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5 Quiver Representations 

5.1 Problems 

Problem 5.1. Field embeddings. Recall that k(y1, ..., ym) denotes the field of rational functions 
of y1, ..., ym over a field k. Let f : k[x1, ..., xn] ⊃ k(y1, ..., ym) be an injective k-algebra homomor­
phism. Show that m ⊂ n. (Look at the growth of dimensions of the spaces WN of polynomials of 
degree N in xi and their images under f as N ⊃ ≤). Deduce that if f : k(x1, ..., xn) ⊃ k(y1, ..., ym) 
is a field embedding, then m ⊂ n. 

Problem 5.2. Some algebraic geometry. 

Let k be an algebraically closed field, and G = GLn(k). Let V be a polynomial representation 
of G. Show that if G has finitely many orbits on V then dim(V ) ∗ n2 . Namely: 

(a) Let x1, ..., xN be linear coordinates on V . Let us say that a subset X of V is Zariski dense 
if any polynomial f(x1, ..., xN ) which vanishes on X is zero (coefficientwise). Show that if G has 
finitely many orbits on V then G has at least one Zariski dense orbit on V . 

(b) Use (a) to construct a field embedding k(x1, ..., xN ) ⊃ k(gpq), then use Problem 5.1. 

(c) generalize the result of this problem to the case when G = GLn1 (k) × ... × GLnm (k). 

Problem 5.3. Dynkin diagrams. 

Let � be a graph, i.e., a finite set of points (vertices) connected with a certain number of edges 
(we allow multiple edges). We assume that � is connected (any vertex can be connected to any 
other by a path of edges) and has no self-loops (edges from a vertex to itself). Suppose the vertices 
of � are labeled by integers 1, ..., N . Then one can assign to � an N × N matrix R� = (rij ), where 
rij is the number of edges connecting vertices i and j. This matrix is obviously symmetric, and is 
called the adjacency matrix. Define the matrix A� = 2I − R�, where I is the identity matrix. 

Main definition: � is said to be a Dynkin diagram if the quadratic from on RN with matrix 
A� is positive definite. 

Dynkin diagrams appear in many areas of mathematics (singularity theory, Lie algebras, rep­
resentation theory, algebraic geometry, mathematical physics, etc.) In this problem you will get a 
complete classification of Dynkin diagrams. Namely, you will prove 

Theorem. � is a Dynkin diagram if and only if it is one on the following graphs: 

• An : �−−� · · · �−−� 

�−−� · · · �−−�
• Dn: �|

• E6 : �−−�−−�−−�−−�
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• E7 : �−−�−−�−−�−−�−−�


�−−�−−�−−�−−�−−�−−�
• E8 : �|

(a) Compute the determinant of A� where � = AN , DN . (Use the row decomposition rule, and 
write down a recursive equation for it). Deduce by Sylvester criterion7 that AN , DN are Dynkin 
diagrams.8 

(b) Compute the determinants of A� for E6, E7, E8 (use row decomposition and reduce to (a)). 
Show they are Dynkin diagrams. 

(c) Show that if � is a Dynkin diagram, it cannot have cycles. For this, show that det(A�) = 0 
for a graph � below 9 

1 1 1 

1 

1 

(show that the sum of rows is 0). Thus � has to be a tree. 

(d) Show that if � is a Dynkin diagram, it cannot have vertices with 4 or more incoming edges, 
and that � can have no more than one vertex with 3 incoming edges. For this, show that det(A�) = 0 
for a graph � below: 

1 1 

2 2 

1 1 

(e) Show that det(A�) = 0 for all graphs � below: 

1 

2 

1 2 3 2 1


2


1 2 3 4 3 2 1 
7Recall the Sylvester criterion: a symmetric real matrix is positive definite if and only if all its upper left corner 

principal minors are positive. 
8The Sylvester criterion says that a symmetric bilinear form (, ) on RN is positive definite if and only if for any 

k � N , det1�i,j�k (ei, ej ) > 0. 
9Please ignore the numerical labels; they will be relevant for Problem 5.5 below. 
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1 2 3 4 5 6 4 2 

(f) Deduce from (a)-(e) the classification theorem for Dynkin diagrams. 

(g) A (simply laced) affine Dynkin diagram is a connected graph without self-loops such that the 
quadratic form defined by A� is positive semidefinite. Classify affine Dynkin diagrams. (Show that 
they are exactly the forbidden diagrams from (c)-(e)). 

Problem 5.4. Let Q be a quiver with set of vertices D. We say that Q is of finite type if it 
has finitely many indecomposable representations. Let bij be the number of edges from i to j in Q 
(i, j � D). 

There is the following remarkable theorem, proved by P. Gabriel in early seventies. 

Theorem. A connected quiver Q is of finite type if and only if the corresponding unoriented 
graph (i.e., with directions of arrows forgotten) is a Dynkin diagram. 

In this problem you will prove the “only if” direction of this theorem (i.e., why other quivers 
are NOT of finite type). 

(a) Show that if Q is of finite type then for any rational numbers xi ⊂ 0 which are not simul­
taneously zero, one has q(x1, ..., xN ) > 0, where 

q(x1, ..., xN ) := 
� 

xi 
2 − 

2

1 � 
bij xixj. 

i�D i,j�D 

Hint. It suffices to check the result for integers: xi = ni. First assume that ni ⊂ 0, and consider 
the space W of representations V of Q such that dimVi = ni. Show that the group 

⎛
i GLni (k) acts 

with finitely many orbits on W � k, and use Problem 5.2 to derive the inequality. Then deduce the 
result in the case when ni are arbitrary integers. 

(b) Deduce that q is a positive definite quadratic form. 

Hint. Use the fact that Q is dense in R. 

(c) Show that a quiver of finite type can have no self-loops. Then, using Problem 5.3, deduce 
the theorem. 

Problem 5.5. Let G = 1 be a finite subgroup of SU(2), and V be the 2-dimensional representation ⇒
of G coming from its embedding into SU(2). Let Vi, i � I, be all the irreducible representations of 
G. Let rij be the multiplicity of Vi in V � Vj. 

(a) Show that rij = rji. 

(b) The McKay graph of G, M(G), is the graph whose vertices are labeled by i � I, and i is 
connected to j by rij edges. Show that M(G) is connected. (Use Problem 3.26) 

(c) Show that M(G) is an affine Dynkin graph (one of the “forbidden” graphs in Problem 5.3). 
For this, show that the matrix aij = 2ζij − rij is positive semidefinite but not definite, and use 
Problem 5.3. 

Hint. Let f = 
⎨ 
xiνVi , where νVi be the characters of Vi. Show directly that ((2−νV )f, f) ⊂ 0. 

When is it equal to 0? Next, show that M(G) has no self-loops, by using that if G is not cyclic 
then G contains the central element −Id � SU(2). 
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(d) Which groups from Problem 3.24 correspond to which diagrams?

(e) Using the McKay graph, find the dimensions of irreducible representations of all finite
G ⊂ SU(2) (namely, show that they are the numbers labeling the vertices of the affine
Dynkin diagrams on our pictures). Compare with the results on subgroups of SO(3)
we obtained in Problem 3.24.

Problem 5.4’ Let Q be a connected quiver, and assume that for any dimension vector d, the number
of isomorphism classes of representations of Q over a finite field Fp is independent of
p for large enough primes p. Show that Q is a Dynkin diagram of type A,D, or E.
Hint: This requires Problem 5.3.


