
Problem set III

Nati Linial

A little coding theory:

A binary code C of length n is simply a subset C ⊆ {0, 1}n. Members x ∈ C are called codewords.

Codes are used in order to communicate over noisy channels. A transmitter is sending messages to a

receiver, using only words from C. When the received word y is in C the assumption is that indeed

y is the word that was transmitted. However, if the received word z is not in C, we have to make

an intelligent guess which word from C is the one that has actually been transmitted. One of the

standard solutions is to find a word x ∈ C which differs from z in the least number of coordinates

and assume that x is the transmitted word. There are two critical parameters associated with a

binary code of length n

• The cardinality |C| which we want to maximize in order to better utilize the communication

channel. The usual thing is to consider the rate of C that is defined as R(C) := 1
n log2 |C|.

(This quantifies the rate at which information is transmitted when we communicate using C

as our code book).

• The property that allows us to deal with noisy channels is that codewords differ substantially

from each other. The metric that we use in the Hamming metric on {0, 1}n that is defined

via dH(x, y) := |{i|xi 6= yi}|. The distance of C is defined as d(C) := minx6=y∈C dH(x, y).

A major question in this area is how to find codes that have both high rate and large distance. A

key function that quantifies this set of problems is

R(δ) := lim sup
n→∞

{R(C)|C is a binary code of length n and d(C) ≥ δn}.

Here are a few problems on this function.

• Show the Gilbert-Varshamov bound R(δ) ≥ 1−H(δ) where H is the binary entropy function.

(This means that very good codes exist.) Hint: Try to construct a good code by picking

words one by one greedily.

• Show that R(δ) vanishes for δ > 1/2. This means that if |C| is large as a function of n, then

we can find two words x 6= y ∈ C of distance ≤ n
2 . Actually more is true (and is easier to

prove). Namely, if |C| is large as a function of n, then the average distance between the words

in C is ≤ n
2 .

• The weight of x ∈ {0, 1}n is defined as |x| := |{i|xi = 1}|. Show that if the average of |x| over

x ∈ C is pn for some 1 ≥ p ≥ 0, then the average distance of words in C is ≤ 2p(1− p)n.
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• The Elias upper bound: Show that R(δ) ≤ 1 −H(1−
√
1−2δ
2 ). This is done in a way that

resembles the proof of the Sperner Lemma shown in Sudakov’s class and the proof of the

Erdős-Ko-Rado Theorem from a previous problem sheet. Let C be a binary code of length n

with distance d(C) = δn.

– Pick a random Hamming sphere of radius pn, namely a set S of the form

{v ∈ {0, 1}n|dH(v, z) = pn}.

The center z of S is chosen at random, and we discuss the parameter 1 ≥ p ≥ 0 below.

What is the average cardinality |S ∩C|? Now pick S so that |S ∩C| is at least as large

as the average.

– Note that the distances in S ∩ C are the same as in z ⊕ (S ∩ C) (where ⊕ stands for

mod2 coordinate-wise addition and w ⊕A stands for {w ⊕ a|a ∈ A}.

– Select p cleverly as a function of δ so you can apply a previous item concerning the

average distances in large sets of words and deduce the Elias bound.
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