Probabilistic method

Instructor: Benny Sudakov

Assignment 3

Problem 1: Let G_{1} and G_{2} be two graphs on the same vertex set V and suppose that G_{i} has m_{i} edges, for $i=1,2$. Use second moment to prove that there is a constant c and a partition of V into two classes A and B so that for both $i=1,2$ we have at least $m_{i} / 2-c \sqrt{m_{i}}$ edges of G_{i} from A to B.

Problem 2: Let X be a random variable taking integral nonnegative values, let $E\left(X^{2}\right)$ denote the expectation of its square, and let $\operatorname{Var}(X)$ denote its variance. Prove that

$$
\operatorname{Prob}(X=0) \leq \frac{\operatorname{Var}(X)}{E\left(X^{2}\right)} .
$$

Problem 3: Let $G=(V, E)$ be a simple graph with n vertices and m edges and let λ be the integer. Prove that
(i) There are at least $\lambda^{n}(1-m / \lambda)$ proper vertex colorings of G with λ colors.
(ii) The number of proper vertex colorings of G with λ colors is at most $\lambda^{n}(\lambda-1) / m$.
(iii) Show that the upper bound from part (ii) can be improved further to $\lambda^{n} \frac{\lambda-1}{\lambda+m-1}$

Problem 4: Let $v_{1}=\left(x_{1}, y_{1}\right), \ldots, v_{n}=\left(x_{n}, y_{n}\right)$ be n two-dimensional vectors, where each x_{i} and each y_{i} is an integer whose absolute value does not exceed $\frac{2^{n / 2}}{100 \sqrt{n}}$. Show that there are two disjoint sets $I, J \subset\{1,2, \ldots, n\}$ such that

$$
\sum_{i \in I} v_{i}=\sum_{j \in J} v_{j} .
$$

Problem 5: (hard) Prove that for every set X of at least $4 k^{2}$ distinct residue classes modulo a prime p, there is an integer a such that the set $\{a x(\bmod p): x \in X\}$ intersects every interval of length at least p / k in $\{0,1, \ldots, p-1\}$.
Hint. Pick random residues a and b and consider $\{a x+b(\bmod p): x \in X\}$, use now second moment.

