Lectures on Representation Theory of Finite Groups, Problem Sheet 1

Throughout, G is a finite group with identity element e. Recall C_{n} is the cylic group with n elements; S_{n} is the symmetric group of permutations on n letters; D_{n} is the group of all rotation and reflection symmetries of the regular n-gon.

The cardinality of a set X is denoted $|X|$.

1. Consider the representations $\pi_{k}: C_{n} \rightarrow G L_{2}(\mathbb{R})$ of C_{n} defined by

$$
\pi_{k}\left(x^{j}\right)=\left(\begin{array}{c}
\cos \left(\frac{2 \pi j k}{n}\right) \\
-\sin \left(\frac{2 \pi j k}{n}\right) \\
-\cos \left(\frac{2 \pi j k}{n}\right)
\end{array}\right)
$$

where $k \in\{0,1,2, \ldots, n-1\}$ and x is a generator of C_{n}. Notice that the matrix above is a clockwise rotation by $\frac{2 \pi j k}{n}$ radians.
(a) Show that over \mathbb{C}, π_{k} is reducible for each k by finding a one-dimensional subrepresentation. Indeed, π_{k} is the direct sum of two one-dimensional subrepresentations. (Hint: it is enough to focus on the case $j=1$.)
(b) Show that for each k, π_{k} is irreducible as a representation over \mathbb{R}, except when $k=0$ or $k=\frac{n}{2}$ when n is even.
(c) Show that π_{k} and π_{n-k} are equivalent as representations over \mathbb{R} (and hence also \mathbb{C}) by finding a real 2×2 matrix Q such that

$$
Q \pi_{k} Q^{-1}=\pi_{n-k}
$$

as homomorphisms from C_{n} to $G L_{2}(\mathbb{R})$.
2. Let \mathbb{H} be the quaternion algebra over the rational numbers. So \mathbb{H} is a 4 -dimensional vector space over \mathbb{Q} with basis $1, i, j, k$ and the multiplication is given by $i^{2}=j^{2}=k^{2}=-1, i j=k=-j i, j k=i=-k j$, and $k i=j=-k i$. Furthermore, the line spanned by 1 defines a copy of the field \mathbb{Q} in \mathbb{H} which is exactly the center of \mathbb{H}.
Let Q_{8} be the group of 8 elements, $\pm 1, \pm i, \pm j, \pm k$, with multiplication defined from \mathbb{H}. This is called the quaternion group.
Notice that the action of an element $x \in Q_{8}$ by left multiplication on \mathbb{H} can be viewed as a \mathbb{Q}-linear transformation of the underlying 4-dimensional rational vector space. Furthermore, left multiplication on \mathbb{H} defines a 4 -dimensional representation π of Q_{8} over \mathbb{Q}.
(a) Write down the matrix for $\pi(i)$ relative to the standard basis $\{1, i, j, k\}$ of \mathbb{H}.
(b) Show that $1 \pm \sqrt{-1} i$ and $j \pm \sqrt{-1} k$ are eigenvectors for $\pi(i)$ over \mathbb{C}.
(c) Show that $1-\sqrt{-1} i$ and $j+\sqrt{-1} k$ span a subrepresentation of π, where we are now viewing π as a complex representation. Write down the 2×2 complex matrices for each element of Q_{8} relative to this basis of the subrepresentation.
3. Let F be an algebraically closed field (but no restriction on the characteristic). Show that every irreducible representation defined over F of an abelian group is one-dimensional.

Hint: Let V be an irreducible representation of G. First, pick some $g \in G$. Since F is algebraically closed, g has a nonzero eigenspace on V, say of eigenvalue λ. So $E_{\lambda}=\{v \in V \mid g \cdot v=\lambda v\}$ is nonzero. Show that E_{λ} is preserved by all $g^{\prime} \in G$. In other words, E_{λ} is a subrepresentation of V. Conclude that $V=E_{\lambda}$ and further that $V=E_{\lambda}$ cannot be irreducible unless it is one-dimensional.
4. (I suggest reading this exercise for background, but not spending time on its details, which are fairly straightforward, but not especially enlightening)
Recall the definition of a group action. A group action for a group G acting on a set X refers to a map

