5 Quiver Representations

5.1 Problems

Problem 5.1. Field embeddings. Recall that $k\left(y_{1}, \ldots, y_{m}\right)$ denotes the field of rational functions of y_{1}, \ldots, y_{m} over a field k. Let $f: k\left[x_{1}, \ldots, x_{n}\right] \rightarrow k\left(y_{1}, \ldots, y_{m}\right)$ be an injective k-algebra homomorphism. Show that $m \geq n$. (Look at the growth of dimensions of the spaces W_{N} of polynomials of degree N in x_{i} and their images under f as $N \rightarrow \infty$). Deduce that if $f: k\left(x_{1}, \ldots, x_{n}\right) \rightarrow k\left(y_{1}, \ldots, y_{m}\right)$ is a field embedding, then $m \geq n$.

Problem 5.2. Some algebraic geometry.

Let k be an algebraically closed field, and $G=G L_{n}(k)$. Let V be a polynomial representation of G. Show that if G has finitely many orbits on V then $\operatorname{dim}(V) \leq n^{2}$. Namely:
(a) Let x_{1}, \ldots, x_{N} be linear coordinates on V. Let us say that a subset X of V is Zariski dense if any polynomial $f\left(x_{1}, \ldots, x_{N}\right)$ which vanishes on X is zero (coefficientwise). Show that if G has finitely many orbits on V then G has at least one Zariski dense orbit on V.
(b) Use (a) to construct a field embedding $k\left(x_{1}, \ldots, x_{N}\right) \rightarrow k\left(g_{p q}\right)$, then use Problem 5.1.
(c) generalize the result of this problem to the case when $G=G L_{n_{1}}(k) \times \ldots \times G L_{n_{m}}(k)$.

Problem 5.3. Dynkin diagrams.

Let Γ be a graph, i.e., a finite set of points (vertices) connected with a certain number of edges (we allow multiple edges). We assume that Γ is connected (any vertex can be connected to any other by a path of edges) and has no self-loops (edges from a vertex to itself). Suppose the vertices of Γ are labeled by integers $1, \ldots, N$. Then one can assign to Γ an $N \times N$ matrix $R_{\Gamma}=\left(r_{i j}\right)$, where $r_{i j}$ is the number of edges connecting vertices i and j. This matrix is obviously symmetric, and is called the adjacency matrix. Define the matrix $A_{\Gamma}=2 I-R_{\Gamma}$, where I is the identity matrix.

Main definition: Γ is said to be a Dynkin diagram if the quadratic from on \mathbb{R}^{N} with matrix A_{Γ} is positive definite.

Dynkin diagrams appear in many areas of mathematics (singularity theory, Lie algebras, representation theory, algebraic geometry, mathematical physics, etc.) In this problem you will get a complete classification of Dynkin diagrams. Namely, you will prove

Theorem. Γ is a Dynkin diagram if and only if it is one on the following graphs:

- A_{n} :
- D_{n} :
$0-0 \cdot \cdots-0$

- E_{6} :

- E_{7} :
- E_{8} :

(a) Compute the determinant of A_{Γ} where $\Gamma=A_{N}, D_{N}$. (Use the row decomposition rule, and write down a recursive equation for it). Deduce by Sylvester criterion ${ }^{7}$ that A_{N}, D_{N} are Dynkin diagrams. ${ }^{8}$
(b) Compute the determinants of A_{Γ} for E_{6}, E_{7}, E_{8} (use row decomposition and reduce to (a)). Show they are Dynkin diagrams.
(c) Show that if Γ is a Dynkin diagram, it cannot have cycles. For this, show that $\operatorname{det}\left(A_{\Gamma}\right)=0$ for a graph Γ below ${ }^{9}$

(show that the sum of rows is 0). Thus Γ has to be a tree.
(d) Show that if Γ is a Dynkin diagram, it cannot have vertices with 4 or more incoming edges, and that Γ can have no more than one vertex with 3 incoming edges. For this, show that $\operatorname{det}\left(A_{\Gamma}\right)=0$ for a graph Γ below:

(e) Show that $\operatorname{det}\left(A_{\Gamma}\right)=0$ for all graphs Γ below:

[^0]
(f) Deduce from (a)-(e) the classification theorem for Dynkin diagrams.
(g) A (simply laced) affine Dynkin diagram is a connected graph without self-loops such that the quadratic form defined by A_{Γ} is positive semidefinite. Classify affine Dynkin diagrams. (Show that they are exactly the forbidden diagrams from (c)-(e)).

