Problem Set 1 for Etingof's course

It would be very helpful that you read sections 1.1 through 1.8 of the lecture notes available at:
http://ocw.mit.edu/courses/mathematics/18-712-introduction-to-repres entation-theory-fall-2010/lecture-notes/
(you'll find a link in the "Exercises and Notes" section on the webpage of the conference). The problems below are problems 1.33 and 1.38 in the above text.

1. The path algebra P_{Q} of a quiver is the algebra whose basis is formed by oriented paths in Q, including the trivial paths p_{i} corresponding to the vertices of Q, and multiplication is by concatenation of paths: $a b$ is the path obtained by first tracing b and then a. If two paths cannot be concatenated, the product is defined to be zero.

Show that the algebra P_{Q} is generated by p_{i}, for $i \in I$ and a_{h} for $h \in E$ (where I is the set of vertices and E is the set of edges) with the defining relations:

1. $p_{i}^{2}=p_{i}, p_{i} p_{j}=0$ for $i \neq j$,
2. $a_{h} p_{h^{\prime}}=a_{h}, a_{h} p_{j}=0$ for $j \neq h^{\prime}$
3. $p_{h^{\prime \prime}} a_{h}=a_{h}, p_{i} a_{h}=0$ for $i \neq h^{\prime \prime}$
4. Let A be a \mathbb{Z}_{+}-graded algebra, i.e. $A=\oplus_{n \geq 0} A[n]$, and $A[n] \cdot A[m] \subset A[n+m]$. If $A[n]$ is finite dimensional, it is useful to consider the HIbert series $h_{A}(t)=\sum \operatorname{dim} A[n] t^{n}$ (the generating function of dimensions of $A[n]$). Often this series converges to a rational function, and the answer is written in the form of such a function. For example, if $A=k[x]$ and $\operatorname{deg}\left(x^{n}\right)=n$, then

$$
h_{A}(t)=1+t+t^{2}+\ldots t^{n}+\ldots=\frac{1}{1-t}
$$

Find the Hilbert series of:
(a) $A=k\left[x_{1}, \ldots, x_{m}\right]$ (where the grading is by degree of polynomials);
(b) $A=k\left\langle x_{1}, \ldots, x_{m}\right\rangle$ (the grading is by length of words);
(c) A is the exterior (=Grassmann) algebra $\Lambda_{k}\left[x_{1}, \ldots, x_{m}\right]$, generated over some field k by x_{1}, \ldots, x_{m} with the defining relations $x_{i} x_{j}+x_{j} x_{i}=0$ and $x_{i}^{2}=0$ for all i, j (the grading is by degree).
(d) A is the path algebra P_{Q} of a quiver Q (the grading is defined by $\operatorname{deg}\left(p_{i}\right)=0$, $\left.\operatorname{deg}\left(a_{h}\right)=1\right)$. Hint: The closed answer is written in terms of the adjacency matrix M_{Q} of Q.

