
Lectures on Representation Theory of Finite Groups, Problem Sheet 1

Throughout, G is a finite group with identity element e. Recall Cn is the cylic group with n elements; Sn
is the symmetric group of permutations on n letters; Dn is the group of all rotation and reflection symmetries
of the regular n-gon.

The cardinality of a set X is denoted |X|.

1. Consider the representations πk : Cn → GL2(R) of Cn defined by

πk(xj) =
( cos( 2πjk

n ) sin( 2πjk
n )

− sin( 2πjk
n ) cos( 2πjk

n )

)
where k ∈ {0, 1, 2, . . . , n− 1} and x is a generator of Cn. Notice that the matrix above is a clockwise
rotation by 2πjk

n radians.

(a) Show that over C, πk is reducible for each k by finding a one-dimensional subrepresentation.
Indeed, πk is the direct sum of two one-dimensional subrepresentations. (Hint: it is enough to
focus on the case j = 1.)

(b) Show that for each k, πk is irreducible as a representation over R, except when k = 0 or k = n
2

when n is even.

(c) Show that πk and πn−k are equivalent as representations over R (and hence also C) by finding a
real 2× 2 matrix Q such that

QπkQ
−1 = πn−k

as homomorphisms from Cn to GL2(R).

2. Let H be the quaternion algebra over the rational numbers. So H is a 4-dimensional vector space over
Q with basis 1, i, j, k and the multiplication is given by i2 = j2 = k2 = −1, ij = k = −ji, jk = i = −kj,
and ki = j = −ki. Furthermore, the line spanned by 1 defines a copy of the field Q in H which is
exactly the center of H.

Let Q8 be the group of 8 elements, ±1,±i,±j,±k, with multiplication defined from H. This is called
the quaternion group.

Notice that the action of an element x ∈ Q8 by left multiplication on H can be viewed as a Q-linear
transformation of the underlying 4-dimensional rational vector space. Furthermore, left multiplication
on H defines a 4-dimensional representation π of Q8 over Q.

(a) Write down the matrix for π(i) relative to the standard basis {1, i, j, k} of H.

(b) Show that 1±
√
−1 i and j ±

√
−1 k are eigenvectors for π(i) over C.

(c) Show that 1 −
√
−1 i and j +

√
−1 k span a subrepresentation of π, where we are now viewing

π as a complex representation. Write down the 2 × 2 complex matrices for each element of Q8

relative to this basis of the subrepresentation.

3. Let F be an algebraically closed field (but no restriction on the characteristic). Show that every
irreducible representation defined over F of an abelian group is one-dimensional.

Hint: Let V be an irreducible representation of G. First, pick some g ∈ G. Since F is algebraically
closed, g has a nonzero eigenspace on V , say of eigenvalue λ. So Eλ = {v ∈ V | g.v = λv} is nonzero.
Show that Eλ is preserved by all g′ ∈ G. In other words, Eλ is a subrepresentation of V . Conclude
that V = Eλ and further that V = Eλ cannot be irreducible unless it is one-dimensional.
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4. (I suggest reading this exercise for background, but not spending time on its details,
which are fairly straightforward, but not especially enlightening)

Recall the definition of a group action. A group action for a group G acting on a set X refers to a
map

ψ : G×X → X,

usually written ψ(g, x) = g.x, satisfying two axioms: e.x = x and (gh).x = g.(h.x). Here, of course,
x ∈ X and g, h ∈ G.

Let Aut(X) be the group of invertible maps from X to itself, with multiplication given by composition
of maps. Show that a group action defines a homomorphism of groups

π : G→ Aut(X)

and conversely, that every such homomorphism defines a group action. Furthermore, if |X| = n, and we
identify X with {1, 2, . . . , n}, then an action of G on X is just a homomorphism of groups π : G→ Sn.

Notice that these results are analogous to our definition of a group representation: instead of Aut(X)
and Sn for a group action, the target groups are replaced by GL(V ) and GLn(F ), where V is a vector
space over the field F .

5. Every group action of G on a set X gives rise to a representation of G. Namely, let VX be a vector
space over a field F with a basis

{ex}x∈X .
In other words, the set X indexes a basis of VX . Then the corresponding group representation is
defined by

g.(ex) := eg.x

and extending linearly. It is called the permutation representation of G coming from the action
on X.

Let C3 act on itself by left multiplication, i.e., X = C3. With F = C, write VX as the direct sum of three
one-dimensional (hence, irreducible) representations. With F = Q, show that VX is the direct sum of
a one-dimensional representation and a two-dimensional irreducible representation. With F = F3 (the
finite field of three elements), VX cannot be written as the direct sum of irreducible representations.

Incidentally, the permutation representation arising from G acting on itself by left multiplicaiton is
called the regular representation of G.

Notice that this exercise and also exercise 1 show that the restriction on F being algebraically closed
is necessary for the result in exercise 3. This exercise also shows that the restriction on characteristic
is necessary for Maschke’s Theorem on complete reducibility.

6. Let G act on the finite set X. A few facts to recall about group actions: the set X will decompose
under G into orbits O1, . . . ,Om. If we consider the action of G on any orbit Oi, the action is transitive,
and we can identify the action with the action of G on the set of left cosets G/Hx, where Hx is the
stabilizer of an element x ∈ Oi. Recall, Hx = {h ∈ G |h.x = x}. Another useful fact is that x, y ∈ Oi,
with y = g.x, then Hy = gHxg

−1.

For g ∈ G, define Fix(g) = {x ∈ X | g.x = x}.

(a) Show that
1

|G|
∑
g∈G
|Fix(g)| = m,

the number of orbits of G on X. This is due to Frobenius, but is often called Burnside’s Lemma.

Hint: First, it is enough to prove this for a transitive action (why?). That is, we may assume
X = O1. Now show that

∑
g∈G |Fix(g)| = |G| by instead showing that

∑
x∈X |Hx| = |G|.
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(b) Let K be the group of rotational symmetries of a cube. That is, K is set of all rotations (about
the center of the cube) which take the cube to itself. Show that K has 24 elements: the identity;
3 rotations of order 2 about an axis through the center a face; 6 rotations of order 4 about an axis
through the center a face; 8 rotations of order 3 about an axis through a vertex; and 6 rotations
of order 2 about an axis through the center an edge. (You might also show that K is isomorphic
to S4).

(c) You have q colors to paint the faces of the cube. Each face can be any of the q colors. Two of
the possible q6 coloring are considered equivalent if they are indistinguishable as pieces of artwork
(that is, up to the action of the group K from the previous part).

Use Burnside’s Lemma to count the number of equivalent colorings of the cube. A variant of this
problem was part of a written quiz Google asked prospective applicants to complete (circa 2005).
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