Problem Set 3 for "Representations of quivers

The problems below are Exercises 5.39 (a)-(c), 5.40, 5.41 from the Lecture Notes.

- Let Q_n be the cyclic quiver of length n, i.e. n vertices connected by n oriented edges forming a cycle. Obviously, the classification of indecomposable representations of Q₁ is given by the Jordan normal form theorem. Obtain a similar classification of indecomposable representations of Q₂. In other words, classify pairs of linear operators A: V → W and B: W → V up to isomorphism. Namely:
 - (a) Consider the following pairs (for $n \ge 1$):
 - 1) $E_{n,\lambda}: V = W = \mathbb{C}^n$, A is the Jordan block of size n with eigenvalue $\lambda, B = 1(\lambda \in \mathbb{C})$.
 - 2) $E_{n,\infty}$: is obtained from $E_{n,0}$ by exchanging V with W and A with B.
 - 3) $H_n: V = \mathbb{C}^n$ with basis v_i , $W = \mathbb{C}^{n-1}$ with basis w_i , $Av_i = w_i$, $Bw_i = v_{i+1}$ for i < n, and $Av_n = 0$.

4) K_n is obtained from H_n by exchanging V with W and A with B.

Show that these are indecomposable and pairwise non-isomorphic.

- (b) Show that if E is a representation of Q_2 such that AB is not nilpotent, then $E = E' \oplus E''$ where $E'' = E_{n,\lambda}$ for some $\lambda \neq 0$.
- (c) Consider the case when AB is nilpotent, and consider the operator X on V⊕W given by X(v, w) = (Bw, Av). Show that X is nilpotent, and there is a basis consisting of chains (i.e. sequences u, Xu, X²u,..., X^{l-1}u with X^lu = 0) which are compatible with the direct sum decomposition (i.e. for every chain u ∈ V or u ∈ W). Deduce that (1)-(4) are the only indecomposable representations of Q₂.
- 2. Let $L \subset \frac{1}{2}\mathbb{Z}^8$ be the lattice of vectors where the coordinates are either all integers or all half-integers (but not integers), and the sum of all coordinates is an even integer.
 - (a) Let $\alpha_i = e_i e_{i+1}, i = 1, ..., 6, \alpha_7 = e_6 + e_7, \alpha_8 = -1/2 \sum_{i=1}^8 e_i$. Shiw that the α_i are a basis of L (over \mathbb{Z}).
 - (b) Show that roots in L (under the usual inner product) form a root system of type E_8 (compute the inner products of the α_i).
 - (c) Show that the E_7 and E_6 lattices can be obtained as the sets of vectors in the E_8 lattice L where the first two, respectively three, coordinates (in the basis e_i) are equal.
 - (d) Show that E_6, E_7, E_8 have 72, 126, 240 roots, respectively (enumerate types of roots in terms of the presentations in the basis e_i , and count the roots of each type).
- **3.** Let V_{α} be the indecomposable representation of Dynkin quiver Q which corresponds to a positive root α . For instance, if α_i is a simple root, then V_{α} has a 1-dimensional space at i and 0 everywhere else.
 - (a) Show that if *i* is a source then $\operatorname{Ext}^{1}(V, V_{\alpha_{i}}) = 0$ for any representation *V* of *Q*, and if *i* is a sink, then $\operatorname{Ext}^{1}(V_{\alpha_{i}}, V) = 0$.
 - (b) Given an orientation of the quiver, find a Jordan-Hölder series of V_{α} for that orientation.