Problem set III

Nati Linial

A little coding theory:

A binary code C of length n is simply a subset $C \subseteq\{0,1\}^{n}$. Members $x \in C$ are called codewords. Codes are used in order to communicate over noisy channels. A transmitter is sending messages to a receiver, using only words from C. When the received word y is in C the assumption is that indeed y is the word that was transmitted. However, if the received word z is not in C, we have to make an intelligent guess which word from C is the one that has actually been transmitted. One of the standard solutions is to find a word $x \in C$ which differs from z in the least number of coordinates and assume that x is the transmitted word. There are two critical parameters associated with a binary code of length n

- The cardinality $|C|$ which we want to maximize in order to better utilize the communication channel. The usual thing is to consider the rate of C that is defined as $R(C):=\frac{1}{n} \log _{2}|C|$. (This quantifies the rate at which information is transmitted when we communicate using C as our code book).
- The property that allows us to deal with noisy channels is that codewords differ substantially from each other. The metric that we use in the Hamming metric on $\{0,1\}^{n}$ that is defined via $d_{H}(x, y):=\left|\left\{i \mid x_{i} \neq y_{i}\right\}\right|$. The distance of C is defined as $d(C):=\min _{x \neq y \in C} d_{H}(x, y)$.

A major question in this area is how to find codes that have both high rate and large distance. A key function that quantifies this set of problems is

$$
R(\delta):=\limsup _{n \rightarrow \infty}\{R(C) \mid C \text { is a binary code of length } n \text { and } d(C) \geq \delta n\} .
$$

Here are a few problems on this function.

- Show the Gilbert-Varshamov bound $R(\delta) \geq 1-H(\delta)$ where H is the binary entropy function. (This means that very good codes exist.) Hint: Try to construct a good code by picking words one by one greedily.
- Show that $R(\delta)$ vanishes for $\delta>1 / 2$. This means that if $|C|$ is large as a function of n, then we can find two words $x \neq y \in C$ of distance $\leq \frac{n}{2}$. Actually more is true (and is easier to prove). Namely, if $|C|$ is large as a function of n, then the average distance between the words in C is $\leq \frac{n}{2}$.
- The weight of $x \in\{0,1\}^{n}$ is defined as $|x|:=\left|\left\{i \mid x_{i}=1\right\}\right|$. Show that if the average of $|x|$ over $x \in C$ is $p n$ for some $1 \geq p \geq 0$, then the average distance of words in C is $\leq 2 p(1-p) n$.
- The Elias upper bound: Show that $R(\delta) \leq 1-H\left(\frac{1-\sqrt{1-2 \delta}}{2}\right)$. This is done in a way that resembles the proof of the Sperner Lemma shown in Sudakov's class and the proof of the Erdős-Ko-Rado Theorem from a previous problem sheet. Let C be a binary code of length n with distance $d(C)=\delta n$.
- Pick a random Hamming sphere of radius $p n$, namely a set S of the form

$$
\left\{v \in\{0,1\}^{n} \mid d_{H}(v, z)=p n\right\}
$$

The center z of S is chosen at random, and we discuss the parameter $1 \geq p \geq 0$ below. What is the average cardinality $|S \cap C|$? Now pick S so that $|S \cap C|$ is at least as large as the average.

- Note that the distances in $S \cap C$ are the same as in $z \oplus(S \cap C)$ (where \oplus stands for $\bmod 2$ coordinate-wise addition and $w \oplus A$ stands for $\{w \oplus a \mid a \in A\}$.
- Select p cleverly as a function of δ so you can apply a previous item concerning the average distances in large sets of words and deduce the Elias bound.

