Lectures on Representation Theory of Finite Groups, Problem Sheet 2

Throughout, G is a finite group with identity element e. Recall C_n is the cylic group with n elements; S_n is the symmetric group of permutations on n letters; D_n is the group of all rotation and reflection symmetries of the regular n-gon.

The cardinality of a set X is denoted |X|.

1. Let G act on the finite set X. Let (V, π) be the corresponding permutation representation (see Problem Sheet 1). Define

$$V^G = \{ v \in V \mid g.v = v \}$$

This is called the invariant space of G on V. It is clearly a subrepresentation of V and it is a direct sum of trivial representations of G.

- (a) Show that the dimension of V^G equals the number of orbits of G on X.
- (b) For $g \in G$ note that $\pi(g)$ is a permutation matrix relative to the basis indexed by X. Conclude that the trace of $\pi(g)$ is equal to |Fix(g)|.
- (c) Use Exercise 6 on Problem Sheet 1 to conclude that

$$\dim(V^G) = \frac{1}{|G|} \sum_{g \in G} \operatorname{tr}(\pi(g))$$

We will generalize this result to an arbitrary representation of G in the coming lectures.

- 2. (Classification of irreducible representations of a finite abelian group G over $F = \mathbb{C}$). Let G be a finite abelian group. From Problem Sheet 1, we know that every irreducible representation of G is one-dimensional. From Lecture 1, we know how to classify the one-dimensional representations of the cyclic group C_n . They are given by assigning a generator $x \in C_n$ to any of the *n*-th roots of unity in \mathbb{C} . Let us write $\operatorname{Hom}(G, A)$ for the set of group homomorphisms of G to an abelian group A. When A is the multiplicative group F^{\times} of a field, $\operatorname{Hom}(G, F^{\times})$ is called the character group (or characters) of G and is denoted \widehat{G} , for any group G (not just abelian).
 - (a) Show that Hom(G, A) is itself an abelian group by defining $f_1 \star f_2$ by

$$f_1 \star f_2(g) := f_1(g) f_2(g).$$

(So the only thing to show is that $f_1 \star f_2$ is again a homomorphism from G to A.)

(b) Convince yourself that the one-dimensional representations of any G are nothing but the set $\operatorname{Hom}(G, \mathbb{C}^*)$. So the one-dimensional representations have the additional structure of an abelian group. Convince yourself that

$$\operatorname{Hom}(C_n, \mathbb{C}^*) \cong \operatorname{Hom}(C_n, C_n) \cong C_n$$

These isomorphisms are not canonical since they require choosing generators of the various groups, which are not unique.

- (c) Show that $\operatorname{Hom}(G \times H, A) \cong \operatorname{Hom}(G, A) \times \operatorname{Hom}(H, A)$ for two groups G, H.
- (d) Since every finite abelian group is a direct product of cyclic groups, use the previous results to show that $\hat{G} \cong G$ for G a finite abelian group. The isomorphism is not canonical, but it does give us a way to parametrize the irreducible representations of G.
- (e) Write down the character table for the abelian groups C_4 and $C_2 \times C_2$.
- 3. (Classification of one-dimensional representations of an arbitrary finite group G over $F = \mathbb{C}$).

(a) (General useful fact) Let H be a normal subgroup of G. Let $p: G \to G/H$ be the quotient homomorphism.

Show that any representation of the quotient group G/H defines a representation of G (hint: compose with p).

Conversely, show that any representation π of G with H in the kernel of π defines a representation of G/H. Conclude that there is a bijective correspondence between representations of G/H and representations of G with H in the kernel of the representation. (This is an explicit use of the basic properties of quotient groups, embedded in the isomorphism theorems for quotient groups).

(b) Let $\pi: G \to \mathbb{C}^*$ be a one-dimensional representation of G (that is, a *character* of G). Show that the commutator subgroup of G lies in the kernel of π . Recall the commutator subgroup of G denoted [G, G] is the subgroup of G generated by the set of pure commutators

$$\{xyx^{-1}y^{-1} \mid x, y \in G\}.$$

Conclude that the one-dimensional representations of G coincide with those of G/[G,G].

(c) More is true. Show that G/[G, G] is abelian. Therefore the one-dimensional representations of G are equal in cardinality to |G/[G, G]| and are easily found once we know G/[G, G].

You might also prove: [G, G] is contained in any subgroup H of G where G/H is abelian.

- (d) Let $G = D_4$. Denote by Z(G) the center of a group. Show that [G, G] = Z(G) is of order two and conclude that G/[G, G] is isomorphic to $C_2 \times C_2$. Use this to find the one-dimensional representations of D_4 . (Facts from group theory: groups of order 4 are abelian and G/Z(G)cannot be cyclic if G is nonabelian). Do the same for $G = Q_8$ (see Problem Sheet 1 for the definition).
- (e) Let $G = S_n$. Recall that S_n is generated by the simple transpositions (ii + 1) and that the simple transpositions lie in the same conjugacy class. Use this to show that S_n has at most two 1-dimensional representations. Use the determinant to show that S_n does in fact have a non-trivial representation (called the sign representation). What does this say about the relationship between the commutator subgroup of S_n and the index two subgroup A_n (the alternating group)?

Some problems for after Lecture 4 (some of these may be done in lecture):

- 1. Find the character table for D_4 and Q_8 .
- 2. Find the character table for A_4 .
- 3. Recall that S_n has a natural permutation representation on $V = \mathbb{C}^n$, with character χ_V , which decomposes into a copy of the trivial representation spanned by $\sum e_i$ and another representation V_{std} given by

$$\{v = \sum a_i e_i \in V \mid \sum a_i = 0\}.$$

This latter is called the standard or defining representation of S_n . Here are two proofs that V_{std} is irreducible:

- (a) Pick any $v \in V_{std}$ nonzero and show that the set of vectors $\{\sigma.v \mid \sigma \in S_n\}$ span V_{std} . (Hint: first, show that the set contains a vector with $a_i \neq a_{i+1}$ for any *i*. Second, show that $e_i e_{i+1}$ lies in the span of the set by using the simple transposition (ii + 1).)
- (b) The action of S_n has one orbit on $X = \{1, 2, ..., n\}$. Show that it has two orbits on $X \times X$. Next, show that the permutation representation of S_n on $X \times X$ has character $(\chi_V)^2$ (see Problem 1(b) above). Since the character χ_V is real, we may also interprete $(\chi_V)^2$ as $\langle \chi_V, \chi_V \rangle$, which is the number of irreducible representations in V. Conclude, from Problem 1, that V has two (distinct) irreducible constituents.
- 4. Find the character table for S_5 and S_6 . (Hint: recall that Hom(V, W) is a representation and its character is $\chi_V \bar{\chi}_W$.)