Problem Set 3 for "Representations of quivers

The problems below are Exercises 5.39 (a)-(c), 5.40, 5.41 from the Lecture Notes.

1. Let Q_{n} be the cyclic quiver of length n, i.e. n vertices connected by n oriented edges forming a cycle. Obviously, the classification of indecomposable representations of Q_{1} is given by the Jordan normal form theorem. Obtain a similar classification of indecomposable representations of Q_{2}. In other words, classify pairs of linear operators $A: V \rightarrow W$ and $B: W \rightarrow V$ up to isomorphism. Namely:
(a) Consider the following pairs (for $n \geq 1$):
1) $E_{n, \lambda}: V=W=\mathbb{C}^{n}, A$ is the Jordan block of size n with eigenvalue $\lambda, B=$ $1(\lambda \in \mathbb{C})$.
2) $E_{n, \infty}$: is obtained from $E_{n, 0}$ by exchanging V with W and A with B.
3) $H_{n}: V=\mathbb{C}^{n}$ with basis $v_{i}, W=\mathbb{C}^{n-1}$ with basis $w_{i}, A v_{i}=w_{i}, B w_{i}=v_{i+1}$ for $i<n$, and $A v_{n}=0$.
4) K_{n} is obtained from H_{n} by exchanging V with W and A with B.

Show that these are indecomposable and pairwise non-isomorphic.
(b) Show that if E is a representation of Q_{2} such that $A B$ is not nilpotent, then $E=$ $E^{\prime} \oplus E^{\prime \prime}$ where $E^{\prime \prime}=E_{n, \lambda}$ for some $\lambda \neq 0$.
(c) Consider the case when $A B$ is nilpotent, and consider the operator X on $V \oplus W$ given by $X(v, w)=(B w, A v)$. Show that X is nilpotent, and there is a basis consisting of chains (i.e. sequences $u, X u, X^{2} u, \ldots, X^{l-1} u$ with $X^{l} u=0$) which are compatible with the direct sum decomposition (i.e. for every chain $u \in V$ or $u \in W$). Deduce that (1)-(4) are the only indecomposable representations of Q_{2}.
2. Let $L \subset \frac{1}{2} \mathbb{Z}^{8}$ be the lattice of vectors where the coordinates are either all integers or all half-integers (but not integers), and the sum of all coordinates is an even integer.
(a) Let $\alpha_{i}=e_{i}-e_{i+1}, i=1, \ldots, 6, \alpha_{7}=e_{6}+e_{7}, \alpha_{8}=-1 / 2 \sum_{i=1}^{8} e_{i}$. Shiw that the α_{i} are a basis of L (over \mathbb{Z}).
(b) Show that roots in L (under the usual inner product) form a root system of type E_{8} (compute the inner products of the α_{i}).
(c) Show that the E_{7} and E_{6} lattices can be obtained as the sets of vectors in the E_{8} lattice L where the first two, respectively three, coordinates (in the basis e_{i}) are equal.
(d) Show that E_{6}, E_{7}, E_{8} have $72,126,240$ roots, respectively (enumerate types of roots in terms of the presentations in the basis e_{i}, and count the roots of each type).
3. Let V_{α} be the indecomposable representation of Dynkin quiver Q which corresponds to a positive root α. For instance, if α_{i} is a simple root, then V_{α} has a 1-dimensional space at i and 0 everywhere else.
(a) Show that if i is a source then $\operatorname{Ext}^{1}\left(V, V_{\alpha_{i}}\right)=0$ for any representation V of Q, and if i is a sink, then $\operatorname{Ext}^{1}\left(V_{\alpha_{i}}, V\right)=0$.
(b) Given an orientation of the quiver, find a Jordan-Hölder series of V_{α} for that orientation.

