{0, 1\}$ such that

$$\left|\left|\sum_{i=1}^{m} \epsilon_{i} v_{i} - u\right|\right| \le \sqrt{n}/2.$$

Problem 4: Let G be a graph on n vertices with minimum degree d > 1. Show that G has dominating set of size at most $n \frac{1+\ln(d+1)}{d+1}$. A dominating set of a graph G is a subset of vertices U such that every vertex v of G is either in U or has a neighbor in U.

Problem 5: Prove that every 3-uniform hypergraph with *n* vertices and $m \ge n/3$ edges contains an independent set (i.e., set with no edges inside) of size at least $\frac{2n^{3/2}}{3\sqrt{3}\sqrt{m}}$.