Problem 5.4. Let Q be a quiver with set of vertices D. We say that Q is of finite type if it has finitely many indecomposable representations. Let $b_{i j}$ be the number of edges from i to j in Q $(i, j \in D)$.

There is the following remarkable theorem, proved by P. Gabriel in early seventies.
Theorem. A connected quiver Q is of finite type if and only if the corresponding unoriented graph (i.e., with directions of arrows forgotten) is a Dynkin diagram.

In this problem you will prove the "only if" direction of this theorem (i.e., why other quivers are NOT of finite type).
(a) Show that if Q is of finite type then for any rational numbers $x_{i} \geq 0$ which are not simultaneously zero, one has $q\left(x_{1}, \ldots, x_{N}\right)>0$, where

$$
q\left(x_{1}, \ldots, x_{N}\right):=\sum_{i \in D} x_{i}^{2}-\frac{1}{2} \sum_{i, j \in D} b_{i j} x_{i} x_{j} .
$$

Hint. It suffices to check the result for integers: $x_{i}=n_{i}$. First assume that $n_{i} \geq 0$, and consider the space W of representations V of Q such that $\operatorname{dim} V_{i}=n_{i}$. Show that the group $\prod_{i} G L_{n_{i}}(k)$ acts with finitely many orbits on $W \oplus k$, and use Problem 5.2 to derive the inequality. Then deduce the result in the case when n_{i} are arbitrary integers.
(b) Deduce that q is a positive definite quadratic form.

Hint. Use the fact that \mathbb{Q} is dense in \mathbb{R}.
(c) Show that a quiver of finite type can have no self-loops. Then, using Problem 5.3, deduce the theorem.

Problem 5.5. Let $G \neq 1$ be a finite subgroup of $S U(2)$, and V be the 2-dimensional representation of G coming from its embedding into $S U(2)$. Let $V_{i}, i \in I$, be all the irreducible representations of G. Let $r_{i j}$ be the multiplicity of V_{i} in $V \otimes V_{j}$.
(a) Show that $r_{i j}=r_{j i}$.
(b) The McKay graph of $G, M(G)$, is the graph whose vertices are labeled by $i \in I$, and i is connected to j by $r_{i j}$ edges. Show that $M(G)$ is connected. (Use Problem 3.26)
(c) Show that $M(G)$ is an affine Dynkin graph (one of the "forbidden" graphs in Problem 5.3). For this, show that the matrix $a_{i j}=2 \delta_{i j}-r_{i j}$ is positive semidefinite but not definite, and use Problem 5.3.

Hint. Let $f=\sum x_{i} \chi_{V_{i}}$, where $\chi_{V_{i}}$ be the characters of V_{i}. Show directly that $\left(\left(2-\chi_{V}\right) f, f\right) \geq 0$. When is it equal to 0 ? Next, show that $M(G)$ has no self-loops, by using that if G is not cyclic then G contains the central element $-I d \in S U(2)$.
(d) Which groups from Problem 3.24 correspond to which diagrams?
(e) Using the McKay graph, find the dimensions of irreducible representations of all finite $G \subset S U(2)$ (namely, show that they are the numbers labeling the vertices of the affine Dynkin diagrams on our pictures). Compare with the results on subgroups of $S O(3)$ we obtained in Problem 3.24.

Problem 5.4' Let Q be a connected quiver, and assume that for any dimension vector d, the number of isomorphism classes of representations of Q over a finite field \mathbb{F}_{p} is independent of p for large enough primes p. Show that Q is a Dynkin diagram of type A, D, or E. Hint: This requires Problem 5.3.

[^0]: ${ }^{7}$ Recall the Sylvester criterion: a symmetric real matrix is positive definite if and only if all its upper left corner principal minors are positive.
 ${ }^{8}$ The Sylvester criterion says that a symmetric bilinear form $($,$) on \mathbb{R}^{N}$ is positive definite if and only if for any $k \leq N, \operatorname{det}_{1 \leq i, j \leq k}\left(e_{i}, e_{j}\right)>0$.
 ${ }^{9}$ Please ignore the numerical labels; they will be relevant for Problem 5.5 below.

