Lectures on Representation Theory of Finite Groups, Problem Sheet 1

Throughout, G is a finite group with identity element e. Recall C,, is the cylic group with n elements; S,
is the symmetric group of permutations on n letters; D, is the group of all rotation and reflection symmetries
of the regular n-gon.

The cardinality of a set X is denoted |X]|.

1. Consider the representations 7y, : C,, = GL2(R) of C,, defined by

i cos(y) sin(ﬁ#)
(@) = (k) con 2828
where k£ € {0,1,2,...,n — 1} and = is a generator of C,,. Notice that the matrix above is a clockwise
rotation by % radians.

(a) Show that over C, mj is reducible for each k by finding a one-dimensional subrepresentation.
Indeed, 7y is the direct sum of two one-dimensional subrepresentations. (Hint: it is enough to
focus on the case j = 1.)

n

(b) Show that for each k, 7, is irreducible as a representation over R, except when & =0 or k = 3
when n is even.

(¢) Show that m;, and m,_j are equivalent as representations over R (and hence also C) by finding a
real 2 X 2 matrix @ such that
Qﬂ-kQ_l = Tn—k

as homomorphisms from C,, to GL3(R).

2. Let H be the quaternion algebra over the rational numbers. So H is a 4-dimensional vector space over
Q with basis 1, 7, 7, k and the multiplication is given by i = j2 = k? = —1,ij = k = —ji, jk =1 = —kj,
and ki = j = —ki. Furthermore, the line spanned by 1 defines a copy of the field Q in H which is
exactly the center of H.

Let Qg be the group of 8 elements, +1, 4+, +j, £k, with multiplication defined from H. This is called
the quaternion group.

Notice that the action of an element x € Qg by left multiplication on H can be viewed as a Q-linear
transformation of the underlying 4-dimensional rational vector space. Furthermore, left multiplication
on H defines a 4-dimensional representation 7 of Qg over Q.

(a) Write down the matrix for 7 () relative to the standard basis {1,4, j, k} of H.
(b) Show that 1+ +/—14 and j ++/—1k are eigenvectors for 7 (i) over C.

(¢) Show that 1 —+/—14 and j + +/—1k span a subrepresentation of 7, where we are now viewing
7 as a complex representation. Write down the 2 x 2 complex matrices for each element of Qg
relative to this basis of the subrepresentation.

3. Let F' be an algebraically closed field (but no restriction on the characteristic). Show that every
irreducible representation defined over F' of an abelian group is one-dimensional.

Hint: Let V' be an irreducible representation of G. First, pick some g € G. Since F is algebraically
closed, g has a nonzero eigenspace on V, say of eigenvalue A. So E)\ = {v € V' |g.v = Av} is nonzero.
Show that F, is preserved by all ¢’ € G. In other words, E) is a subrepresentation of V. Conclude
that V = FE) and further that V = E) cannot be irreducible unless it is one-dimensional.



4. (I suggest reading this exercise for background, but not spending time on its details,
which are fairly straightforward, but not especially enlightening)

Recall the definition of a group action. A group action for a group G acting on a set X refers to a
map

P :Gx X — X,

usually written 1(g,x) = g.x, satisfying two axioms: e.x = z and (gh).x = g.(h.z). Here, of course,
r € X and g,h € G.

Let Aut(X) be the group of invertible maps from X to itself, with multiplication given by composition
of maps. Show that a group action defines a homomorphism of groups

m: G — Aut(X)

and conversely, that every such homomorphism defines a group action. Furthermore, if | X| = n, and we
identify X with {1,2,...,n}, then an action of G on X is just a homomorphism of groups = : G — S,,.

Notice that these results are analogous to our definition of a group representation: instead of Aut(X)
and S,, for a group action, the target groups are replaced by GL(V) and GL,,(F), where V is a vector
space over the field F'.

5. Every group action of G on a set X gives rise to a representation of G. Namely, let Vx be a vector
space over a field F' with a basis

{em}z€X~

In other words, the set X indexes a basis of Vx. Then the corresponding group representation is
defined by

g-(ez) == €g.x

and extending linearly. It is called the permutation representation of G coming from the action
on X.

Let C'5 act on itself by left multiplication, i.e., X = C'5. With F' = C, write Vx as the direct sum of three
one-dimensional (hence, irreducible) representations. With F' = Q, show that Vx is the direct sum of
a one-dimensional representation and a two-dimensional irreducible representation. With F' = F3 (the
finite field of three elements), Vx cannot be written as the direct sum of irreducible representations.

Incidentally, the permutation representation arising from G acting on itself by left multiplicaiton is
called the regular representation of G.

Notice that this exercise and also exercise 1 show that the restriction on F' being algebraically closed
is necessary for the result in exercise 3. This exercise also shows that the restriction on characteristic
is necessary for Maschke’s Theorem on complete reducibility.

6. Let G act on the finite set X. A few facts to recall about group actions: the set X will decompose
under G into orbits O, ..., 0,,. If we consider the action of G on any orbit O;, the action is transitive,
and we can identify the action with the action of G on the set of left cosets G/H,, where H, is the
stabilizer of an element x € O;. Recall, H, = {h € G| h.x = z}. Another useful fact is that z,y € O,
with y = g.z, then H, = gH,g™".

For g € G, define Fix(g) = {z € X | g.x = z}.

(a) Show that
1

6] 22 [Fix(g)| = m.

geG
the number of orbits of G on X. This is due to Frobenius, but is often called Burnside’s Lemma.

Hint: First, it is enough to prove this for a transitive action (why?). That is, we may assume
X = 01. Now show that . |Fix(g)| = |G| by instead showing that >,y [H.| = |G].



(b)

Let K be the group of rotational symmetries of a cube. That is, K is set of all rotations (about
the center of the cube) which take the cube to itself. Show that K has 24 elements: the identity;
3 rotations of order 2 about an axis through the center a face; 6 rotations of order 4 about an axis
through the center a face; 8 rotations of order 3 about an axis through a vertex; and 6 rotations
of order 2 about an axis through the center an edge. (You might also show that K is isomorphic

to 54)

You have ¢ colors to paint the faces of the cube. Each face can be any of the ¢ colors. Two of
the possible ¢ coloring are considered equivalent if they are indistinguishable as pieces of artwork
(that is, up to the action of the group K from the previous part).

Use Burnside’s Lemma to count the number of equivalent colorings of the cube. A variant of this
problem was part of a written quiz Google asked prospective applicants to complete (circa 2005).



