Problem set II

Nati Linial

1. A little about planar graphs:

- Show that the Euler formula $v-e+f=2$ holds for every connected planar graph G with v vertices, e edges and where a drawing of G in the plane has f faces.
- Conclude that in a planar graph $e \leq 3 v-6$.
- Conclude that K_{5} is non-planar.
- Show that the complete bipartite graph $K_{3,3}$ is not planar.
- Show that every finite planar graph has a vertex of degree ≤ 5. What can you say about the smallest vertex degree in an infinite planar graph?
- Show that every planar graph is 6 -colorable. (Hint: Based on the previous item, find a vertex of degree ≤ 5, now use induction).

2. Regular graphs can have arbitrarily high girth:

In Sudakov's class you saw that graphs can have both arbitrarily high girth and chromatic number. However, the graphs created in that proof are not regular. Here we want to give a somewhat strange proof that it is possible to be regular and have arbitrarily high girth. We start from a graph $G=(V, E)$ that is d-regular, has girth g and has exactly T cycles of length g. Our plan is to construct another graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ whose girth is $\geq g$ and has strictly fewer than T cycles of length g.

- Construction of G^{\prime} : Let $V^{\prime}=V \times\{1,2\}$. We next turn to the edge set E^{\prime}. For every edge $x y \in E$ in G we introduce a pair of edges in E^{\prime} as follows: Either the pair $(x, 1)(y, 1)$ and $(x, 2)(y, 2)$ or the pair $(x, 1)(y, 2)$ and $(x, 2)(y, 1)$. The choice between these two options is done by independent coin flips (one coin-toss per each edge $x y \in E$).
- Show that the girth of G^{\prime} is always $\geq g$.
- Let X be the random variable that counts the number of g-cycles in G^{\prime}. Show that the expectation of X is T.
- Now find a slight modification of the above construction that will make this expecatation strictly smaller than M and conclude the theorem.

3. Very short cycles are few:

Show that if G has girth g, then there are at most $O\left(n^{4}\right)$ cycles of length g in G. Show that
this bound is tight.
If we also assume that G is d-regular, show tha the upper bound can be improved to $O\left(d^{2} n^{2}\right)$.

4. Diameter and girth:

Show that if a graph has girth g then its diameter is $\geq\left\lfloor\frac{g}{2}\right\rfloor$.

