Lectures on Representation Theory of Finite Groups, Problem Sheet 2

Throughout, G is a finite group with identity element e. Recall C_{n} is the cylic group with n elements; S_{n} is the symmetric group of permutations on n letters; D_{n} is the group of all rotation and reflection symmetries of the regular n-gon.

The cardinality of a set X is denoted $|X|$.

1. Let G act on the finite set X. Let (V, π) be the corresponding permutation representation (see Problem Sheet 1). Define

$$
V^{G}=\{v \in V \mid g \cdot v=v\} .
$$

This is called the invariant space of G on V. It is clearly a subrepresentation of V and it is a direct sum of trivial representations of G.
(a) Show that the dimension of V^{G} equals the number of orbits of G on X.
(b) For $g \in G$ note that $\pi(g)$ is a permutation matrix relative to the basis indexed by X. Conclude that the trace of $\pi(g)$ is equal to $|\operatorname{Fix}(g)|$.
(c) Use Exercise 6 on Problem Sheet 1 to conclude that

$$
\operatorname{dim}\left(V^{G}\right)=\frac{1}{|G|} \sum_{g \in G} \operatorname{tr}(\pi(g))
$$

We will generalize this result to an arbitrary representation of G in the coming lectures.
2. (Classification of irreducible representations of a finite abelian group G over $F=\mathbb{C}$). Let G be a finite abelian group. From Problem Sheet 1, we know that every irreducible representation of G is one-dimensional. From Lecture 1, we know how to classify the one-dimensional representations of the cyclic group C_{n}. They are given by assigning a generator $x \in C_{n}$ to any of the n-th roots of unity in \mathbb{C}. Let us write $\operatorname{Hom}(G, A)$ for the set of group homomorphisms of G to an abelian group A. When A is the multiplicative group F^{\times}of a field, $\operatorname{Hom}\left(G, F^{\times}\right)$is called the character group (or characters) of G and is denoted \widehat{G}, for any group G (not just abelian).
(a) Show that $\operatorname{Hom}(G, A)$ is itself an abelian group by defining $f_{1} \star f_{2}$ by

$$
f_{1} \star f_{2}(g):=f_{1}(g) f_{2}(g)
$$

(So the only thing to show is that $f_{1} \star f_{2}$ is again a homomorphism from G to A.)
(b) Convince yourself that the one-dimensional representations of any G are nothing but the set $\operatorname{Hom}\left(G, \mathbb{C}^{*}\right)$. So the one-dimensional representations have the additional structure of an abelian group. Convince yourself that

$$
\operatorname{Hom}\left(C_{n}, \mathbb{C}^{*}\right) \cong \operatorname{Hom}\left(C_{n}, C_{n}\right) \cong C_{n}
$$

These isomorphisms are not canonical since they require choosing generators of the various groups, which are not unique.
(c) Show that $\operatorname{Hom}(G \times H, A) \cong \operatorname{Hom}(G, A) \times \operatorname{Hom}(H, A)$ for two groups G, H.
(d) Since every finite abelian group is a direct product of cyclic groups, use the previous results to show that $\widehat{G} \cong G$ for G a finite abelian group. The isomorphism is not canonical, but it does give us a way to parametrize the irreducible representations of G.
(e) Write down the character table for the abelian groups C_{4} and $C_{2} \times C_{2}$.
3. (Classification of one-dimensional representations of an arbitrary finite group G over $F=\mathbb{C}$).
(a) (General useful fact) Let H be a normal subgroup of G. Let $p: G \rightarrow G / H$ be the quotient homomorphism.
Show that any representation of the quotient group G / H defines a representation of G (hint: compose with p).
Conversely, show that any representation π of G with H in the kernel of π defines a representation of G / H. Conclude that there is a bijective correspondence between representations of G / H and representations of G with H in the kernel of the representation. (This is an explicit use of the basic properties of quotient groups, embedded in the isomorphism theorems for quotient groups).
(b) Let $\pi: G \rightarrow \mathbb{C}^{*}$ be a one-dimensional representation of G (that is, a character of G). Show that the commutator subgroup of G lies in the kernel of π. Recall the commutator subgroup of G denoted $[G, G]$ is the subgroup of G generated by the set of pure commutators

$$
\left\{x y x^{-1} y^{-1} \mid x, y \in G\right\}
$$

Conclude that the one-dimensional representations of G coincide with those of $G /[G, G]$.
(c) More is true. Show that $G /[G, G]$ is abelian. Therefore the one-dimensional representations of G are equal in cardinality to $|G /[G, G]|$ and are easily found once we know $G /[G, G]$.
You might also prove: $[G, G]$ is contained in any subgroup H of G where G / H is abelian.
(d) Let $G=D_{4}$. Denote by $Z(G)$ the center of a group. Show that $[G, G]=Z(G)$ is of order two and conclude that $G /[G, G]$ is isomorphic to $C_{2} \times C_{2}$. Use this to find the one-dimensional representations of D_{4}. (Facts from group theory: groups of order 4 are abelian and $G / Z(G)$ cannot be cyclic if G is nonabelian). Do the same for $G=Q_{8}$ (see Problem Sheet 1 for the definition).
(e) Let $G=S_{n}$. Recall that S_{n} is generated by the simple transpositions $(i i+1)$ and that the simple transpositions lie in the same conjugacy class. Use this to show that S_{n} has at most two 1-dimensional representations. Use the determinant to show that S_{n} does in fact have a nontrivial representation (called the sign representation). What does this say about the relationship between the commutator subgroup of S_{n} and the index two subgroup A_{n} (the alternating group)?

Some problems for after Lecture 4 (some of these may be done in lecture):

1. Find the character table for D_{4} and Q_{8}.
2. Find the character table for A_{4}.
3. Recall that S_{n} has a natural permutation representation on $V=\mathbb{C}^{n}$, with character χ_{V}, which decomposes into a copy of the trivial representation spanned by $\sum e_{i}$ and another representation $V_{\text {std }}$ given by

$$
\left\{v=\sum a_{i} e_{i} \in V \mid \sum a_{i}=0\right\}
$$

This latter is called the standard or defining representation of S_{n}. Here are two proofs that $V_{s t d}$ is irreducible:
(a) Pick any $v \in V_{\text {std }}$ nonzero and show that the set of vectors $\left\{\sigma . v \mid \sigma \in S_{n}\right\}$ span $V_{s t d}$. (Hint: first, show that the set contains a vector with $a_{i} \neq a_{i+1}$ for any i. Second, show that $e_{i}-e_{i+1}$ lies in the span of the set by using the simple transposition $(i i+1)$.)
(b) The action of S_{n} has one orbit on $X=\{1,2, \ldots, n\}$. Show that it has two orbits on $X \times X$. Next, show that the permutation representation of S_{n} on $X \times X$ has character ($\left.\chi_{V}\right)^{2}$ (see Problem 1(b) above). Since the character χ_{V} is real, we may also interprete $\left(\chi_{V}\right)^{2}$ as $\left\langle\chi_{V}, \chi_{V}\right\rangle$, which is the number of irreducible representations in V. Conclude, from Problem 1, that V has two (distinct) irreducible constituents.
4. Find the character table for S_{5} and S_{6}. (Hint: recall that $\operatorname{Hom}(V, W)$ is a representation and its character is $\chi_{V} \bar{\chi}_{W}$.)