$$
\psi: G \times X \rightarrow X
$$

usually written $\psi(g, x)=g \cdot x$, satisfying two axioms: $e \cdot x=x$ and $(g h) \cdot x=g \cdot(h \cdot x)$. Here, of course, $x \in X$ and $g, h \in G$.
Let $\operatorname{Aut}(X)$ be the group of invertible maps from X to itself, with multiplication given by composition of maps. Show that a group action defines a homomorphism of groups

$$
\pi: G \rightarrow \operatorname{Aut}(X)
$$

and conversely, that every such homomorphism defines a group action. Furthermore, if $|X|=n$, and we identify X with $\{1,2, \ldots, n\}$, then an action of G on X is just a homomorphism of groups $\pi: G \rightarrow S_{n}$. Notice that these results are analogous to our definition of a group representation: instead of $\operatorname{Aut}(X)$ and S_{n} for a group action, the target groups are replaced by $G L(V)$ and $G L_{n}(F)$, where V is a vector space over the field F.
5. Every group action of G on a set X gives rise to a representation of G. Namely, let V_{X} be a vector space over a field F with a basis

$$
\left\{e_{x}\right\}_{x \in X}
$$

In other words, the set X indexes a basis of V_{X}. Then the corresponding group representation is defined by

$$
g \cdot\left(e_{x}\right):=e_{g \cdot x}
$$

and extending linearly. It is called the permutation representation of G coming from the action on X.
Let C_{3} act on itself by left multiplication, i.e., $X=C_{3}$. With $F=\mathbb{C}$, write V_{X} as the direct sum of three one-dimensional (hence, irreducible) representations. With $F=\mathbb{Q}$, show that V_{X} is the direct sum of a one-dimensional representation and a two-dimensional irreducible representation. With $F=\mathbb{F}_{3}$ (the finite field of three elements), V_{X} cannot be written as the direct sum of irreducible representations.
Incidentally, the permutation representation arising from G acting on itself by left multiplicaiton is called the regular representation of G.
Notice that this exercise and also exercise 1 show that the restriction on F being algebraically closed is necessary for the result in exercise 3. This exercise also shows that the restriction on characteristic is necessary for Maschke's Theorem on complete reducibility.
6. Let G act on the finite set X. A few facts to recall about group actions: the set X will decompose under G into orbits $\mathcal{O}_{1}, \ldots, \mathcal{O}_{m}$. If we consider the action of G on any orbit \mathcal{O}_{i}, the action is transitive, and we can identify the action with the action of G on the set of left cosets G / H_{x}, where H_{x} is the stabilizer of an element $x \in \mathcal{O}_{i}$. Recall, $H_{x}=\{h \in G \mid h . x=x\}$. Another useful fact is that $x, y \in \mathcal{O}_{i}$, with $y=g \cdot x$, then $H_{y}=g H_{x} g^{-1}$.

For $g \in G$, define $\operatorname{Fix}(g)=\{x \in X \mid g \cdot x=x\}$.
(a) Show that

$$
\frac{1}{|G|} \sum_{g \in G}|\operatorname{Fix}(g)|=m
$$

the number of orbits of G on X. This is due to Frobenius, but is often called Burnside's Lemma. Hint: First, it is enough to prove this for a transitive action (why?). That is, we may assume $X=\mathcal{O}_{1}$. Now show that $\sum_{g \in G}|\operatorname{Fix}(g)|=|G|$ by instead showing that $\sum_{x \in X}\left|H_{x}\right|=|G|$.
(b) Let K be the group of rotational symmetries of a cube. That is, K is set of all rotations (about the center of the cube) which take the cube to itself. Show that K has 24 elements: the identity; 3 rotations of order 2 about an axis through the center a face; 6 rotations of order 4 about an axis through the center a face; 8 rotations of order 3 about an axis through a vertex; and 6 rotations of order 2 about an axis through the center an edge. (You might also show that K is isomorphic to S_{4}).
(c) You have q colors to paint the faces of the cube. Each face can be any of the q colors. Two of the possible q^{6} coloring are considered equivalent if they are indistinguishable as pieces of artwork (that is, up to the action of the group K from the previous part).
Use Burnside's Lemma to count the number of equivalent colorings of the cube. A variant of this problem was part of a written quiz Google asked prospective applicants to complete (circa 2005).

